

e⁺e⁻ B factory highlights

Jim Libby - Indian Institute of Technology Madras

Keywords

(Partial) definition: an e⁺e⁻ B factory operates at the intensity frontier to collect samples of B mesons for precision measurements and searches for rare/forbidden decays, i.e., indirect searches for beyond-the-standard-model (BSM) physics with high luminosity

Keywords

(Partial) definition: an e⁺e⁻ B factory operates at the intensity frontier to collect samples of B mesons for precision measurements and searches for rare/forbidden decays, i.e., indirect searches for beyond-the-standard-model (BSM) physics with high luminosity

An important note: programme is mostly **complementary** to that of LHCb and other hadron experiments

Outline 1. The Castle

- . <u>Ine Casile</u>
 - Why e⁺e⁻ at Y(4S)?
 - Cabibbo-Kobayashi-Maskawa matrix measurements
- 2. The Trial
 - Results related to *B* anomalies

3. The Metamorphosis

- Beyond B physics
- Belle II status and plans

Outline 1. The Castle

- Why e⁺e⁻ at Y(4S)?
- Cabibbo-Kobayashi-Maskawa matrix measurements
- 2. The Trial
 - Results related to B anomalies

3. The Metamorphosis

- Beyond B physics
- Belle II status and plans

Franz Kafka: 1883-1924

The Castle

Tale of K.'s relentless, unavailing struggle with an inscrutable authority in order to gain access to the Castle.

The Castle

Tale of **our** relentless, unavailing struggle with an inscrutable **standard model** in order to gain access to **BSM**.

Why asymmetric e⁺e⁻ at Y(4S)?

• **Y(4S)** – cross section of $B\overline{B}$ one quarter of continuum: $e^+e^- \rightarrow q\overline{q}, q = u, d, s, c$

Why asymmetric e⁺e⁻ at Y(4S)?

- **Y(4S)** cross section of $B\overline{B}$ one quarter of continuum: $e^+e^- \rightarrow q\overline{q}, q = u, d, s, c$
- e⁺e⁻ constrained kinematics and no other particles at threshold
 - Excellent neutral and missing four-momentum reconstruction
 - Full event reconstruction hadronic B tagging

Why asymmetric e⁺e⁻ at Y(4S)?

- **Y(4S)** cross section of $B\overline{B}$ one quarter of continuum: $e^+e^- \rightarrow q\overline{q}, q = u, d, s, c$
- e⁺e⁻ constrained kinematics and no other particles at threshold
 - Excellent neutral and missing four-momentum reconstruction
 - Full event reconstruction hadronic B tagging

- Asymmetric boosted Bs to allow measurements of time-dependent CP violation
 - Tagging power increased by quantum coherent production from Y(4S)

The protagonists

1st generation *B* factory

The protagonists

2nd generation *B* factory

CKM/Unitarity triangle measurements

CKM/Unitarity triangle measurements

Q: Is this still interesting?

A: Yes, two SM parameters, yet many measurements, including with loops, so discrepancies can be BSM

Semileptonic *B* decay: V_{cb}

- Longstanding tension between inclusive (anything in the hadronic final state) or exclusive (D, D*,...)
 - Approximately 3 standard deviations
 - Theory inputs key, e.g., form factors

Semileptonic *B* decay: V_{cb}

- Longstanding tension between inclusive (anything in the hadronic final state) or exclusive (D, D*,...)
 - Approximately 3 standard deviations
 - Theory inputs key, e.g., form factors
- New exclusive measurements from Babar with B→Dlv and Belle with B→D*lv using full differential information for the first time
 - $|V_{cb}| = (41.1 \pm 1.2) \times 10^{-3}$
 - Babar arXiv:2311.15071 [hep-ex], to appear in PRD
 - $|V_{cb}| = (41.0 \pm 0.7) \times 10^{-3}$
 - Belle arXiv:2310.20286 [hep-ex], to appear in PRL
- Compatible with inclusive perhaps we are on the right path to resolve these tensions?

