

Measurements of radiative and electroweak penguin B decays without missing energy at Belle and Belle II

Martin Angelsmark on behalf of the Belle II Collaboration ICHEP 2024: WG3 - Quark and Lepton Flavour Physics

mangels@uni-bonn.de

July 19, 2024

• Sensitive to new physics contributing to Flavor Changing Neutral Current

Introduction O	Belle and Belle II	$B^0_{OO} \rightarrow \gamma\gamma$	$B \to K^* \gamma$	$\begin{array}{c} B \rightarrow \rho \gamma \\ \circ \circ \end{array}$	$b \to d\ell^+\ell^-$	$B \to J/\psi X$	Summary O

[The Belle detector]

- Located at KEKB (Tsukuba, Japan)
- e^+e^- collider at $\Upsilon(4S)$ (10.58 GeV): e^+ (3.5 GeV) e^- (8 GeV)
- 1 ab^{-1} (711 fb^{-1} Υ (4S) resonance) collected: 1999 2010
- $\Upsilon(4S) \rightarrow B\overline{B}$: Clean $B\overline{B}$ events
- Initial state well known
- $e^+e^- \rightarrow q\overline{q}$ (continuum): Largest background component

Largest instantaneous luminosity: $2.1 \cdot 10^{34}$ cm⁻²s⁻¹

- Located at superKEKB (Tsukuba, Japan)
- e^+e^- collider at $\Upsilon(4S)$ (10.58 GeV): e^+ (4 GeV) e^- (7 GeV)
- 424 fb⁻¹ (362 fb⁻¹ ↑(4S) resonance): Run 1: 2019 2022
- Csl(Tl) crystal calorimeter \rightarrow better energy resolution
- $\Upsilon(4S) \rightarrow B\overline{B}$: Clean $B\overline{B}$ events
- Initial state well known
- $e^+e^- \rightarrow q\overline{q}$ (continuum): Largest background component World record instantaneous luminosity: 4.7 · 10³⁴ cm⁻²s⁻¹

- $\bullet\,$ Decay in SM through loop diagram with W^- emitted and absorbed
- Long distance penguin contribution
- Suppressed by factor $|V_{td}|/|V_{ts}| pprox 0.04$ compared to $B_s o \gamma\gamma$
- SM prediction: $\mathcal{B}(B^0 o \gamma \gamma) = (1.4^{+1.4}_{-0.8}) \cdot 10^{-8}$ [JHEP12(2020)169]

$B^0 \rightarrow \gamma \gamma$ at Belle + Belle II

- Simultaneous fit of Belle (694 fb⁻¹) + Belle II (362 fb⁻¹) data
 - M_{bc} beam constrained mass $\sqrt{(\text{Beam energy})^2 (\text{Momentum of B}^0)^2}$
 - Δ*E* energy difference (Energy of B⁰) – (Beam energy)
 - BDT trained on $\pi^{\rm 0}$ and η dominated events
- Signal events: $11.0^{+6.5}_{-5.5}$, 2.5σ significance
- $\mathcal{B}^{\textit{UL}}(B^0
 ightarrow \gamma \gamma) < 6.4 \cdot 10^{-8}$, 90% CL
- $\mathcal{B}_{SM}^{UL}(B^0
 ightarrow \gamma \gamma) < 4.4 \cdot 10^{-8}$, 90% CL

Upper limit 5 times more restrictive than previous (BaBar) measurement [PhysRevD(2011)83]

Signal:

- $B^0 \to K^{*0} [\to K^+ \pi^-] \gamma$ • $B^0 \to K^{*0} [\to K^0_S \pi^0] \gamma$
- 2D fit on Belle II (362 fb⁻¹) data • M_{bc} , ΔE

• $B^+ \to K^{*+} [\to K^+ \pi^0] \gamma$ • $B^+ \to K^{*+} [\to K^0_S \pi^+] \gamma$

