Searches for lepton-flavour violation in τ decays at Belle and Belle II

Wenzhe Li - Beihang University

on behalf of the Belle & Belle II collaborations ICHEP 2024 conference - 18 July 2024

LFV τ Decays at Belle & Belle II

7

- Lepton Flavor Violation (LFV)
 - LFV has long been recognized as unambiguous signature of New Physics;
 - LFV is allowed in various extensions of the Standard Model (SM) but it has never been observed.

- Search for LFV in 52 benchmark *τ* decays:
 - ➢ Radiative decays: τ → $\ell \gamma$;
 - ➢ leptonic decays: τ → ℓℓℓ;
 - > semi-leptonic decays: $\tau \rightarrow \ell$ + hadron(s);
 - > BNV decays: $\tau \to p(\bar{p})\ell\ell, \tau \to \Lambda(\bar{\Lambda})\pi$.

Existing and expected limits on LFV τ decays [1]

- [1] Snowmass 2021: cLFV in τ sector arXiv:2203.14919
 - 2024/7/18

ICHEP 2024

- Clean environment at asymmetric energy e^+e^- collider ~ hermetic detector:
 - > at $\sqrt{s} = 10.58 \text{ GeV}$: $\sigma_{bb} \approx 1.1 \text{ nb} \sim \sigma_{\tau\tau} \approx 0.9 \text{ nb}$, **B & \tau factory**;
 - \triangleright known initial state + efficient reconstruction of neutrals (π^0 , η), recoiling system and missing energy;
 - > specific low-multiplicity triggers (at Belle II).
- Advantages of Belle and Belle II in τ LFV searches:
 - ➤ the increase of the luminosity;
 - the increase of the signal detection efficiency and background suppression:
 - \checkmark on clean environment,
 - ✓ high trigger efficiency,
 - ✓ zero background searches

τ LFV channels

- Search for various decay models:
 - $\tau \rightarrow \ell \ell \ell$
 - $\tau \rightarrow \ell K_S$, $\Lambda \pi$
 - $\tau \rightarrow \ell V^0(\rightarrow hh')$
 - $\tau \rightarrow \ell P^0 (\rightarrow \gamma \gamma)$
 - $\tau \rightarrow \ell h h'$
 - $\tau \rightarrow \ell \gamma$

Simple: good determination of m_{τ} and E_{τ} , few SM background sources

Golden channel: $\tau \rightarrow \mu \mu \mu$

experimentally the most accessible

- Motivation: the decay channels forbidden in the SM but allowed in several new physics scenarios
 - $\succ \text{ LFV decay } \tau \to \ell V^0$
 - \checkmark The $\tau \rightarrow \mu \phi$ mode is a sensitive probe for leptoquark models
 - ➢ BNV decay τ → Λ(Λ̄)π
 - $\checkmark\,$ BNV is one of the necessary conditions to explain the asymmetry of matter
 - $\checkmark\,$ Beyond SM scenarios allow for BNV and LNV

higher

background

► LFV decay $\tau \rightarrow \mu \mu \mu$ (Golden channel)

Physics Models	$\mathcal{B}(au o \mu \mu \mu)$
SM	$10^{-53} \sim 10^{-55}$
SM + seesaw	10 ⁻¹⁰
SUSY + Higgs	10 ⁻⁸
SUSY + SO(10)	10 ⁻¹⁰
Non-universal Z'	10 ⁻⁸

Search for LFV decay $au o \ell V^0$ at Belle

- Previous search at Belle on 854 fb⁻¹ exploiting 1-prong tag [1]: $\gg V^0 = \rho, \omega, \phi, K^{*0}$, and \overline{K}^{*0} ;
 - set 90% C.L. upper limits on the branching fractions in the range of (1.2~8.4) × 10⁻⁸.

JHEP06(2023)118

- Latest results [2]:
 - > full data set of 980 fb⁻¹;
 - \succ more decay modes in the tag side;

- → further suppress $\tau \rightarrow 3\pi\nu$ and $ee \rightarrow q\bar{q}$ with BDT;
- ➤ Estimate expected background in SR from sideband interpolation.

[1] Y. Miyazaki, *et.al*, (Belle collaboration) Phys. Lett. B 699, 251 (2011). [2] N. Tsuzuki, *et, al*, (Belle collaboration) JHEP 2023, 118, (2023).

2024/7/18

ICHEP 2024

Search for LFV decay $\tau \rightarrow \ell V^0$ at Belle

- No significant access in all modes \rightarrow set ULs at 90% C.L.
- **30%** improvement over previous measurements:
 - \succ increased statistics (124 fb⁻¹);
 - \succ higher signal efficiency (9%).