Talk by <u>Y. Nakazawa</u> Paper in preparation

- α/ϕ_2 now the least precise angle of the unitarity triangle
- Isospin relations among all B→ππ branching fractions and CP asymmetries provide constraints
 - Gronau and London PRL 65 3381 (1990)
- Weakest link: $B^0 \rightarrow \pi^0 \pi^0$

 $\alpha/\phi_2: B^0 \rightarrow \pi^0 \pi^0$

- α/ϕ_2 now the least precise angle of the unitarity triangle
- Isospin relations among all B→ππ branching fractions and CP asymmetries provide constraints
 - Gronau and London PRL 65 3381 (1990)
- Weakest link: $B^0 \rightarrow \pi^0 \pi^0$
- New result from Belle II
 - 4-D fit including tagging probability
 - Graph-neural-network based tagger
 - 18% more powerful than before
 - <u>arXiv:2402.17260 [hep-ex]</u> (acc. PRD)

Talk by <u>Y. Nakazawa</u> Paper in preparation

Beam-energy constrained $\pi^0\pi^0$ invariant mass

 $\mathscr{B} = (1.26^{+0.20}_{-0.19} \pm 0.11) \times 10^{-6}$ $A_{CP} = 0.06 \pm 0.30 \pm 0.06$

flavour-tag probability

The Trial

The story of Josef K., a man arrested and prosecuted by a remote, inaccessible authority, with the nature of his crime revealed neither to him nor to the reader.

The Trial

The story of Josef K., a man arrested and prosecuted by a remote, inaccessible authority, with the nature of his crime revealed neither to him nor to the reader.

An allegory of 'B anomalies' in the past decade?

B anomalies – two varieties

b→sll – flavour-changing neutral current – loop only in SM

- 2-3 standard deviation tensions in angular distributions and absolute branching fractions
 - but long-distance contributions must be considered, which weaken these tensions
 - LHCb <u>arXiv:2405.17347</u>
- Lepton-universality violation in ratios cancelled Christmas 2022
 - LHCb PRD 108, 032002

B anomalies – two varieties

For related results on radiative decays see talk by <u>M. Angelsmark</u>

b→sll – flavour-changing neutral current – loop only in SM

- 2-3 standard deviation tensions in angular distributions and absolute branching fractions
 - but long-distance contributions must be considered, which weaken these tensions
 - LHCb <u>arXiv:2405.17347</u>
- Lepton-universality violation in ratios cancelled Christmas 2022
 - LHCb PRD 108, 032002

$B^+ \to K^+ \nu \overline{\nu}$: a new one

PRD 109, 112006 (2024)

• Theoretically clean and third generation sensitive $b \rightarrow sll$ transition

$B^+ \to K^+ \nu \overline{\nu}$: a new one

TalkBelle IIBelle II

PRD 109, 112006 (2024)

- Theoretically clean and third generation sensitive $b \rightarrow sll$ transition
- Inclusive tag developed that exploits topology
 - 8% efficiency

- Fit to invariant mass of neutrinos (q²) and classifier
 - Checked and combined with lower efficiency hadronic *B* tag

$B^+ \to K^+ \nu \overline{\nu}$: a new one

- Theoretically clean and third generation sensitive $b \rightarrow sll$ transition
- Inclusive tag developed that exploits topology
 - 8% efficiency

- Fit to invariant mass of neutrinos (q²) and classifier
 - Checked and combined with lower efficiency hadronic *B* tag

B(B⁺ → K⁺
$$\nu \overline{\nu}$$
) = (2.3 ± 0.5(stat)^{+0.5}_{-0.4} (syst)) × 10⁻⁵

Evidence @ 3.5σ Tension with SM prediction of 0.6×10⁻⁵ @ 2.7σ

$B^0 \rightarrow K^{*0} \tau^+ \tau^-$

- Very sensitive to explanations of the other anomalies
 - SM branching fraction prediction 10⁻⁷