Charge Parity Asymmetry:

$$\mathcal{A}_{CP} = \frac{\Gamma(\overline{B} \to \overline{K^*}\gamma) - \Gamma(B \to K^*\gamma)}{\Gamma(\overline{B} \to \overline{K^*}\gamma) + \Gamma(B \to K^*\gamma)}$$

Isospin Asymmetry (CP average):

$$\mathcal{A}_{I} = \frac{\Gamma(B^{0} \to K^{*0}\gamma) - \Gamma(B^{+} \to K^{*+}\gamma)}{\Gamma(B^{0} \to K^{*0}\gamma) + \Gamma(B^{+} \to K^{*+}\gamma)}$$

- Theoretically clean cancellation of form factors
- Standard Model prediction: A₁ = (3 ± 2)% (8 ± 2)% [PhysRevD(2005)72] [PhysRevD(2002)539]
- Previous measurement (Belle): $A_I = (6.2 \pm 1.5 \pm 0.6 \pm 1.2)\% - 3.1\sigma$ Isospin violation [PhysRevD(2017)119]

[Paper in preparation]

• Branching fractions

•
$$\mathbf{B}(B^0 \to K^{*0}\gamma) =$$

(4.16 ± 0.10 ± 0.11) · 10⁻⁵
• $\mathbf{B}(B^+ \to K^{*+}\gamma) =$
(4.04 ± 0.13 ± 0.13) · 10⁻⁵

• Charge Parity Asymmetry

•
$$\mathcal{A}_{CP}(B^0 \to K^{*0}\gamma) =$$

 $(-3.2 \pm 2.4 \pm 0.4)\%$
• $\mathcal{A}_{CP}(B^+ \to K^{*+}\gamma) =$
 $(-1.0 \pm 3.0 \pm 0.6)\%$
• $\Delta \mathcal{A}_I = (2.2 \pm 3.8 \pm 0.7)\%$

See Yu Nakazawa's presentation for $K_S\pi^0$ [ICHEP2024]

Signal:

• $B^0 \to \rho^0 [\to \pi^+ \pi^-] \gamma$ • $B^+ \to \rho^+ [\to \pi^+ \pi^0] \gamma$ Calibration:

- $B^0 \rightarrow D^- [\rightarrow K^+ \pi^- \pi^-] \pi^+$
- $B^+ \to \overline{D}^0 [\to K^+ \pi^-] \pi^+$
- $B^0 \to K^{*0} [\to K^+ \pi^-] \gamma$ • $B^+ \to K^{*+} [\to K^+ \pi^0] \gamma$
- Simultaneous fit of Belle (772 fb $^{-1}$) + Belle II (362 fb $^{-1}$) data
 - M_{bc} , ΔE
 - $M(K\pi)$ invariant mass of ρ assuming one π^+ is a K
- Background suppression using $\pi^0(\eta)$ veto and $q\overline{q}$ BDT's

[arXiv:2407.08984]

[arXiv:2407.08984]

Charge Parity Asymmetry:

$$\mathcal{A}_{CP} = \frac{\Gamma(\overline{B} \to \overline{\rho}\gamma) - \Gamma(B \to \rho\gamma)}{\Gamma(\overline{B} \to \overline{\rho}\gamma) + \Gamma(B \to \rho\gamma)}$$

Isospin Asymmetry (CP average):

$$\mathcal{A}_{I} = \frac{2\Gamma(B^{0/\overline{0}} \to \rho^{0}\gamma) - \Gamma(B^{+/-} \to \rho^{+/-}\gamma)}{2\Gamma(B^{0/\overline{0}} \to \rho^{0}\gamma) + \Gamma(B^{+/-} \to \rho^{+/-}\gamma)}$$

- Standard Model prediction: $A_I = (5.2 \pm 2.8)\%$
- World average of $A_I = (30^{+16}_{-13})\% 2\sigma$ from Standard Model