 $\begin{aligned} &\mathcal{B}\big(\tau \rightarrow eV^0\big) < (1.7 \sim 2.4) \times 10^{-8} \\ &\mathcal{B}\big(\tau \rightarrow \mu V^0\big) < (1.7 \sim 4.3) \times 10^{-8} \end{aligned}$

JHEP06(2023)118

Mode	ε (%)	$N_{ m BG}$	$\sigma_{\rm syst}$ (%)	$N_{\rm obs}$	$\mathcal{B}_{\rm obs}~(\times 10^{-8})$
$\tau^{\pm} \rightarrow \mu^{\pm} \rho^0$	7.78	$0.95 \pm 0.20 (stat.) \pm 0.15 (syst.)$	4.6	0	< 1.7
$\tau^{\pm} \rightarrow e^{\pm} \rho^0$	8.49	$0.80 \pm 0.27 (stat.) \pm 0.04 (syst.)$	4.4	1	< 2.2
$\tau^{\pm} \rightarrow \mu^{\pm} \phi$	5.59	$0.47 \pm 0.15 (stat.) \pm 0.05 (syst.)$	4.8	0	< 2.3
$\tau^{\pm} \to e^{\pm} \phi$	6.45	$0.38 \pm 0.21 (stat.) \pm 0.00 (syst.)$	4.5	0	< 2.0
$\tau^{\pm} \rightarrow \mu^{\pm} \omega$	3.27	$0.32 \pm 0.23 (stat.) \pm 0.19 (syst.)$	4.8	0	< 3.9
$\tau^{\pm} \rightarrow e^{\pm} \omega$	5.41	$0.74 \pm 0.43 (stat.) \pm 0.06 (syst.)$	4.5	0	< 2.4
$\tau^{\pm} \rightarrow \mu^{\pm} K^{*0}$	4.52	$0.84 \pm 0.25 (stat.) \pm 0.31 (syst.)$	4.3	0	< 2.9
$\tau^{\pm} \rightarrow e^{\pm} K^{*0}$	6.94	0.54 ± 0.21 (stat.) ± 0.16 (syst.)	4.1	0	< 1.9
$\tau^{\pm} ightarrow \mu^{\pm} \overline{K}^{*0}$	4.58	$0.58 \pm 0.17 (stat.) \pm 0.12 (syst.)$	4.3	1	< 4.3
$\tau^{\pm} \to e^{\pm} \overline{K}^{*0}$	7.45	$0.25 \pm 0.11 (stat.) \pm 0.02 (syst.)$	4.1	0	< 1.7

- Untagged inclusive reconstruction, reconstruct signal side as phi meson + lepton candidate, assign everything else (neutral clusters, tracks) to the rest of event (ROE): arXiv:2305.04759
 - \blacktriangleright higher signal efficiency (~16% improvement), more background;
 - \blacktriangleright backgrounds reduced with pre selections and a BDT trained against $q\bar{q}$ events.

arXiv:2407.05117

- A baryon number violation decay that is also an LFV decay.
- Previous search on 154 fb⁻¹ at Belle [1] set limits at 90% C.L. of 0. 72(1.4) × 10⁻⁷ for $\mathcal{B}(\tau \to \Lambda(\overline{\Lambda})\pi)$.
- At Belle II:
 - Reconstruct exactly 4 charged tracks (total null charge) in one-prong tag approach;
 - > $\Lambda(\overline{\Lambda})$ is reconstructed from proton (anti-proton) and pion;
 - Signal selection and background suppression using loose pre-selection, followed by Gradient-BDT;
 - ✓ The flight significance (L/σ) of Λ and $\overline{\Lambda}$ candidates is one of the most discriminant variables.

Search for BNV decay $\tau \to \varLambda(\overline{\Lambda})\pi$ at Belle II

arXiv:2407.05117

- ► Signal efficiencies are 9.5% and 9.9% for $\tau \to \Lambda \pi$ and $\tau \to \overline{\Lambda} \pi$;
- > Poisson counting experiment technique in signal region in the $M(\Lambda \pi) = \sqrt{E_{\Lambda \pi}^2 P_{\Lambda \pi}^2}$ and $\Delta E = E_{\Lambda \pi}^{CM} \sqrt{s}/2$ plane;
- \succ Expected events are 1 and 0.5 for $\tau \to \Lambda \pi$ and $\tau \to \overline{\Lambda} \pi$;
- > No observed events;
- → World's best upper limits at 90% C.L. of 4.7×10^{-8} for $\mathcal{B}(\tau \to \Lambda \pi)$ and 4.3×10^{-8} for $\mathcal{B}(\tau \to \bar{\Lambda}\pi)$;

