

Recent results of Lepton Flavour Universality tests in semileptonic B decays at Belle II

M. Prim for A. Manthei for the Belle II collaboration

42nd International Conference on High Energy Physics 19/07/2024

SuperKEKB:

- \rightarrow electron-positron collider at Y(4S) resonance
- \rightarrow upgrade of KEKB: target luminosity: ~6x10³⁵/cm²s⁻¹
- \rightarrow production of BB pairs
- \rightarrow measure B decays with Belle II detector
- \rightarrow total recorded int. luminosity: 531fb⁻¹

SuperKEKB:

- \rightarrow electron-positron collider at Y(4S) resonance
- \rightarrow upgrade of KEKB: target luminosity: ~6x10³⁵/cm²s⁻¹
- \rightarrow production of BB pairs
- \rightarrow measure B decays with Belle II detector
- \rightarrow total recorded int. luminosity: 531fb⁻¹

Strategies for reconstruction of SL B decays

 \rightarrow same reconstruction for signal & normalisation modes

Belle II

- Use completeness constraint: no add. charged tracks in the event
- Extract R(D*) in 2D binned template neg. log-likelihood fit
- \rightarrow fit variables: missing mass squared of the event + additional energy in the calorimeter

- Use completeness constraint: no add. charged tracks in the event
- Extract R(D*) in 2D binned template neg. log-likelihood fit
- \rightarrow fit variables: missing mass squared of the event + additional energy in the calorimeter

- Use completeness constraint: no add. charged tracks in the event
- Extract R(D*) in 2D binned template neg. log-likelihood fit
- \rightarrow fit variables: missing mass squared of the event + additional energy in the calorimeter

- Use completeness constraint: no add. charged tracks in the event
- Extract R(D*) in 2D binned template neg. log-likelihood fit
- \rightarrow fit variables: missing mass squared of the event + additional energy in the calorimeter

- Use completeness constraint: no add. charged tracks in the event
- Extract R(D*) in 2D binned template neg. log-likelihood fit
- \rightarrow fit variables: missing mass squared of the event + additional energy in the calorimeter
- \rightarrow use **control regions** to test & correct the modelling of backgrounds, eg:
 - → $m(D\pi) > m(D^*)$ sideband to constrain the **fake D**^(*) background

6

- Use completeness constraint: no add. charged tracks in the event
- Extract R(D*) in 2D binned template neg. log-likelihood fit
- \rightarrow fit variables: missing mass squared of the event + additional energy in the calorimeter
- \rightarrow use **control regions** to test & correct the modelling of backgrounds, eg:
 - → $m(D\pi) > m(D^*)$ sideband to constrain the **fake D**^(*) background

reconstruct $B \rightarrow D^* \pi l v$ to test the modelling of the **D**s** /,,gap" modes

"gap": difference between the inclusive SL B branching fraction & the sum of exclusive semileptonic B decays

- Use completeness constraint: no add. charged tracks in the event
- Extract R(D*) in 2D binned template neg. log-likelihood fit
- \rightarrow fit variables: missing mass squared of the event + additional energy in the calorimeter
- → use control regions to test & correct the modelling of backgrounds
- \rightarrow result (preliminary)::

$$R(D^*) = 0.262 \stackrel{+0.041}{_{-0.039}}(\text{stat}) \stackrel{+0.035}{_{-0.032}}(\text{syst})$$

\rightarrow compatibility with world av. & SM:

SourceUncertaintyPDF shapes+9.1%
-8.3%Simulation sample size+7.5%
-7.5% $\overline{B} \rightarrow D^{**}\ell^- \overline{\nu}_\ell$ branching fractions+4.8%
-3.5%

\rightarrow in agreement with SM & HFLAV av.

\rightarrow leading systematic uncertainties:

Strategies for reconstruction of SL B decays

 \rightarrow same reconstruction for signal & normalisation modes

Belle II

Strategies for reconstruction of SL B decays

UNIVERSITÄT BONN

 \rightarrow same reconstruction for signal & normalisation modes

- Reconstruct only the lepton; remaining particles = X system
- Extract R(X) in 2D binned neg. log-likelihood fit using bin-wise NPs for systematics
- \rightarrow fit variables: missing mass squared of the event + lepton momentum

- Reconstruct only the lepton; remaining particles = X system
- Extract R(X) in 2D binned neg. log-likelihood fit using bin-wise NPs for systematics
- \rightarrow fit variables: missing mass squared of the event + lepton momentum
- \rightarrow reweight XIv based on M_{X} (invariant mass of the X system)

- Reconstruct only the lepton; remaining particles = X system
- Extract R(X) in 2D binned neg. log-likelihood fit using bin-wise NPs for systematics
- \rightarrow fit variables: missing mass squared of the event + lepton momentum
- \rightarrow reweight XIv based on M_{χ} .

