Measurements of hadronic B decay rates at Belle and Belle II

Vismaya V S (IIT Hyderabad) on behalf of Belle and Belle II collaborations

> ICHEP 2024 - parallel session July 17-24, 2024

Relle T

<u>ph20resch11010@iith.ac.in</u>

Hadronic B decays

- Goal : probe indirectly the SM via weak interactions of quarks
- **387M (Belle II)** and **772M (Belle) BB** pairs to accomplish world's best results.
- **B to hadronic** decays via **b** → **c,u tree** or **b** → **d, s penguins**

Talk focuses on improvement of our knowledge on B decays, measure parameters related to CKM angles :

• $B^+ \rightarrow D^0 \rho(770)^+$ • $B \rightarrow D^{(*)} K^- K^{(*)0}$ • $B^0 \rightarrow \omega \omega$ • First Belle+Belle II combination of ϕ_3 measurements • $B^0 \rightarrow \pi^0 \pi^0$ towards ϕ_2 measurement [Yu Nakazawa's talk]

Analysis workflow

- **Y(4S) decays** \rightarrow **BB 96%** of the time, **background** from $e^+ e^- \rightarrow q\bar{q}$ events.
- **Event selection**: final state particle with good track selection, particle ID criteria etc.
- **Reconstruction** : forming B meson using final state particles.
- **Background reduction** : event-shape variables to suppress background etc.
- **Fit** : to extract the signal events.
- **Systematic uncertainties** : toy MC and control sample studies.

Difference between expected and observed B energy

Event Topology

Invariant B mass with energy replaced by beam energy

Improve B decay knowledge

- Hadronic decays of B-mesons account for ~75% of the total branching fraction
- But it's largely **unknown** (~50%)
- Measurements with small data sets ~ **large** uncertainties
- Important to improve hadronic B-tagging

- Semileptonic ($\ell = \{e, \mu\}$)
- Semileptonic $(\ell = \tau)$
- Hadronic
- **Covered by FEI**

Tagging algorithm (**FEI**)

- Hadronic B tagging: best purity and you get the B momentum vector
- BDT for each decay trained on simulation $[B \rightarrow D^{(*)} n\pi m\pi^0]$
- Important for decays with missing energy [Meihong's talk]

Branching fraction of $B^+ \rightarrow D^0 \rho(770)^+$ at Belle II

Test heavy-quark limit and factorisation models [Nucl. Phys. B 591, 313 (2000)]

WA BF : (1.35 ± 0.18)% driven by CLEO measurement with large uncertainty (14%) <u>CLEO, PRD 50, 43 (1994)</u>

Signal extracted from fit to ΔE

Challenge: separate $B^+ \rightarrow D^0 \rho^+ (\rightarrow \pi^+ \pi^0)$ resonant and $B^+ \rightarrow D^0 \pi^+ \pi^0$ non-resonant component. — Fit performed in bins of helicity angle (cos θ_0)

 $\theta \rho$: angle between π momentum and direction opposite to B momentum in ρ rest frame.

Branching fraction of $B^+ \rightarrow D^0 \rho(770)^+$ at Belle II

Template fit in $\cos\theta_0$

- Non-uniform binning : flat $\cos\theta_{\rho}$ distribution for $\mathbf{B} \rightarrow \mathbf{D}\rho$
- Less than 2 % contribution of $B^+ \rightarrow D^0 \pi^+ \pi^0$ s-wave component

$\mathcal{B}(B^+ \rightarrow D^0 \rho^+) = (0.94 \pm 0.02 \pm 0.05) \%$

- World's best result with more than 2x improvement in precision
- Factorisation test: in agreement with prediction, improved precision
- Systematically limited by uncertainty on π^0 efficiency

PhysRevD.109.L111103

- $B \rightarrow DKK$: largely unexplored sector
- ➢ Few % of B branching fraction expected
- ➢ Only 0.28 % measured so far
- Challenge: estimate non-resonant

 $B \rightarrow DK^{-}K^{+}\pi$ modes in K^{*}

• Signal extracted from **fit to** ΔE

• Subtract background, and look at **invariant**

mass and Dalitz distributions

7

- Efficiency correction applied in the plane m[D^(*)K⁻] and m[K⁻K_(S)^{(*)0}]
- Extraction of bkg-subtracted and efficiency corrected invariant mass and

helicity

- Dominant transitions $J^P = 1^{-/+}$
- $\mathbf{B} \rightarrow \mathbf{D}^{(*)}\mathbf{D}_{\mathbf{s}}(\rightarrow \mathbf{K}\mathbf{K}^{(*)})$ are used as