Paper in preparation

NEW FOR ICHEP

Talk

by <u>M. Liu</u>

Belle I

$B^0 \to K^{*0} \tau^+ \tau^-$

- Very sensitive to explanations of the other anomalies
 - SM branching fraction prediction 10⁻⁷
- Hadronic B tagging
 - Fully reconstruct $B \rightarrow D^{(*)}n\pi$ final states
 - Must model these decays well
 - Talk by <u>V. Vismaya</u>
- Different of classes of tau decay
 - Missing energy, no additional energy in calorimeter,... into a classifier that is fit to extract yield

$B^0 \rightarrow K^{*0} \tau^+ \tau^-$

- Very sensitive to explanations of the other anomalies
 - SM branching fraction prediction 10⁻⁷
- Hadronic B tagging
 - Fully reconstruct $B \rightarrow D^{(*)}n\pi$ final states
 - Must model these decays well
 - Talk by <u>V. Vismaya</u>
- Different of classes of tau decay
 - Missing energy, no additional energy in calorimeter,... into a classifier that is fit to extract yield
- Limit twice improved over Belle
 - Improved tagging and signal efficiency

Talk

First Belle II R(D*) measurement

- Hadronic tag then search for $B \rightarrow D^* \tau v$ in the remaining tracks and clusters
 - leptonic tau decay
 - charged and neutral B
- Additional energy in calorimeter and missing mass used as signal extraction variables

$$R(D^*) = \frac{BF(B \to D^*\tau\nu)}{BF(B \to D^*l\nu)}$$

arXiv:2401.02840

Talk by <u>M. Prim</u>

First Belle II R(D*) measurement

- Hadronic tag then search for $B \rightarrow D^* \tau v$ in the remaining tracks and clusters
 - leptonic tau decay
 - charged and neutral B
- Additional energy in calorimeter and missing mass used as signal extraction variables

$$R(D^*) = 0.26 \pm 0.04^{+0.04}_{-0.03}$$

- Systematic uncertainty related mainly to size of control samples
- Comparable precision to equivalent Belle result with ¼ the sample

arXiv:2401.02840

Talk by

The Metamorphosis

"As Gregor Samsa awoke one morning from uneasy dreams he found himself transformed in his bed into a gigantic insect..."

FRANZ KAFKA Metamorphosis

The Metamorphosis

"As Gregor Samsa awoke one morning from uneasy dreams he found himself transformed in his bed into a gigantic insect..."

Double meaning

- **1.** $B \rightarrow c$, hadron, τ and possibly dark factory
- 2. Belle II transition from 1st to 2nd generation

FRANZ KAFKA Metamorphosis

Much more than a **B** factory

Cross section in nb at 10.58 GeV

(not shown: $e^+e^- \rightarrow e^+e^-(\gamma)$ and four-fermion)

- Charm and tau pair production on par with beauty
 - Advantages of neutral reconstruction and missing momentum work here too
 - Charm talks by <u>M. Bertemes</u> & <u>Y.-J. Kim</u>

33

Much more than a **B** factory

Cross section in nb at 10.58 GeV

(not shown: $e^+e^- \rightarrow e^+e^-(\gamma)$ and four-fermion)

- Charm and tau pair production on par with beauty
 - Advantages of neutral reconstruction and missing momentum work here too
 - Charm talks by <u>M. Bertemes</u> & <u>Y.-J. Kim</u>
- Samples away from Y(4S) for spectroscopy and B_s physics
 - Belle samples: **Y(1S)**, **Y(2S)**, Y(5S),...
 - Babar: Y(3S)
 - Talk by <u>N. Tasneem</u>
 - These are used for tau and charm physics too

Observation of P_{cs} (4459)

OZI suppressed decays of Y(1S) and Y(2S) rich in gluons

- enhanced baryon production
- pentaquark production?

