

Peter Mandeville Lewis | *The University of Hawaii at Manoa* DPF-Pheno 2024 | *Pittsburgh*

Why *b*-physics?

Rich flavor dynamics

- **CKM** close to *unit matrix*: loops, boxes, large CP asymmetries, flavor oscillations are visible
- Straightforward NP enhancements to heavy **b** vertex could be competitive to small SM contributions

Theoretically tractable

- Hadronic component is (usually) factorizable from weak component
- Heavy quark methods useful, with $\Lambda_{\rm OCD}/m_b \sim 0.1$

A powerful and clean window to NP...

Why *b*-physics?

Rich flavor dynamics

- **CKM** close to unit matrix: loops, boxes, large CP asymmetries, flavor oscillations are visible
- Straightforward NP enhancements to heavy **b** vertex could be competitive to small SM contributions

Theoretically tractable

- Hadronic component is (usually) factorizable from weak component
- Heavy quark methods useful, with $\Lambda_{\rm QCD}/m_b \sim 0.1$

A powerful and clean window to NP...

(interesting hints in **angular observables** too!)

Longstanding $\sim 3\sigma$ tension with SM from BaBar, Belle, LHCb, Belle II... a sign of NP?

Hot topic: flavor-changing neutral currents

No tree-level SM process

- $b \rightarrow s\ell^{+}\ell^{-}$: experimentally clean, theoretically more challenging (factorization breaks down due to photon exchange)
- *b→svv*: theoretically clean (no photon exchange), experimentally challenging (two missing neutrinos)

Signs of tension with SM:

- Branching fractions and **angular observables**
- R_{K} and R_{K^*} ratios (gone now? Thanks LHCb!)

 $R_{K^{(*)}} = \frac{\mathcal{B}\left(B \to K^{(*)}\mu^+\mu^-\right)}{\mathcal{B}\left(B \to K^{(*)}e^+e^-\right)}$

Lingering (and consistent) signs of NP here too!

How?

B-factories (BaBar, Belle, Belle II)

- e^+e^- colliders on $\Upsilon(4S)$ resonance ($\rightarrow B\overline{B}$)
- Low cross-section \rightarrow high luminosity
- Full kinematics known
- **Spherical** events
- Exactly one collision per trigger

Hadron colliders (LHCb, ATLAS, CMS...)

- Parton collisions produce *bb* pairs
- Hadronize into all sorts of *b* mesons *and* baryons
- High cross-section
- Full kinematics not known
- Production preferentially along beam

How?

B-factories (BaBar, Belle, Belle II)

- e^+e^- colliders on $\Upsilon(4S)$ resonance $(\rightarrow B\overline{B})$
- Low cross-section \rightarrow high luminosity
- Full kinematics known
- Spherical events
- Exactly one collision per trigger

Hadron colliders (LHCb, ATLAS, CMS...)

- Parton collisions produce $b\overline{b}$ pairs
- Hadronize into all sorts of *b* mesons *and* baryons
- High cross-section
- Full kinematics not known
- Production preferentially **along beam**

Introduction

Belle II

- Nearly hermetic detector
- Modest boost; *B* mesons fly $\sim 100 \ \mu m$
- Ideal for **neutral** or **invisible** final states
- World-record luminosity before *Long Shutdown 1,* which has just ended
- Current results use $\leq 362 \text{ fb}^{-1}$ at $\Upsilon(4S)$: similar to BaBar and Belle already, but **<1% of target**

Introduction

LHCb

- Single-arm forward spectrometer
- Large boost; *B* mesons fly ~1 cm (easily resolvable)
- Excels at **charged particle** final states, notably **muons**

Recent results: Lepton Universality

Belle II: R(X)

11

The $b \rightarrow c \tau v$ excess

Q: What if the "anomaly" is just a shared systematic?

Or a problem with the (shared) theory description?

Is there anything we can do except **measure R(D) and R(D*) over and over again**?

Composition of $B \rightarrow X \ell v$ events

So then: how can we use "not well-known" as the signal?

Use a data-driven corrections for the "not well-known" stuff...

Data-driven corrections

The *invariant mass of the X system* controls the **physics** we know the least about

$$q^{2} = \left[\begin{pmatrix} E_{\text{CMS}}/2 \\ -\overline{p_{B_{\text{tag}}}} \end{pmatrix} - \begin{pmatrix} E_{X} \\ \overline{p_{X}} \end{pmatrix} \right]^{2}$$

Using M_x to reweight the signal **fixes**^{*} the observed mismodeling

$$R(X_{\tau/\ell})$$
 results

From 2D fit to lepton momentum and $M_{\rm miss}^{2}$

Constraints **inferred** on R(D(*)) are weak, *but*:

- Statistics dominant, with <0.4% of the target Belle II dataset
 - (even the systematics are statistics-dominant*)
- Independent of *R*(*D**) measurement: ~0.4% statistical overlap, different theory descriptions, different observable

Take-home: Belle II has developed a powerful and independent new test of the $b \rightarrow c \tau \nu$ anomalies driven by **new inclusive techniques**

$$R(X_{\tau/\ell}) = 0.228 \pm 0.016 \text{ (stat)} \pm 0.036 \text{ (syst)}$$

SM: 0.223 ± 0.005

LHCb: New $R(D^+)$ and $R(D^{*+})$

LHCb: New $R(D^+)$ and $R(D^{*+})$

Main goal: measure isospin-related $R(D^+)$ to complement $R(D^0)$ [LHCb 2023*]

Simultaneous measurement shares visible final state: $[D^+ \rightarrow K^- \pi^+ \pi^+] + \mu^-$

Control of many classes of backgrounds essential...

Signal extraction

3D binned fit:

- Variables: m_{miss}^2 , E_l^* , q^2
- Components:
 - Signal (**D** and **D***)
 - Normalization (*D* and *D**)
 - Feed-down from **1P D**^{**} states
 - Muon mis-ID
 - (other charm, neutronic, combinatorial background)
- Simultaneous fit to *four data samples:*
 - Signal sample $(D^+\mu^-)$
 - 1p sample $(D^+\mu^-\pi^-)$
 - 2p sample $(D^+\mu^-\pi^+\pi^-)$
 - 1K sample($D^+\mu^- K^{\pm}$)

 E_1^* [MeV/c²]

LHCb: *R*(*D*⁺) and *R*(*D*^{*+})

LHCb THCp

(preliminary) Results

Two new and promising methods* for simulation and reweighting used

Summary

- Compatible with SM at **0.78** σ
- Compatible with previous world average at 1.09σ
- Uncertainties from stats and systematics approximately equal
 - (Dominant systematics remain FFs and BFs)

$R(D^+) = 0.249 \pm 0.043(stat) \pm 0.047(syst)$ $R(D^{*+}) = 0.402 \pm 0.081(stat) \pm 0.085(syst)$ $\rho = -0.39$ 0.4 $R(D^*)$ 68% CL contours HFLAV Belle^a BaBar Moriond 2024 0.35 LHCb^c BelleII 0.3 LHCb^t **LHCb**^a 0.25 Belle World Average $R(D) = 0.344 \pm 0.026_{total}$ 0.2 HFLAV SM Prediction $R(D^*) = 0.285 \pm 0.012$ $R(D) = 0.298 \pm 0.004$ $\rho = -0.39$ $R(D^*) = 0.254 \pm 0.005$ $P(\chi^2) = 29\%$ 0.2 0.3 0.4 0.5 R(D)

Take-home: new *R*(*D*) channel, with new methods, unlocked at LHCb

Recent results: FCNCs

Belle II: $B^+ \to K^+ \nu \nu$

Evidence for $B^+ o K^+ u ar{ u}$ decays

(Accepted by PRD, Feb 2024)

Belle II: $B^+ \to K^+ \nu \nu$

Two approaches run in parallel:

- *Inclusive tag (ITA)*: **no** reconstruction of second *B*. High efficiency, **high backgrounds**.
- *Hadronic tag (HTA*): **strict** reconstruction of second *B*. **Low efficiency**, low backgrounds.

$B^+ \rightarrow K^+ \nu \nu$ signal extraction

Variables

- η : a signal classifier* remapped so that signal is **flat**
- $q_{\rm rec}^2$: inferred neutrino mass squared

ITA:

- Simultaneous on-/off-resonance fit
- (4 bins in η)×(3 bins in q_{rec}^2)

HTA:

• Fit to six bins of signal classifier η (BDTh)

(the key is extensive controls/validations)

$B^+ \rightarrow K^+ \nu \nu$: results

Combined ITA and HTA:

- Signal strength ($\mu_{\text{SM, short-range}} \equiv 1$): $\mu = 4.6 \pm 1.0(\text{stat}) \pm 0.9(\text{syst}) = 4.6 \pm 1.3$
- Branching fraction:

 $\left[2.3 \pm 0.5 (\text{stat})^{+0.5}_{-0.4} (\text{syst})\right] \times 10^{-5} = (2.3 \pm 0.7) \times 10^{-5}$

ITA and HTA results are **compatible**, **independent**, and both approximately equally limited by stats and systematics

Take-home: first evidence for $K^+\nu\nu$ (3.5 σ), BF in excess of SM by 2.7 σ ; enabled by **new inclusive techniques**

LHCb: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

LHCb: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

LHCb-PAPER-2024-011 (LHC EFT slides) -

Complementary followup to

Determination of short- and long-distance contributions in $B^0 \rightarrow K^{*0}\mu^+\mu^-$ decays

PHYSICAL REVIEW D 109, 052009 (2024)

R. Aaij *et al.** (LHCb Collaboration)

LHCb: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Context:

- Longstanding **tensions** in angular analyses of $b \rightarrow s\mu^+\mu^-$
- Tensions in P_5' (coefficient in angular decay rate*) can be related to tensions in the C_9 Wilson Coefficient in EFT

But is this NP or **non-local QCD**?