- Signal events:
 - 114 ± 12 $B^+ \rightarrow \rho^+ \gamma$
 - 99 \pm 12 $B^0 \rightarrow \rho^0 \gamma$
- Branching fractions
 - $\mathbf{B}(B^+ \to \rho^+ \gamma) = (13.1^{+2.0+1.3}_{-1.9-1.2}) \cdot 10^{-7}$ • $\mathbf{B}(B^0 \to \rho^0 \gamma) = (7.5^{+1.3+1.0}_{-1.3-0.8}) \cdot 10^{-7}$

•
$$\mathcal{A}_{CP} = (B^+ \to \rho^+ \gamma) = (-8.2^{+15.2+1.6}_{-15.2-1.2})\%$$

- $\mathcal{A}_{I} = (B \to \rho \gamma) = (10.9^{+11.2+7.8}_{-11.7-7.3})\%$
- Measured Asymmetries are consistent with Standard Model

$b ightarrow d\ell^+ \ell^-$ at Belle

- $\begin{array}{c} \bullet \hspace{0.2cm} B^{+/0} \rightarrow \\ [\eta, \omega, \pi^{+/0}, \rho^{+/0}] \ell^{+} \ell^{-} \end{array}$
- Suppressed by factor $|V_{td}|/|V_{ts}| \approx 0.04$
- 2D fit on Belle (711 fb⁻¹) data
 - *M_{bc}*, Δ*E*
- Current best upper limits measured
- World first measurement: $B^0 \rightarrow \omega \ell^+ \ell^-$, $B^+ \rightarrow \rho^+ \ell^+ \ell^-$, $B^0 \rightarrow \rho^0 e^+ e^-$

Channel	$\mathcal{B}^{UL}(10^{-8})$
$B^0 o \eta e^+ e^-$	< 10.5
$B^0 o \eta \mu^+ \mu^-$	< 9.4
$B^0 o \eta \ell^+ \ell^-$	< 4.8
$B^0 ightarrow \omega e^+ e^-$	< 30.7
$B^0 o \omega \mu^+ \mu^-$	< 24.9
$B^0 o \omega \ell^+ \ell^-$	< 22.0
$B^0 o \pi^0 e^+ e^-$	< 7.9
$B^0 o \pi^0 \mu^+ \mu^-$	< 5.9
$B^0 o \pi^0 \ell^+ \ell^-$	< 3.8
$B^+ o \pi^+ e^+ e^-$	< 5.4
$B^0 o ho^0 e^+ e^-$	45.5
$B^+ ightarrow ho^+ e^+ e^-$	< 46.7
$B^+ o ho^+ \mu^+ \mu^-$	< 38.1
$B^+ o ho^+ \ell^+ \ell^-$	< 18.9

[arXiv:2404.08133]

$B \rightarrow J/\psi X$ at Belle II

- Fully reconstruct *B*-meson (tag) [arXiv:1807.08680]
 - Full kinematic information of opposite *B*-meson (signal)
- Important for $B \to X_s \ell \ell$
- Signal extraction with unbinned likelihood fit
 - Double-sided Crystall Ball (+ Gaussian for $e^+e^-)$
 - Bernstein Polynomial

[Comm.KharkovMath.Soc.(13)]

Channel	Yield
$B^0 ightarrow [J/\psi ightarrow e^+e^-]X$	930 ± 39
$B^0 ightarrow [J/\psi ightarrow \mu^+\mu^-]X$	766 ± 30
$B^+ ightarrow [J/\psi ightarrow e^+ e^-]X$	1548 ± 50
$B^+ ightarrow [J/\psi ightarrow \mu^+ \mu^-] X$	1503 ± 42
$egin{aligned} B^0 & ightarrow [J/\psi ightarrow \mu^+\mu^-]X \ B^+ & ightarrow [J/\psi ightarrow e^+e^-]X \ B^+ & ightarrow [J/\psi ightarrow \mu^+\mu^-]X \end{aligned}$	$\begin{array}{c} 766 \pm 30 \\ 1548 \pm 50 \\ 1503 \pm 42 \end{array}$

