

# CPV measurements with D mesons at Belle (II)

Michel Bertemes on behalf of the Belle (II) collaboration ICHEP Prague - 2024/07/20





Der Wissenschaftsfonds.

### Charm physics at Belle (II)

- heavy-flavor collider experiment
  - SuperKEKB: asymmetric  $e^+e^-$  collider in Tsukuba, Japan
  - Belle II: 4п spectrometer with **improved** vertexing, tracking, PID and calorimetry capabilities
- "charm factory"
  - large  $e^+e^- \rightarrow c\bar{c}$  cross-section provides low-background event samples, 1.3M events per 1fb<sup>-1</sup>
  - ~100% trigger efficiency uniform across decay time and kinematics
  - excellent reconstruction of final states with neutrals
    - e.g.  $D^+ \to \pi^+ \pi^0$ ,  $D^0 \to V\gamma, \pi^0 \pi^0, K_S^0 K_S^0, K\pi\pi^0, \pi\pi\pi^0 \dots$

|                    | Belle                                               | Belle II                |  |  |  |  |
|--------------------|-----------------------------------------------------|-------------------------|--|--|--|--|
| Years of operation | 1999-2010                                           | 2019-                   |  |  |  |  |
| Beam energies      | 8 GeV (e <sup>_</sup> ) , 3.5 GeV (e <sup>+</sup> ) | 7 GeV (e-) , 4 GeV (e+) |  |  |  |  |
| Data set (Y(nS))   | 980 fb-1                                            | 531 fb <sup>-1</sup> 2  |  |  |  |  |

Mt. Tsukuba





- $e^+e^-$  + two charm hadrons + fragmentation
  - no entanglement, inaccessible strong phase



- $e^+e^-$  + two charm hadrons + fragmentation
  - no entanglement, inaccessible strong phase
- **exclusive reconstruction** of strong decay  $D^{*+} \rightarrow D^0 \pi_s^+$ 
  - inefficient reconstruction of slow=low momentum pion
  - + loss in statistics (only ~25% of all charm quarks hadronize into  $D^*$ )



- $e^+e^-$  + two charm hadrons + fragmentation
  - no entanglement, inaccessible strong phase
- exclusive reconstruction of strong decay  $D^{*+} \rightarrow D^0 \pi_s^+$ 
  - inefficient reconstruction of slow=low momentum pion
  - + loss in statistics (only ~25% of all charm quarks hadronize into  $D^*$ )
- inclusive method exploiting correlation between signal flavor and charged particles in event
  - based on BDTs, uses kinematic features and PID as input
  - double the sample size w.r.t  $D^{*+}$ -tagged events



- $e^+e^-$  + two charm hadrons + fragmentation
  - no entanglement, inaccessible strong phase
- **exclusive reconstruction** of strong decay  $D^{*+} \rightarrow D^0 \pi_s^+$ 
  - inefficient reconstruction of slow=low momentum pion
  - + loss in statistics (only ~25% of all charm quarks hadronize into  $D^*$ )
- inclusive method exploiting correlation between signal flavor and charged particles in event
  - based on BDTs, uses kinematic features and PID as input
  - double the sample size w.r.t  $D^{*+}$ -tagged events



Search for CPV in  $D^+_{(s)} \to K^0_S K^- \pi^+ \pi^+$  decays

**New for ICHEP!** 



Search for CPV in  $D^+_{(s)} \to K^+ K^0_S h^+ h^-$  decays and observation of  $D^+_s \to K^+ K^- K^0_S \pi^+$ 

PRD 108, L111102 (2023)

Search for CPV using T-odd correlations in  $D^+_{(s)} \rightarrow K^+ K^- \pi^+ \pi^0, K^+ \pi^- \pi^+ \pi^0$  and  $D^+ \rightarrow K^- \pi^+ \pi^+ \pi^0$  decays

arXiv:2305.12806



#### Two approaches

$$A_{\rm raw} = \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})}$$

$$A_{\rm raw} = A_{CP} + A_{\rm FB} + A_{\epsilon}$$

- obtain asymmetry from difference in partial widths
- $A_{\rm raw}$  includes asymmetries in production and reconstruction
  - $A_{\rm FB}$ : arising from  $\gamma Z^0$  interference
  - $A_{\epsilon}$ : reconstruction of final-state particles
  - need control channel to correct
- in charm: singly-Cabibbo suppressed twobody decays

