CPV at e^+/e^- colliders

FPCP2024, Chulalongkorn University,
Bangkok Thailand
30/05/2024

Stefano Lacaprara
for the Belle II collaboration
INFN Padova
CPV in Standard Model: CKM matrix

- CPV: a key for matter-antimatter asymmetry in the universe
 - In SM, only source is complex phase in CKM matrix
 - (and possible similar phase in PMNS matrix)

$$ V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(\rho-i\eta) \\ -\lambda & 1-\lambda^2/2 & A\lambda^2 \\ A\lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \end{pmatrix} $$

- From CKM unitarity: $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$
 - Triangle in complex plane
 - Three angles
 - Other triangles exist

Dirac Medal 2010
Nobel Prize 2008
- Precise test of SM by over constraining Unitarity Triangle
- Search for New Physics effects, especially in loop mediated diagrams
- At e^+/e^- collider:
 - clean environment, full reconstruction, access to modes with neutrals in the final states
SuperKEKB and Belle II

- e^+/e^- (4/7 GeV) at KEK
 - Around $\Upsilon(4S)$ resonance
- Run 1 operation 2019-2022
 - 424 fb$^{-1}$ collected - 362 fb$^{-1}$ at $\Upsilon(4S)$
- Long Shutdown 1 (LS1) until end of 2023
 - For accelerator and detector upgrades
- Run 2 operation from Jan 2024

Luminosity record 4.7×10^{34} cm$^{-2}$s$^{-1}$
- 2x KEKB
- Goal to collect multi ab$^{-1}$ of data
B-Factory variables

- Two key variables to discriminate fully reconstructed (hadronic) signal from background
 - Background from continuum (qq-bar) and from BB
- Discrimination against continuum (qq-bar) background using event-shape variables via a multivariate classifier

\[\Delta E = E_B^* - \frac{\sqrt{s}}{2} \]

\[M_{bc} = \sqrt{\frac{s}{4} - P_B^*^2} \]
Time-Dependent (TD) CPV analysis

- B_{CP}: fully reconstructed CP eigenstate
- B_{tag}: vertex and flavour information
- Complex analysis, many key elements:
 - high signal efficiency
 - excellent vertex resolution $\sigma_z \sim 26/50\mu m$ (signal/tag side)
 - high flavour-tagging efficiency $\varepsilon = 37\%$

Flagship measurement at B factories
Still very important at Belle II

$$A_{CP}(\Delta t) = \frac{\Gamma(B_{tag}=B^0(\Delta t) \rightarrow f_{CP}) - \Gamma(B_{tag}=\bar{B}^0(\Delta t) \rightarrow f_{CP})}{\Gamma(B_{tag}=B^0(\Delta t) \rightarrow f_{CP}) + \Gamma(B_{tag}=\bar{B}^0(\Delta t) \rightarrow f_{CP})} =$$

$$= S \cdot \sin(\Delta m_d \Delta t) - C \cdot \cos(\Delta m_d \Delta t)$$

$S_{CP} = \sin(2\phi_i^{eff})$
Mixing induced CPV

$A_{CP} = -C_{CP}$
Direct CPV

$|B\rangle \not\rightarrow |f\rangle$

Stefano Lacaprara, INFN Padova, FPCP2024, Bangkok 30/5/2024
B flavour tagging: GFlaT

- CPV analysis in Belle II used a category-based (CB) algorithm [Eur. Phys. J. 82, 283 (2022)]
- A more advanced algorithm GFlaT, based on graph convolutional neural network (GNN), was developed
 - Using 25 variables for each track from the B_{tag} decay
- Performance evaluated on data using self-tagging $B^0 \rightarrow D^{(*)-}\pi^+$ decays
- Significant improvement in performance
 - $+18\%$ (relative)

$$\varepsilon_{tag}(CB) = (31.7 \pm 0.5 \pm 0.4)\%$$
$$\varepsilon_{tag}(GFlaT) = (37.4 \pm 0.4 \pm 0.3)\%$$
\[\sin(2\phi_1/\beta) \text{ from } B \rightarrow J/\psi K_S\]