First separate branching fraction measurements (First time shown)

- $\mathcal{B}(B^0 \to J/\psi X) =$ (0.97 ± 0.03(stat) ± 0.06(sys)) %, lepton average
- $\mathcal{B}(B^+ \to J/\psi X) =$ (1.21 ± 0.03(stat) ± 0.08(sys))%, lepton average

Differential distributions

 $\bullet\,$ Probes Quantum Chromodynamics in the production of $J/\psi\,$

First separate branching fraction measurements (First time shown)

- $\mathcal{B}(B^0 \to J/\psi X) =$ (0.97 ± 0.03(stat) ± 0.06(sys)) %, lepton average
- $\mathcal{B}(B^+ \to J/\psi X) =$ (1.21 ± 0.03(stat) ± 0.08(sys)) %, lepton average

Differential distributions

 $\bullet\,$ Probes Quantum Chromodynamics in the production of $J/\psi\,$

Summary	,	00	00	00	0	00	•
Introduction	Belle and Belle II	$B^0 \rightarrow \gamma \gamma$	$B \rightarrow K^* \gamma$	$B \rightarrow \rho \gamma$	$b \rightarrow d\ell^+ \ell^-$	$B \rightarrow J/\psi X$	Summary

Papers covered:

- $B^0 \rightarrow \gamma \gamma$: [arXiv:2405.19734]
- $B \rightarrow \rho \gamma$: [arXiv:2407.08984]
- $b \rightarrow d\ell^+\ell^-$: [arXiv:2404.08133]

Preliminary results:

- $B \to K^* \gamma$ at Belle II
- $B \to J/\psi X$ at Belle II

The results shown used 362 fb⁻¹ (Run 1)

- More Run 1 results are coming
- Run 2 ongoing more data to come

Thank you for listening!

B-meson Tagging

Reconstruct one of the B-meson

- Tag-side Other B is our signal
- Used to reconstruct invisible particles in our signal

Three methods:

- Inclusive tagging
- Semileptonic tagging
- Hadronic tagging

B-meson Tagging

Reconstruct one of the B-meson

- Tag-side Other B is our signal
- Used to reconstruct invisible particles in our signal

Three methods:

- Inclusive tagging
- Semileptonic tagging
- Hadronic tagging

Full Event Interpreter (FEI) [arXiv:1807.08680]:

- Uses > 200 BDTs
- Reconstructs 10,000 B-decay chains

$B \to X_s \ell \ell$ at Belle II

Measurement of $R(X_s) = \frac{\mathcal{B}(B \to X_s \mu^+ \mu^-)}{\mathcal{B}(B \to X_s e^+ e^-)}$ also in progress

Two methods available:

- Sum-of-exclusive modes
- Fully inclusive using tagging

Expected sensitivity:

Observables	Belle (0.71 ab $^{-1}$)	Belle II (5 ab^{-1})	Belle II (50 ab^{-1})
R_{X_s} ([1.0, 6.0] GeV ² / c^4)	32%	12%	4.0%
$R_{X_{ m s}}~([>14.4]~{ m GeV^2}/c^4)$	28%	11%	3.4%

Angular analysis of $B\to X_s\ell\ell$ will improve constraints on Wilson coefficient C9 and C10

[arXiv:2012.15394], [arXiv:1709.10308]

$$B \rightarrow J/\psi K$$

Control check using K resonance in $P^B_{\ell\ell} \in [1.63, 1.72]$ GeV/c:

	B(ee) [%]	$\mathcal{B}(\mu\mu)$ [%]	PDG [%]
B^+	0.082 ± 0.016	0.122 ± 0.019	0.102 ± 0.002
B^0	0.097 ± 0.018	0.072 ± 0.015	0.089 ± 0.002