#### $A_{CP} \propto \sin(\phi) \sin(\delta)$

$$A_T = \frac{\Gamma(C_{TP} > 0) - \Gamma(C_{TP} < 0)}{\Gamma(C_{TP} > 0) + \Gamma(C_{TP} < 0)} \quad \bar{A}_T = \frac{\Gamma(-\bar{C}_{TP} > 0) - \Gamma(-\bar{C}_{TP} < 0)}{\Gamma(-\bar{C}_{TP} > 0) + \Gamma(-\bar{C}_{TP} < 0)}$$

$$a_{CP} = \frac{1}{2}(A_T - \bar{A}_T)$$

- measure asymmetry in kinematic observable (e.g. triple-product  $C_{TP}$ )
- $A_T \neq 0$  can also arise from final-state interaction
  - isolate *CP* violation with  $a_{CP}$
  - *a<sub>CP</sub>* is unaffected by production and reconstruction asymmetries
- in charm: four-body decays



 $\operatorname{CPV in} D^+_{(s)} \to K^0_S K^- \pi^+ \pi^+$ 



 $\mathbf{CPV in} D^+_{(s)} \to K^0_S K^- \pi^+ \pi^+$ 



Michel Bertemes - HEPHY

 $\rightarrow K^0_{\rm s} K^- \pi^+ \pi^+$ **CPV** in  $D^+_{(a)}$ 

- divide D candidates into four subsamples based on charge and sign of  $C_{TP}$
- obtain  $N_+$ ,  $N_-$ ,  $A_T$  and  $a_{CP}$  from simultaneous fit to subsamples
- systematic effects related to efficiency variation of  $C_{TP}$
- results are among world's most precise measurements, no evidence of CPV



#### Belle I+II combined

$$D^{+}: a_{CP} = (-0.23 \pm 0.45(\text{stat}) \pm 0.15(\text{syst}))\%$$
$$D_{s}^{+}: a_{CP} = (-0.02 \pm 0.24(\text{stat}) \pm 0.08(\text{syst}))\%$$

#### Noteworthy

 $\bar{K}^{*0}$ 

 $D^{-}$ 

 $-\frac{1}{d}$  • asymmetries also measured in additional kinematic bservables

• quadruple products, helicity angle distributions

 $W^+$ 

- 12 results reported in total
- all compatible with no CPV, first-time measurements

 $\bar{s} K^{*+}$ 

- first observation of  $D_s^+ \to K^+ K^- K_S^0 \pi^+$ :
  - $B(D_s^+ \to K^+ K^- K_S^0 \pi^+) = (1.29 \pm 0.14 (\text{stat}) \pm 0.04 (\text{syst}) \pm 0.11 (\text{norm})) \times 10^{-4}$

W

- norm. channel:  $D_s^+ \to K^+ K_S^0 \pi^+ \pi^-$
- measurement of  $a_{CP}$  in subregions of phase space:
  - largest asymmetry found in  $D_s^+ \to K^{*0} \rho^+$
  - $a_{CP} = (6.2 \pm 3.0(\text{stat}) \pm 0.4(\text{syst}))\%$





- Charm Flavor Tagger
  - new inclusive algorithm that exploits correlation between signal flavor and charge of tagging particles
  - significantly enlarge the available sample size
  - more results on the way
- *a<sub>CP</sub>* measurements
  - CPV probed in triple/quadruple products, helicity angles
  - complementary approach to asymmetries in partial width
  - use four-body charm decays, efficient reconstruction at Belle (II)
  - world's most precise results

Backup

## $\mathbf{CPV in} D^+_{(s)} \to K^0_S K^- \pi^+ \pi^+$

Table 2: Results for  $\mathcal{A}_{CP}^X$  in  $D_{(s)}^+ \to K_S^0 K^- \pi^+ \pi^+$  decays, where  $X = C_{TP}$  (1),  $C_{QP}$  (2),  $C_{TP}C_{QP}$  (3),  $\cos \theta_{K_S^0} \cos \theta_{K^-}$  (4),  $C_{TP} \cos \theta_{K_S^0} \cos \theta_{K^-}$  (5), and  $C_{QP} \cos \theta_{K_S^0} \cos \theta_{K^-}$  (6). The significance of the combined  $\mathcal{A}_{CP}^X$  result from  $\mathcal{A}_{CP}^X = 0$  is listed in the last column.