- Golden channel, almost background free
- Updated results using improved GFLaT flavour tagger
- Fit \(\Delta E\) distribution to subtract background
- Fit background-subtracted \(\Delta t\) distribution to extract CPV parameters

\[
\begin{align*}
S &= 0.724 \pm 0.035 \pm 0.014 \\
C &= -0.035 \pm 0.026 \pm 0.013
\end{align*}
\]

- Statistical uncertainties 8% smaller than with category-based Flavour Tagger

\[\text{arXiv:2402.17260} \quad \text{Accepted by PRD}\]
TDPCPV in Charmless B decay

- $B \rightarrow \eta' K_S$
 - $\eta' \rightarrow \eta(\rightarrow \gamma \gamma) \pi^+ \pi^-$
 - $\eta' \rightarrow \rho \gamma$
- High B, theoretically clean
 - ~ 800 signal events
- ~ 800 signal events

- $B \rightarrow \phi K_S$
- Challenge: non resonant background with opposite-CP
 - ~ 160 signal events

- $B \rightarrow K_S K_S K_S$
- Challenge: no prompt tracks from B vertex
 - Use $K_S \rightarrow \pi^+ \pi^-$ extrapolated to IP
 - ~ 160 signal events

- See also S.Raiz talk on Tue

\[S = 0.67 \pm 0.10 \pm 0.04 \]
\[C = -0.19 \pm 0.08 \pm 0.03 \]

\[S = 0.54 \pm 0.26 \pm 0.06 \]
\[C = -0.31 \pm 0.20 \pm 0.05 \]

\[S = -1.37 \pm 0.35 \pm 0.03 \]
\[C = -0.07 \pm 0.20 \pm 0.05 \]
B → K_S \pi^0 \gamma

- B^0 \to K_S \pi^0 \gamma is expected to have small/none mixing induced CPV in SM
 - b\to s\gamma_R is helicity suppressed (m_s/m_b) wrt b\to s\gamma_L
 - B^0\to s\gamma_L vs B^0\to \bar{B}^0\to s\gamma_R
- Vertex from K_S \to \pi^+\pi^- and IP constraint
- Measured separately for resonant K^*(0) \to K_S \pi^0 \gamma

\begin{align*}
S &= 0.00 \pm 0.27 \pm 0.03 \\
C &= 0.10 \pm 0.13 \pm 0.03
\end{align*}

- and inclusive (non resonant) decay K_S \pi^0 \gamma

\begin{align*}
S &= 0.04 \pm 0.45 \pm 0.10 \\
C &= -0.06 \pm 0.25 \pm 0.07
\end{align*}

Most precise result so far
CPV in $B^0 \to K^0_S \pi^0$

- First Belle II measurement of TDPCPV in $B^0 \to K^0_S \pi^0$
 - Signal yield: 415^{+26}_{-25} events
- Key ingredient in Isospin Sum Rule

\[
I_{K\pi} = \mathcal{A}_{K\pi}^{CP} + \mathcal{A}_{K\pi}^{0,0,0} \frac{\mathcal{B}(K^0\pi^0)}{\mathcal{B}(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} - 2\mathcal{A}_{K\pi}^{0,0,0} \frac{\mathcal{B}(K^0\pi^0)}{\mathcal{B}(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} - 2\mathcal{A}_{CP}^{0,0,0} \frac{\mathcal{B}(K^0\pi^0)}{\mathcal{B}(K^+\pi^-)} \approx 0 \quad \text{(within -1%)}
\]

- $B^0 \to K^+ \pi^-$
 - $\mathcal{B}(K^+\pi^-) = (20.67 \pm 0.37 \pm 0.62) \times 10^{-6}$
 - $\mathcal{A}_{CP}(K^+\pi^-) = -0.072 \pm 0.019 \pm 0.007$