PhysRevLett.132.211804

- Reconstruct only the lepton; remaining particles = X system
- Extract R(X) in 2D binned neg. log-likelihood fit using bin-wise NPs for systematics
- \rightarrow fit variables: missing mass squared of the event + lepton momentum
- \rightarrow reweight XIv based on M_{\star}
- \rightarrow result: $R(X_{\tau/\ell}) = 0.228 \pm 0.016 \text{ (stat)} \pm 0.036 \text{ (syst)}$

	Sourco	Uncertainty [%]		
	Source	e	μ	l
Sample sizes	Experimental sample size Simulation sample size	8.8 6.7	$\begin{array}{c} 12.0\\ 10.6 \end{array}$	$7.1 \\ 5.7$
	Tracking efficiency Lepton identification	2.9 2.8	3.3 5.2	$\frac{3.0}{2.4}$
 <i>M_X</i> shape corrections Branching fractions of the "gap modes" 	$\xrightarrow{X_c \ell \nu \text{ reweighting}} X_c \ell \nu \text{ reweighting}$	7.3 5.8	6.8 11.5	7.1 5.7
	$\rightarrow X\ell\nu$ branching fractions	7.0	10.0	7.7
	$\rightarrow \begin{array}{c} X\tau\nu \text{ branching fractions} \\ \hline X_c\tau(\ell)\nu \text{ form factors} \end{array}$	$\frac{1.0}{7.4}$	$\frac{1.0}{8.9}$	$\frac{1.0}{7.8}$
• $B \rightarrow D^* I v$ form factors	Total	18.1	25.6	17.3

 \rightarrow leading uncertainties:

- Reconstruct only the lepton; remaining particles = X system
- Extract R(X) in 2D binned neg. log-likelihood fit using bin-wise NPs for systematics
- \rightarrow fit variables: missing mass squared of the event + lepton momentum
- \rightarrow reweight XIv based on M_{\star}
- → result: $R(X_{\tau/\ell}) = 0.228 \pm 0.016 \text{ (stat)} \pm 0.036 \text{ (syst)}$
 - \rightarrow compatibility with world av. & SM: \rightarrow leading uncertainties:

Source	Uncertainty $[\%]$			
Source	e	μ	l	
Experimental sample size	8.8	12.0	7.1	
Simulation sample size	6.7	10.6	5.7	
Tracking efficiency	2.9	3.3	3.0	
Lepton identification	2.8	5.2	2.4	
$X_c \ell \nu$ reweighting	7.3	6.8	7.1	
$B\overline{B}$ background reweighting	5.8	11.5	5.7	
$X\ell\nu$ branching fractions	7.0	10.0	7.7	
$X \tau \nu$ branching fractions	1.0	1.0	1.0	
$X_c \tau(\ell) \nu$ form factors	7.4	8.9	7.8	
Total	18.1	25.6	17.3	

PhysRevLett.132.211804

- Reconstruct only the lepton; remaining particles = X system
- Extract R(X) in 2D binned neg. log-likelihood fit using bin-wise NPs for systematics
- \rightarrow fit variables: missing mass squared of the event + lepton momentum
- \rightarrow reweight XIv based on M_{\times}
- \rightarrow result: $R(X_{\tau/\ell}) = 0.228 \pm 0.016 \text{ (stat)} \pm 0.036 \text{ (syst)}$

First measurement at the Y(4S) resonance

\rightarrow compatibility with world av. & SM: \rightarrow leading uncertainties:

$R(X_{\tau/\ell})^{\dagger} \equiv \frac{\mathcal{B}(B \to X\tau\nu) - \mathcal{B}(B \to D_{(\text{gap})}^{**}/X_u\tau\nu)_{\text{SM}}}{\mathcal{B}(B \to X^{\ell}\nu)} \qquad \text{Source}$		Uncertainty [%]		
		e	μ	l
$B(B \rightarrow X \ell \nu)$ 0.35 0.30 $R(X)^{*} (189 fb^{-1})$ 0.25 $R(D^{(*)})$ $R(D^{(*)})$ $R(D^{(*)})$	Experimental sample size Simulation sample size	8.8 6.7	$\begin{array}{c} 12.0\\ 10.6\end{array}$	$7.1 \\ 5.7$
	Tracking efficiency	2.9	3.3	3.0
	Lepton identification	2.8	5.2	2.4
	$X_c \ell \nu$ reweighting	7.3	6.8	7.1
	$B\overline{B}$ background reweighting	58	11.5	57
	$X\ell\nu$ branching fractions	7.0	10.0	7.7
	$X \tau \nu$ branching fractions	1.0	1.0	1.0
	$X_c \tau(\ell) \nu$ form factors	7.4	8.9	7.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Total	18.1	25.6	17.3

 \rightarrow in agreement with HFLAV av. & SM prediction=0.223 ± 0.005 within 1σ

Summary & outlook

- Belle II contributes to LFU tests with several measurements
- Recent results:

$$R(D^*) = 0.262 \ ^{+0.041}_{-0.039}(\text{stat}) \ ^{+0.035}_{-0.032}(\text{syst})$$

$$R(X_{\tau/\ell}) = 0.228 \pm 0.016 \text{ (stat)} \pm 0.036 \text{ (syst)}$$

 R(D*) had. & R(X) in agreement with SM prediction, all compatible with current world average, results will be more precise with more data to be taken