| Decay   | X   | $\mathcal{A}_{CP}^X(10^{-3})$ at Belle | $\mathcal{A}_{CP}^X$ (10 <sup>-3</sup> ) at Belle II | Combined $\mathcal{A}_{CP}^X(10^{-3})$ | Significance |
|---------|-----|----------------------------------------|------------------------------------------------------|----------------------------------------|--------------|
|         | (1) | $-4.0 \pm 5.9 \pm 3.0$                 | $-0.2 \pm 7.0 \pm 1.8$                               | $-2.3 \pm 4.5 \pm 1.5$                 | $0.5\sigma$  |
|         | (2) | $-1.0 \pm 5.9 \pm 2.5$                 | $-0.4\pm7.0\pm2.4$                                   | $-0.7 \pm 4.5 \pm 1.7$                 | $0.2\sigma$  |
| $D^+$   | (3) | $+6.4 \pm 5.9 \pm 2.2$                 | $+0.6 \pm 7.0 \pm 1.3$                               | $+3.9 \pm 4.5 \pm 1.1$                 | $0.8\sigma$  |
|         | (4) | $-4.7 \pm 5.9 \pm 3.0$                 | $-0.6 \pm 6.9 \pm 3.0$                               | $-2.9\pm4.5\pm2.1$                     | $0.6\sigma$  |
|         | (5) | $+1.9 \pm 5.9 \pm 2.0$                 | $-0.2 \pm 7.0 \pm 1.9$                               | $+1.0 \pm 4.5 \pm 1.4$                 | $0.2\sigma$  |
|         | (6) | $+14.9 \pm 5.9 \pm 1.4$                | $+7.0 \pm 7.0 \pm 1.6$                               | $+11.6 \pm 4.5 \pm 1.1$                | $2.5\sigma$  |
|         | (1) | $-0.3 \pm 3.1 \pm 1.3$                 | $+1.0 \pm 3.9 \pm 1.1$                               | $+0.2 \pm 2.4 \pm 0.8$                 | $0.1\sigma$  |
|         | (2) | $+0.6 \pm 3.1 \pm 1.2$                 | $+2.0 \pm 3.9 \pm 1.4$                               | $+1.1 \pm 2.4 \pm 0.9$                 | $0.4\sigma$  |
| $D^+$   | (3) | $+1.5 \pm 3.2 \pm 1.4$                 | $-2.7\pm3.9\pm1.7$                                   | $-0.2 \pm 2.5 \pm 1.1$                 | $0.1\sigma$  |
| $D_s^+$ | (4) | $-3.7 \pm 3.1 \pm 1.1$                 | $-6.3 \pm 3.9 \pm 1.2$                               | $-4.7\pm2.4\pm0.8$                     | $1.8\sigma$  |
|         | (5) | $-4.4 \pm 3.2 \pm 1.4$                 | $+0.8 \pm 3.9 \pm 1.4$                               | $-2.2 \pm 2.5 \pm 1.0$                 | $0.8\sigma$  |
|         | (6) | $-1.6 \pm 3.1 \pm 1.3$                 | $-0.0 \pm 3.9 \pm 1.7$                               | $-1.0 \pm 2.4 \pm 1.0$                 | $0.4\sigma$  |

Table 3: Systematic uncertainties (absolute) for  $\mathcal{A}_{CP}^X$  in units of  $10^{-3}$  in  $D_{(s)}^+ \rightarrow K_S^0 K^- \pi^+ \pi^+$  decays, where  $X = C_{\mathrm{TP}}$  (1),  $C_{\mathrm{QP}}$  (2),  $C_{\mathrm{TP}} C_{\mathrm{QP}}$  (3),  $\cos \theta_{K_S^0} \cos \theta_{K^-}$  (4),  $C_{\mathrm{TP}} \cos \theta_{K_S^0} \cos \theta_{K^-}$  (5), and  $C_{\mathrm{QP}} \cos \theta_{K_S^0} \cos \theta_{K^-}$  (6).