- $B^+ \to K^0_S \pi^+$
 - $\mathcal{B}(K^0_S\pi^+) = (24.40 \pm 0.71 \pm 0.86) \times 10^{-6}$
 - $\mathcal{A}_{CP}(K^0_S\pi^+) = +0.046 \pm 0.029 \pm 0.007$

- $B^0 \to K^0_S \pi^0$
 - $\mathcal{B} = (10.50 \pm 0.62 \pm 0.67) \times 10^{-6}$
 - $\mathcal{A}_{CP} = -0.01 \pm 0.12 \pm 0.05$

- $I_{K\pi} = -0.03 \pm 0.13 \pm 0.05$ (world average 0.13 ± 0.11)

- Precision on par with W/A! \to 5% uncertainty achievable @ 10 ab$^{-1}$

Belle II

- $\int L dt = 362$ fb$^{-1}$
- Signal yield: 415$^{+26}_{-25}$ events
- $S = 0.75^{+0.20}_{-0.23} \pm 0.04$
- $C = -0.04^{+0.14}_{-0.15} \pm 0.05$

References

- PRL 131, 111803 (2023)
- PRD 109, 012001 (2024)
Toward ϕ_2/α: $B^0 \rightarrow \pi^0\pi^0$

- Update on B and A_{CP} using full Run1 statistics:
- Improved selections, new flavour tagger (GFlaT), reduction of systematics
 - Background dominated by continuum, then $B\bar{B}$ ($B^+\rightarrow\rho^+ (\rightarrow \pi^+\pi^0)\pi^0$, $B^0\rightarrow K^0_S (\rightarrow \pi^0\pi^0)\pi^0$)
 - Photons selected with BDT, continuum suppression trained on off-resonance data
 - 4D fit including M_{BC}, ΔE, cont.suppression, w (wrong tag probability - unbinned)
 - Validated on $B^+\rightarrow K^+\pi^0$ / $B^0\rightarrow \bar{D}^0(K^+\pi^-\pi^0)\pi^0$

$$B = (1.26 \pm 0.20 \pm 0.11) \times 10^{-6}$$
$$A_{CP} = 0.06 \pm 0.30 \pm 0.06$$

- Compatible with known values
- World-best B determination.
- A_{CP} on par with world best

$$B = (1.59 \pm 0.26) \times 10^{-6}$$
$$A_{CP} = 0.30 \pm 0.20$$

Previous results
[PRD107 (2023) 112009]

See also S.Raiz talk on Tue
Toward ϕ_2/α: $B \to \pi\pi$

$\text{B} (B^0 \to \pi^+\pi^-) = (5.83 \pm 0.22 \pm 0.17) \times 10^{-6}$

$\text{B} (\pi^+\pi^0) = (5.10 \pm 0.29 \pm 0.32) \times 10^{-6}$

$A_{CP} (\pi^+\pi^0) = -0.081 \pm 0.054 \pm 0.008$

- Compatible and competitive with WA
- Modes with π^0 limited by π^0 systematics: will be reduced with more data
Results on γ/ϕ_3

- γ/ϕ_3 from interference of tree level amplitudes:
 - Fundamental input of CKM UT fit
- ϕ_3 can be measured using interference $B \to D K$ and $B \to \bar{D} K$ (or $D^* K^*$, $D \pi$)

- Amplitude ratio r_B and strong phase δ_B are mode-dependent

$$B^- \to D^0 K^- \approx V_{cb} V_{us}^*$$
$$A_1 \approx V_{ub} V_{cs}^*$$
$$A_1 r_B e^{i(\delta_B - \phi_3)}$$
Belle/BelleII combined results on γ/ϕ_3

- Several methods used
 - GLW $B^\pm \rightarrow D^0_{CP} K^\pm$ arXiv:2308.05048 [hep-ex]
 - Use CP eigenstate of D meson
 - ADS PRL 78 (1997) 3257
 - Enhancement of CP violation by using doubly Cabibbo suppressed decays.
 - BPGGSZ $D^0 \rightarrow K_S h^+ h^-$ JHEP 2022(2022), 63
 - Different amplitude and strong phase in different region of Dalitz plot.
 - GLS $D^0 \rightarrow K_S K\pi$ JHEP 09(2023)146