Can't **ignore the resonances**; interference could be far from poles

Analysis concept

Signal description:

• Signal amplitudes parameterized with *local* and *non-local* contributions using a dispersion relation (*effective* C₉)

Fit:

- 4D unbinned fit (**three helicity angles*** + **full** q^2)
- Determines **150 parameters**:
 - Wilson coefficients
 - Magnitude and phase on 1-particle contributions
 - 2-particle contribution
 - Form factors
 - \circ Everything...

LHCb: $B^{0} \rightarrow K^{*0} \mu^{+} \mu^{-}$

Results

Wilson coefficients from fit:

- Global tension with SM at **1.5***o*
- Mostly driven by **2.1** σ tension in C_9 (again)
- First result including the whole q^2 range
 - (equivalent to $\ell\ell$ invariant mass) _
- The data prefer **more non-local** contributions than in SM
 - (but not enough to explain the tension)
 - Consistent with PRD 109, 052009

Take-home: A tension in C_9 persists, and it **isn't** due to long-range QCD effects

Conclusions

Progress in LUV and $b \rightarrow c\tau v$ anomalies:

- First inclusive *R*(*X*), at Belle II
- First *R*(*D*⁺) at LHCb
- Plus more, not featured today!
- Tension remains at $\sim 3\sigma$

Progress in FCNCs:

- Intriguing hints of NP in Belle II-only $B \rightarrow Kvv$
- Tension in angular analysis of $b \rightarrow s \ell \ell$ persists and isn't explainable by long-range QCD

This is a **tiny** fraction of what Belle II and LHCb are up to, not to mention ATLAS and CMS B-physics programs

Look for an **explosion** of new results in the **next several years**!

Thank you!

(additional slides)

Belle II: R(X)

Belle II: R(X)

$R(X_{\tau/\ell})$ uncertainties

	Preliminary		
Source	Uncertainty [%]		
	e	μ	l
Experimental sample size	8.8	12.0	7.1 —
Simulation sample size	6.7	10.6	5.7 —
Tracking efficiency	2.9	3.3	3.0
Lepton identification	2.8	5.2	2.4
$X_c \ell \nu M_X$ shape	7.3	6.8	7.1 -
Background (p_{ℓ}, M_X) shape	5.8	11.5	5.7 —
$X\ell\nu$ branching fractions	7.0	10.0	7.7 —
$X \tau \nu$ branching fractions	1.0	1.0	1.0 -
$X_c \tau(\ell) \nu$ form factors	7.4	8.9	7.8
Total	18.1	25.6	17.3

Uncertainties that will likely scale as statistical uncertainties with luminosity

LHCb: New $R(D^+)$ and $R(D^{*+})$

Context: **2023 result** from LHCb for $R(D^0)$ and $R(D^{*0,+})$

- Run 1 (3.0 fb⁻¹)
- First simultaneous measurement of $R(D^*)$ and $R(D^0)$ at a hadron collider
- Muonic tau decay (high BF, high backgrounds)

Complementary measurement with charged D^{+} now needed...

$B^+ \rightarrow K^+ \nu \nu$ analysis

Background suppression

- ITA: Two consecutive Boosted Decision Trees (BDTs)
 - **BDT**₁: basic filter; kinematics, **event shapes** –
 - **BDT**₂: trained on events with BDT₁>0.9
 - Validated with **embedding procedure** using $B^+ \rightarrow K^+ J/\psi$:
 - "Delete" muons from J/ ψ decay
 - Replace K^+ with simulated signal K^+
- HTA: Single BDT (BDTh)

Two new methods

Form Factor variations: HAMMER

- Efficient reweighting of MC for FF variations and NP scenarios
- Developed by Belle II collaborators with theorists; **first use** in this analysis

Tracker-only ultra-fast simulation

- "Turn off" all but tracker in simulation \rightarrow faster simulations \rightarrow reduced uncertainty from MC stats
- Effects of missing detectors emulated in analysis
- Multi-dimensional reweightings and QED corrections
- Excellent agreement achieved

Das ist der HAMMER: Consistent new physics interpretations of semileptonic decays

Florian U. Bernlochner^{a,1}, Stephan Duell^{b,1}, Zoltan Ligeti^{c,2} Michele Papucci^{d,2,3}, Dean J. Robinson^{e,2}

¹Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany ²Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA ⁹Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125, USA

$b \rightarrow s \ell \ell$ angular distributions