control modes

Channel	Yield	Average ε	$\mathcal{B}~[10^{-4}]$	
$B^- ightarrow D^0 K^- K^0_S$	209 ± 17	0.098	$1.82 \pm 0.16 \pm 0.08$	World's best
$\overline B{}^0 o D^+ K^- K^0_S$	105 ± 14	0.048	$0.82 \pm 0.12 \pm 0.05$ -	1
$B^- ightarrow D^{*0} K^- K^0_S$	51 ± 9	0.044	$1.47 \pm 0.27 \pm 0.10$	First observation
$\overline{B}{}^0 ightarrow D^{*+} K^- K^0_S$	36 ± 7	0.046	$0.91 \pm 0.19 \pm 0.05$ -	J
$B^- ightarrow D^0 K^- K^{*0}$	325 ± 19	0.043	$7.19 \pm 0.45 \pm 0.33$ -	1
$\overline{B}{}^0 ightarrow D^+ K^- K^{*0}$	385 ± 22	0.021	$7.56 \pm 0.45 \pm 0.38$	World's bast
$B^- \rightarrow D^{*0} K^- K^{*0}$	160 ± 15	0.019	$11.93 \pm 1.14 \pm 0.93$	worra's best
$\overline{B}{}^0 ightarrow D^{*+} K^- K^{*0}$	193 ± 14	0.020	$13.12 \pm 1.21 \pm 0.71$	J
$B^- ightarrow D^0 D^s$	144 ± 12 / 153 ± 13	0.09 / 0.04	$95\pm 6\pm 5$	1 Precision
$\overline B{}^0 o D^+ D^s$	$145 \pm 12 / 159 \pm 13$	0.05 / 0.02	$89\pm5\pm5$	compatible
$B^- \rightarrow D^{*0} D_s^-$	$30 \pm 6 / 29 \pm 7$	0.04 / 0.02	$65\pm10\pm6$	
$\overline{B}{}^0 ightarrow D^{*+} D^s$	43 ± 7 / 37 ± 7	0.04 / 0.02	$83 \pm 10 \pm 6$	J WITH WA

Total 12 channels, first observation for 3 channels World's best precision for the rest

[arXiv.2406.06277], submitted to JHEP

$B^0 \rightarrow \omega \omega$ at Belle

- Rare and never observed decay
- Polarisation (f_L) and direct-CPV parameter A_{CP}
- f_L useful for $B \rightarrow VV$ decays
- Using full Belle dataset (711 fb⁻¹)
- Signal extraction from 7D fit to: ΔE, M_{bc}, continuum suppression, ω invariant masses & cosine of helicity angles of both the ω's.

 $\mathcal{B} = (1.53 \pm 0.29 \pm 0.17) \times 10^{-6}$ $A_{CP} = -0.44 \pm 0.43 \pm 0.11$ $f_{L} = 0.87 \pm 0.13 \pm 0.13$

CKM angles

First Belle+Belle II combination of ϕ_3 measurements

- Tree level decays strong constraints on SM
- ϕ_3 : phase between $\mathbf{b} \rightarrow \mathbf{u}$ and $\mathbf{b} \rightarrow \mathbf{c}$
- Interference between two decays to same final state gives access to phase:
- Current WA dominated by LHCb

Various approaches - different D final states:

- Self-conjugate final states $D \rightarrow K_S^0 h^+ h^-(\pi^0)$
- Cabibbo-suppressed decays $\mathbf{D} \to \mathbf{K}_{S}^{0}\mathbf{K}^{\pm} \pi^{\mp}$, $\mathbf{D} \to \mathbf{K}^{+}\pi^{-}(\pi^{0})$
- CP eigenstates $\mathbf{D} \to \mathbf{K}^+ \mathbf{K}^-, \mathbf{K}_S^{-0} \pi^0$

$$\frac{\mathscr{A}^{\text{suppr.}}\left(B^{-}\to\overline{D}^{0}K^{-}\right)}{\mathscr{A}^{\text{favor.}}\left(B^{-}\to D^{0}K^{-}\right)} = r_{\text{B}}e^{i(\delta_{\text{B}}-\phi_{3})}$$

First Belle+Belle II combination of ϕ_3 measurements

Parameters	$\phi_3(^\circ)$	r_B^{DK}	$\delta_B^{DK}(^\circ)$	$r_B^{D\pi}$	$\delta^{D\pi}_B(^\circ)$	$r_B^{D^*K}$	$\delta_B^{D^*K}(^\circ)$
Best fit value	78.6	0.117	138.4	0.0165	347.0	0.234	341
68.3% interval	[71.4, 85.4]	[0.105, 0.130]	[129.1, 146.5]	[0.0109, 0.0220]	[337.4, 355.7]	[0.165, 0.303]	[327, 355]
95.5% interval	[63, 92]	[0.092, 0.141]	[118, 154]	[0.006, 0.027]	[322, 366]	$[0.10, \ 0.37]$	[307, 369]

13

Summary

- Exploiting the Belle II run 1 data set along with the Belle data set to test SM
- Improve the hadronic B tagging with FEI new measurements

- Improve B decay knowledge : $B^+ \rightarrow D^0 \rho^+$
- Observe new decay channels : $\mathbf{B} \to \mathbf{D}^{(*)}\mathbf{K}^{-}\mathbf{K}_{s}^{0}$ and $\mathbf{B}^{0} \to \boldsymbol{\omega}\boldsymbol{\omega}$
- Measure parameters related to CKM angles : combined ϕ_3 from Belle+Belle II

Many world's best and competitive results with smaller dataset. Run 2 started, more luminosity is coming!

Stay tuned!!!

Bkg subtracted and efficiency corrected m[K⁻K] distributions