- D-decay strong phase from CLEO-c & BESIII
 - Need improvement by BESIII

LHCb: $\phi_3 = (63.8 \pm 3.6)^\circ$ LHCb-CONF-2022-003
Few ab$^{-1}$ needed for a meaningful comparison

- Likelihood with 60 input observables
 - including 15 auxiliary inputs (D-decay)
 - 16 free parameters

- $r_B(\delta_B)$ with little high-fluctuation
 - Worse precision with WA values
Belle + Belle II Combined γ/ϕ_3

- Example:
 - $B^\pm \rightarrow D_{CP}K^\pm$ (GLW)
 - CP-odd $D_{CP} \rightarrow K_S \pi^0$: only in Belle(II)
 - Combined Belle and BelleII analysis

<table>
<thead>
<tr>
<th>B decay</th>
<th>D decay</th>
<th>Method</th>
<th>Data set (B + Belle II) [fb$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^+ \rightarrow Dh^+$</td>
<td>$D \rightarrow K^0\pi^0, K^-K^+$</td>
<td>GLW</td>
<td>711 + 189</td>
</tr>
<tr>
<td>$B^+ \rightarrow Dh^+$</td>
<td>$D \rightarrow K^+\pi^-, K^+\pi^-\pi^0$</td>
<td>ADS</td>
<td>711 + 0</td>
</tr>
<tr>
<td>$B^+ \rightarrow Dh^+$</td>
<td>$D \rightarrow K^0K^-\pi^+$</td>
<td>GLS</td>
<td>711 + 362</td>
</tr>
<tr>
<td>$B^+ \rightarrow Dh^+$</td>
<td>$D \rightarrow K^0h^-h^+$</td>
<td>BPGGSZ (m.i.)</td>
<td>711 + 128</td>
</tr>
<tr>
<td>$B^+ \rightarrow Dh^+$</td>
<td>$D \rightarrow K^0\pi^-\pi^0$</td>
<td>BPGGSZ (m.i.)</td>
<td>711 + 0</td>
</tr>
<tr>
<td>$B^+ \rightarrow D^*K^+$</td>
<td>$D^* \rightarrow D\pi^0, D \rightarrow K^0\pi^0, K^0\phi, K^0\omega$</td>
<td>GLW</td>
<td>210 + 0</td>
</tr>
<tr>
<td>$B^+ \rightarrow D^*K^+$</td>
<td>$K^-K^+, \pi^-\pi^0$</td>
<td>GLW</td>
<td>210 + 0</td>
</tr>
<tr>
<td>$B^+ \rightarrow D^*K^+$</td>
<td>$D^* \rightarrow D\pi^0, D\gamma, D \rightarrow K^0\pi^-\pi^+$</td>
<td>BPGGSZ (m.d.)</td>
<td>605 + 0</td>
</tr>
</tbody>
</table>
BESIII @ Beijing Electron-Positron Collider (BEPC-II)

- CM Energies: [2-4.95] GeV: τ-charm region
 - Luminosity: $\sim 10^{33}$ cm$^{-2}$s$^{-1}$
- Collected 10 billion J/ψ and 3 billion $\psi(2S)$
 - Possible to study CPV on **hyperons**
 - $\sim 10^7$ entangled hyperon pairs