| Source                      | $D^+ \to K^0_S K^- \pi^+ \pi^+$ at Belle   |     |     |     | $D^+ \to K^0_S K^- \pi^+ \pi^+$ at Belle II |               |                 |              |         |         |     |     |  |
|-----------------------------|--------------------------------------------|-----|-----|-----|---------------------------------------------|---------------|-----------------|--------------|---------|---------|-----|-----|--|
| Source                      | (1)                                        | (2) | (3) | (4) | (5)                                         | (6)           | (1)             | (2)          | (3)     | (4)     | (5) | (6) |  |
| X-dependent efficiency      | 3.0                                        | 2.4 | 1.9 | 2.8 | 1.8                                         | 1.4           | 1.2             | 2.4          | 1.1     | 2.6     | 1.5 | 1.3 |  |
| X-resolution asymmetry      | 0.2                                        | 0.7 | 0.4 | 0.7 | 0.6                                         | 0.3           | 0.7             | 0.1          | 0.1     | 0.9     | 0.2 | 0.7 |  |
| Signal/background PDF       | 0.0                                        | 0.0 | 0.0 | 0.0 | 0.0                                         | 0.0           | 0.0             | 0.0          | 0.0     | 0.0     | 0.0 | 0.0 |  |
| Simultaneous fit bias       | 0.2                                        | 0.2 | 0.1 | 0.2 | 0.1                                         | 0.2           | 0.2             | 0.2          | 0.2     | 0.1     | 0.2 | 0.2 |  |
| $D_s^+$ feeddown background | 0.4                                        | 0.3 | 1.0 | 0.7 | 0.1                                         | 0.2           | 1.1             | 0.4          | 0.6     | 1.1     | 1.2 | 0.6 |  |
| Total $\sigma_{\rm syst}$   | 3.0                                        | 2.5 | 2.2 | 3.0 | 2.0                                         | 1.4           | 1.8             | 2.4          | 1.3     | 3.0     | 1.9 | 1.6 |  |
| Source                      | $D_s^+ \to K_S^0 K^- \pi^+ \pi^+$ at Belle |     |     |     | D                                           | $P_s^+ \to K$ | $C_S^0 K^- \pi$ | $^+\pi^+$ at | Belle I | elle II |     |     |  |
| Source                      | (1)                                        | (2) | (3) | (4) | (5)                                         | (6)           | (1)             | (2)          | (3)     | (4)     | (5) | (6) |  |
| X-dependent efficiency      | 1.2                                        | 1.1 | 1.4 | 1.1 | 1.2                                         | 1.3           | 1.1             | 1.4          | 1.7     | 1.2     | 1.4 | 1.6 |  |
| X-resolution asymmetry      | 0.6                                        | 0.5 | 0.1 | 0.2 | 0.8                                         | 0.3           | 0.2             | 0.1          | 0.2     | 0.0     | 0.2 | 0.4 |  |
| Signal/background PDF       | 0.0                                        | 0.0 | 0.0 | 0.0 | 0.0                                         | 0.0           | 0.0             | 0.0          | 0.0     | 0.0     | 0.0 | 0.0 |  |
| Simultaneous fit bias       | 0.1                                        | 0.0 | 0.0 | 0.1 | 0.1                                         | 0.0           | 0.1             | 0.2          | 0.2     | 0.3     | 0.2 | 0.2 |  |
| Total $\sigma_{\rm syst}$   | 1.3                                        | 1.2 | 1.4 | 1.1 | 1.4                                         | 1.3           | 1.1             | 1.4          | 1.7     | 1.2     | 1.4 | 1.7 |  |

 $M(K^{+}K^{-}K_{S}^{0}\pi^{+})$  (GeV/c<sup>2</sup>)

 $M(K^+K^-K_S^0\pi^+)$  (GeV/c<sup>2</sup>)



#### decays and observation of $D_s^+ \to K^+ K^- K_S^0 \pi^+$

Contributions to the absolute systematic uncertainty for  $a_{CP}^{T\text{-odd}}$  in units of % for each mode.

| Sources                                            | $D^+(CS)$ | $D_s^+(\mathrm{CF})$ | $D^+(CF)$ |
|----------------------------------------------------|-----------|----------------------|-----------|
| Fit model                                          | 0.01      | 0.02                 | 0.12      |
| Detector bias                                      | 0.32      | 0.32                 | 0.32      |
| Efficiency variation with $C_T$ , $\overline{C}_T$ | 0.03      | 0.20                 | 0.06      |
| Total                                              | 0.32      | 0.38                 | 0.35      |





TABLE III. Systematic uncertainties for  $a_{CP}^{T\text{-odd}}$  in % for five  $D_{(s)}^+$  decay channels: (a)  $D^+ \to K^- K^+ \pi^+ \pi^0$ ; (b)  $D^+ \to K^+ \pi^- \pi^+ \pi^0$ ; (c)  $D^+ \to K^- \pi^+ \pi^+ \pi^0$ ; (d)  $D_s^+ \to K^+ \pi^- \pi^+ \pi^0$ ; and (e)  $D_s^+ \to K^- K^+ \pi^+ \pi^0$ .

| Decay channel               | (a)  | (b)  | (c)  | (d)  | (e)  |
|-----------------------------|------|------|------|------|------|
| $C_T$ -dependent efficiency | 0.13 | 0.02 | 0.08 | 0.02 | 0.41 |
| $C_T$ resolution            | 0.01 | 0.06 | 0.01 | 0.07 | 0.02 |
| PDF parameters              | 0.01 | 0.07 | 0.01 | 0.07 | 0.04 |
| Mass resolution             | 0.03 | 0.01 |      | 0.02 | 0.11 |
| Fit bias                    | 0.01 | 0.07 | 0.00 | 0.06 | 0.02 |
| Total syst.                 | 0.13 | 0.12 | 0.08 | 0.12 | 0.43 |