Search for LFV decay $\tau \rightarrow \mu \mu \mu$ at Belle II

sig

- Previous results from Belle: 2. 1×10^{-8} at 90% C.L. with 782 fb⁻¹ [1]. 1 prong tag
 - Signal side: three muons;
 - > Tag side: 1-track τ decay (events with 4 tracks);
- Belle II with 424 fb⁻¹

arXiv:2405.07386

► Extract signal yield from 2D plane $(M_{3\mu}, \Delta E_{3\mu})$:

$$M_{3\mu} = \sqrt{E_{3\mu}^2 - P_{3\mu}^2}$$
$$\Delta E_{3\mu} = E_{3\mu}^{CM} - E_{beam}^{CM}$$

- ➢ For signal:
 - ✓ Δ $E_{3\mu}$ close to 0 and $M_{3\mu}$ close to τ mass;
 - \checkmark Tails due to initial and final state radiation.

[1] K. Hayasaka, et al., (Belle Collaboration) Phys. Lett. B 687, 139 (2010).

2024/7/18

ICHEP 2024

Search for LFV decay $\tau \rightarrow \mu \mu \mu$ at Belle II

11

- Main analysis approach:
 - \checkmark Inclusion of 3 × 1 and 3 × 3 toplogies;
 - ✓ Selection and background rejection using BDT;

- arXiv:2405.07386
- > Signal: efficiency: 20.4% ($2.7 \times$ Belle efficiency);
- ➢ Number of expected BG: 0.5;
- ➤ 1 event observed inside the SR;
- \succ B(τ → 3µ) < 1.9 × 10⁻⁸ at 90% C.L.;

Most stringent limit to date

_		E C O D				
GeV	Data: $\int \mathcal{L}dt = 424 f b^{-1}$	5δ SR 20δ SR	$\prod_{i=1}^{\infty} 1.2 - \text{Belle II (Preliminary)} \\ \tau^{\pm} \rightarrow \mu^{\pm} \mu^{\mp} \mu^{\pm}$	Expected CL _s median		UL at 90% C.L. on $\mathcal{B}(\tau \to 3\mu$
$\Delta E_{3\mu}$	Simulation: $\int \mathcal{L}dt = 4ab^{-1}$	 Sidebands Simulated background 	$ \underbrace{ \int \mathcal{L}dt = 424 f b^{-1} }_{1.0} $	Expected $CL_s \pm 2\sigma$ Expected $CL_s \pm 1\sigma$ Observed CL_s	ATLAS	$3.8 \times 10^{-7} \ (\mathcal{L} = 20.3 \ \text{fb}^{-1})$
().2	* • •	0.8		LHCb	$4.6 \times 10^{-8} (\mathcal{L} = 3.0 \text{fb}^{-1})$
		• •			CMS	$2.9 \times 10^{-8} (\mathcal{L} = 131 \text{fb}^{-1})$
-(0.4		Belle	$2.1 \times 10^{-8} (\mathcal{L} = 782 \text{fb}^{-1})$
-().2	•	0.2		BaBar	$3.3 \times 10^{-8} (\mathcal{L} = 486 \text{fb}^{-1})$
-0		+ •	$0.0 \frac{1}{0}$		Belle II	$1.9 \times 10^{-8} (\mathcal{L} = 424 \text{fb}^{-1})$
	1.700 1.725 1.750 1.7	$M_{3\mu} [GeV/c^2]$	$\mathcal{B}(au^{2})$	$^{\pm} \rightarrow \mu^{\pm} \mu^{\mp} \mu^{\pm}) \qquad \times 10^{-8}$		

2024/7/18

ICHEP 2024

• New high profile searches:

- → LFV decay $\tau \rightarrow \ell V^0$ at Belle;
- \succ LFV decay $\tau \rightarrow \mu\mu\mu$ and BNV decay $\tau \rightarrow \Lambda(\overline{\Lambda})\pi$ at Belle II.

• More results are on the way.