Paper in preparation NEW FOR ICHEP

Talk by <u>R. Mizuk</u>

Observation of P_{cs} (4459)

- OZI suppressed decays of Y(1S) and Y(2S) rich in gluons
 - enhanced baryon production
 - pentaquark production?
- Measure inclusive Y(1S,2S) \rightarrow J/ ψ A + X decays
- Search m(J/ $\psi \Lambda$) for pentaquark signal
 - background from sideband and off resonance

Paper in preparation NEW FOR ICHEP

Observation of P_{cs} (4459)

- OZI suppressed decays of Y(1S) and Y(2S) rich in gluons
 - enhanced baryon production
 - pentaquark production?
- Measure inclusive Y(1S,2S) \rightarrow J/ ψ A + X decays
- Search m(J/ $\psi \Lambda$) for pentaquark signal
 - background from sideband and off resonance
- Use LHCb mass and width for their observation in Ξ_b decay <u>Sci. Bulletin 66,</u> <u>1278 (2021)</u>
 - 3.3 standard deviation significance observation
 - free mass and width 4 standard deviation local significance

Paper in preparation NEW FOR ICHEP

Tau and low multiplicity physics

BABAR </

BELLE

Belle T

Tau and low multiplicity physics

BABAR </

- Run 1 (2019-2022) similar data set to 1st generation B factory
- Long shutdown 1 LS1 (2022-2024)
 - detector improvements mainly installation of full **two-layer pixel detector** (PXD2)
 - accelerator improvements, e.g., non-linear collimators to combat beam background

- Run 2 (2024)
 - back to operation at $4 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - detector performance as before or better
 -but the goal in this run is luminosity of ~10³⁵ cm⁻²s⁻¹

Peak luminosity [10³⁴ cm⁻²s⁻¹]

Evolution of peak luminosity

• Run 2 (2024 –)

- Sudden beam loss has happened frequently that can lead to v. large dose in the detector
 - Hampering increasing luminosity
- Two such losses led to damage of 2% of PXD2 gates
 - turned off PXD2 as a precautionary measure until beam losses mitigated
- So far Run 2 has been largely dedicated to machine studies
 - only ~100 fb⁻¹ collected
- Some understanding of how the losses start
 - remediation begun in summer shutdown

- Run 2 is long end 2028 or later
 - Steady accumulation at $\sim 2 \times 10^{35}$ cm⁻²s⁻¹ for several ab ⁻¹ 2nd generation
 - After Run 2 upgrade proposal for reach design luminosity and tens of ab⁻¹
 - Talks by <u>K. Nakamura</u> and <u>M. Roney</u> (polarized beams) Framework CDR <u>arXiv:2406.19421</u>

Conclusions

- Rich physics programme with e⁺e⁻ at Y(4S)
 - Historically Belle and Babar...
- ...now Belle II
 - <u>51 papers</u> on arXiv and 12 preliminary results
 - On CKM physics, rare decays and non-B physics
 - Belle II results with smaller current data set, comparable or better than first generation
- The future
 - It is challenging operating at the intensity frontier
 - However, early days and we have a roadmap to collect multi-ab⁻¹ data sets in the next decade

Conclusions

- Rich physics programme with e⁺e⁻ at Y(4S)
 - Historically Belle and Babar...
- ...now Belle II
 - <u>51 papers</u> on arXiv and 12 preliminary results
 - On CKM physics, rare decays and non-B physics
 - Belle II results with smaller current data set, comparable or better than first generation
- The future
 - It is challenging operating at the intensity frontier
 - However, early days and we have a roadmap to collect multi-ab⁻¹ data sets in the next decade

"Youth is happy because it has the capacity to see **beauty**. *Anyone* who keeps the ability to see **beauty** never grows old.", The Hungry Artist

Extra

22/7/2024

47

$D^+ ightarrow K_S^0 K^- \pi^+ \pi^+$ - CP violation Talks by

• CP violation in charm observed at O(10⁻⁴) in singly Cabibbo suppressed decays $D^0 \to \pi^+\pi^-$ and $D^0 \to K^+K^-$

• LHCb

- Other measurements essential to test if SM or not
- New measurement uses combined Belle and Belle II data set of 1.4 ab⁻¹
 - T-odd observables such as $p_{K^0_S} \cdot (p_{K^+} \times p_{\pi^+})$ can be used to construct asymmetries between D^+ and D^-
 - Belle II additional weight due to improved efficiency and background rejection
 - Null results at the O(10⁻³)

Paper in preparation

Talks by M. Bertemes & Y.-J. Kim