World leading results

ICHEP 2024

ICHEP 2024

Search for $\tau \rightarrow \ell V^0$ at Belle

Estimate *N_{BG}*:

$$F(M_{\ell V^{0}}, \Delta E) = f(M_{\ell V^{0}}) \times \frac{1}{1 + \exp[a_{y}(\Delta E - y_{0})]} + c_{0}^{\text{flat}}, \qquad (4.2)$$

$$f(x) = \begin{cases} \int_{x-5\sigma}^{x+5\sigma} g(x') \times \frac{1}{\sqrt{2\pi\sigma}} \exp\left[\frac{-(x-x')^{2}}{2\sigma^{2}}\right] dx' \quad (V^{0} = \rho^{0}, \omega) \\ c_{1}(x-x_{0})^{2} + c_{0} \quad (V^{0} = K^{*0}, \overline{K}^{*0}) \\ c_{0} \quad (V^{0} = \phi) \quad (4.3) \end{cases}$$

$$g(x) = \begin{cases} c_{1}[(x-x_{0})^{2} + k(x-x_{0})] + c_{0} \quad (x < x_{0}, V^{0} = \rho^{0}) \\ c_{1}(x-x_{0}) + c_{0} \quad (x < x_{0}, V^{0} = \omega) \\ c_{0} \quad (x \ge x_{0}) \end{cases}$$

where f(x) represents the background distribution as a function of $M_{\ell V^0}$; c_1 , c_0 , x_0 , and k are parameters that define the shape of the function; a_y represents sharpness of the sigmoid function along the ΔE axis; y_0 is the center of the sigmoid function; and c_0^{flat} is a term of flat background events in the $M_{\ell V^0} - \Delta E$ plane. We define f(x) for each V^0 in eq. (4.3) and the functions for the $\ell \rho^0$ ($\ell \omega$) modes are smeared by a Gaussian with standard deviation (σ) of 6.6 (9.6) MeV/c². This σ corresponds to the mass resolution that affects the edge of the $M_{\ell V^0}$ distribution close to the τ mass for the $\tau^+ \tau^-$ background. The edge is broad for the other modes owing to wrong mass assignment of fake kaons. The $\tau^+ \tau^-$ background events for the $\ell \phi$ modes are included in c_0 because they are flat along the $M_{\ell V^0}$ axis in $1.65 \text{ GeV}/c^2 < M_{\ell V^0} < 1.9 \text{ GeV}/c^2$.

Mode	ε (%)	$N_{ m BG}$	$\sigma_{\rm syst}$ (%)	$N_{\rm obs}$	$\mathcal{B}_{\rm obs}~(\times 10^{-8})$
$\tau^{\pm} \to \mu^{\pm} \rho^0$	7.78	0.95 ± 0.20 (stat.) ± 0.15 (syst.)	4.6	0	< 1.7
$\tau^\pm \to e^\pm \rho^0$	8.49	$0.80 \pm 0.27 (stat.) \pm 0.04 (syst.)$	4.4	1	< 2.2
$\tau^{\pm} \to \mu^{\pm} \phi$	5.59	$0.47 \pm 0.15 (stat.) \pm 0.05 (syst.)$	4.8	0	< 2.3
$\tau^\pm \to e^\pm \phi$	6.45	$0.38 \pm 0.21 (stat.) \pm 0.00 (syst.)$	4.5	0	< 2.0
$\tau^{\pm} \to \mu^{\pm} \omega$	3.27	$0.32 \pm 0.23 (stat.) \pm 0.19 (syst.)$	4.8	0	< 3.9
$\tau^{\pm} \to e^{\pm} \omega$	5.41	$0.74 \pm 0.43 (stat.) \pm 0.06 (syst.)$	4.5	0	< 2.4
$\tau^{\pm} \to \mu^{\pm} K^{*0}$	4.52	$0.84 \pm 0.25 (stat.) \pm 0.31 (syst.)$	4.3	0	< 2.9
$\tau^\pm \to e^\pm K^{*0}$	6.94	$0.54 \pm 0.21 (stat.) \pm 0.16 (syst.)$	4.1	0	< 1.9
$\tau^{\pm} \to \mu^{\pm} \overline{K}{}^{*0}$	4.58	$0.58 \pm 0.17 (stat.) \pm 0.12 (syst.)$	4.3	1	< 4.3
$\tau^{\pm} \to e^{\pm} \overline{K}{}^{*0}$	7.45	$0.25 \pm 0.11 (\text{stat.}) \pm 0.02 (\text{syst.})$	4.1	0	< 1.7

- Reasons why τ[±] → ℓ[±]ρ⁰ did not get world leading results:
- τ[±] → μ[±]ρ⁰: use the Bayesian limits instead of the Frequentist limits, which are negatively proportional to N_{BG} when N_{obs} is fixed.
 τ[±] → e[±]ρ⁰: after unblinding, one event is observed in the signal region and the N_{BG} is greater than previously expected.

Ţ

Expected background in SR and BR measurement

Use a data-driven method 'ABCD' based on 2 uncorrelated variables : BDT output and distance to the signal peak ND = NB x NC / NA = $0.5^{+1.4}$

Method validated with simulation

Search of $\tau \rightarrow \ell \alpha$ at Belle II

- α is invisible spin-0 boson.
 - Predicted by many models trying to incorporate neutrino-oscillation, muon magnetic moment anomaly or indirect evidence of dark matter in SM.
- This direct search probes BSM theories with high sensitivity.
- Previous limits from ARGUS [1]: (Result from 1995)
 ▶ 10⁻² to 10⁻³; 0.5 fb⁻¹ of data;
- Tag tau is reconstructed via $\tau^+ \rightarrow h^+ h^- h^+ \bar{\nu}_{\tau}$ $(h = \pi, K)$.
- Tau momentum is unknown.
 - > Pseudo rest frame is used $(\vec{p}_{\tau} \approx -\vec{p}_{3h}/|\vec{p}_{3h}|)$;
 - ► Look for an excess above $\tau^- \rightarrow \ell^- \bar{\nu}_\ell \nu_\tau$ background;

 $x_{\ell} \equiv \frac{E_{\ell}^*}{m_{\tau}c^2/2}$

where E_{ℓ}^* is the energy of the charged lepton in the τ pseudo rest frame.

1] H. Albrecht, et.al, (ARGUS Collaboration), Z.Phys.C 68, 25 (1995).

PRL 130 (2023) 181803

2024/7/18

ICHEP 2024

Search of $\tau \rightarrow \ell \alpha$ at Belle II

1

- Simulation derived templates fit for different α mass hypotheses.
- ULs are 2 to 14 times more stringent than ARGUS.
- Measure $\mathcal{B}_{\ell\alpha}/\mathcal{B}_{\ell\overline{\nu}\nu} \equiv \mathcal{B}(\tau^- \to \ell^- \alpha)/\mathcal{B}(\tau^- \to \ell^- \overline{\nu}_{\ell} \nu_{\tau})$ with $\tau^- \to \ell^- \overline{\nu}_{\ell} \nu_{\tau}$

 $\ell^- \overline{\nu}_\ell \nu_\tau$ as normalization channel.

• $\int \mathcal{L} dt = 62.8 \text{ fb}^{-1} \sim 58 \text{ Million } ee \rightarrow \tau\tau.$

$M_{\alpha} [{\rm GeV}/c^2]$	$\mathcal{B}_{e \alpha} / \mathcal{B}_{e \bar{\nu} \nu}$ (×10 ⁻³)	UL at 95% C.L. $(\times 10^{-3})$	UL at 90% C.L. (×10 ⁻³)
0.0	-8.1 ± 3.9	5.3(0.94)	4.3(0.76)
0.5	-0.9 ± 4.3	7.8(1.40)	6.5(1.15)
0.7	1.7 ± 4.0	9.0(1.61)	7.6(1.36)
1.0	1.7 ± 4.2	9.7(1.73)	8.2(1.47)
1.2	-1.1 ± 2.6	4.5(0.80)	3.7(0.66)
1.4	-0.3 ± 1.0	1.8(0.32)	1.5(0.26)
1.6	0.2 ± 0.5	1.1(0.19)	0.9(0.16)
$\overline{M_{\alpha} \; [\text{GeV}/c^2]}$	$\mathcal{B}_{\mulpha}/\mathcal{B}_{\muar u u}$ (×10 ⁻³)	UL at 95% C.L. (×10 ⁻³)	UL at 90% C.L. (×10 ⁻³)
0.0	-9.4 ± 3.7	3.4(0.59)	2.7(0.47)
0.5	-32 + 30	62(107)	5 1(0 88)
0.5	-3.2 ± 3.9	0.2(1.07)	2.1(0.00)
0.7	-3.2 ± 3.9 2.7 ± 3.4	9.0(1.56)	7.8(1.35)
0.7 1.0	-3.2 ± 3.9 2.7 ± 3.4 1.7 ± 5.4	9.0(1.56) 12.2(2.13)	7.8(1.35) 10.3(1.80)
0.7 1.0 1.2	-3.2 ± 3.9 2.7 ± 3.4 1.7 ± 5.4 -0.2 ± 2.4	9.0(1.56) 12.2(2.13) 3.6(0.62)	$7.8(1.35) \\10.3(1.80) \\2.9(0.51)$
0.7 1.0 1.2 1.4	$\begin{array}{c} -3.2 \pm 3.9 \\ 2.7 \pm 3.4 \\ 1.7 \pm 5.4 \\ -0.2 \pm 2.4 \\ 0.9 \pm 0.9 \end{array}$	9.0(1.56) $12.2(2.13)$ $3.6(0.62)$ $2.5(0.44)$	7.8(1.35) $10.3(1.80)$ $2.9(0.51)$ $2.2(0.38)$

ICHEP 2024