<table>
<thead>
<tr>
<th>Decay</th>
<th>$B \times 10^{-5}$</th>
<th>Events at BESIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J/\psi \rightarrow \Lambda \bar{\Lambda}$</td>
<td>189 ± 9</td>
<td>18.9×10^6</td>
</tr>
<tr>
<td>$J/\psi \rightarrow \Sigma^+ \Sigma^-$</td>
<td>150 ± 24</td>
<td>15.0×10^6</td>
</tr>
<tr>
<td>$J/\psi \rightarrow \Xi \bar{\Xi}$</td>
<td>97 ± 8</td>
<td>9.7×10^6</td>
</tr>
<tr>
<td>$\psi(2S) \rightarrow \Sigma \bar{\Sigma}$</td>
<td>23.2 ± 1.2</td>
<td>116×10^3</td>
</tr>
<tr>
<td>$\psi(2S) \rightarrow \Omega \bar{\Omega}$</td>
<td>5.66 ± 0.30</td>
<td>28×10^3</td>
</tr>
</tbody>
</table>

Front. Phys. 12(5), 121301 (2017)

More on BESIII and BEBC-II on Luyan Tao talk on Monday
CPV in Hyperon decay

- Polarized and entangled pair of hyperons from J/ψ decays
- Decay asymmetry parameters α from S-wave (parity conserving) and P-wave (parity violating) amplitudes. $\bar{\alpha}$ for anti-hyperons
 - α is CP-odd
 - Non zero \Rightarrow CP violation
- Events: $J/\psi \rightarrow \Sigma^+ \text{ anti-}\Sigma^-$, $\Sigma^+ \rightarrow n\pi^+$, anti-$\Sigma^-$ $\rightarrow \bar{p}\pi^0$ or c.c.
 - 10 billion $J/\psi \rightarrow \Sigma^+ \text{ anti-}\Sigma^-$
 - Complex angular analysis: 5 observables
 - First CPV result with neutron in the final state

\[
\frac{dN}{d\Omega} = \frac{1}{4\pi} \left(1 + \alpha \mathbf{P}_\Sigma \cdot \hat{n} \right)
\]

Moment of polarization

Non flat \Rightarrow polarization observed

$A_{CP} = 0.080 \pm 0.052 \pm 0.028$
$e^+e^- \rightarrow J/\psi \rightarrow \Xi^0\text{anti-}\Xi^0$, $\Xi^0 \rightarrow \Lambda (\rightarrow p\pi^-)\pi^0 + \text{cc}$

- Even more complex angular analysis (9 helicity angles)
- 8 free parameters (plus other in daughter’s decay)
 - 10 billion J/ψ events:
 - 320k signal events with little background
- Results:
 - Ξ^- polarization observed (first time)
 - Independent measurement of Λ decay parameters
 - First measurement of weak phase difference in Ξ decay
 - Three independent CP test

<table>
<thead>
<tr>
<th>Parameter</th>
<th>This work</th>
<th>Previous result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{CP}^Ξ</td>
<td>$(-5.4 \pm 6.5 \pm 3.1) \times 10^{-3}$</td>
<td>$(-0.7 \pm 8.5) \times 10^{-2}$ [49]</td>
</tr>
<tr>
<td>$\Delta\phi_{CP}(\text{rad})$</td>
<td>$(-0.1 \pm 6.9 \pm 0.9) \times 10^{-3}$</td>
<td>$(-7.9 \pm 8.3) \times 10^{-2}$ [49]</td>
</tr>
<tr>
<td>A_{CP}^π</td>
<td>$(6.9 \pm 5.8 \pm 1.8) \times 10^{-3}$</td>
<td>$(-2.5 \pm 4.8) \times 10^{-3}$ [20]</td>
</tr>
</tbody>
</table>

Similar results for $e^+e^- \rightarrow J/\psi \rightarrow \Xi^+\Xi^- \rightarrow \Lambda (\rightarrow p\pi^-)\pi^- \Lambda (\rightarrow \bar{n}\pi^0)\pi^+$

[PhysRevD.108.L031106 (2023)]

Stefano Lacaprara, INFN Padova, FPCP2024, Bangkok 30/5/2024
Perspective

- Belle II goal: $L = 6 \times 10^{35} \text{cm}^2\text{s}^{-1}$; $L_{\text{int}} \sim 50 \text{ab}^{-1}$

- BESIII and Super Tau-Charm Facility
 - today $10^{10} J/\psi$
 - At super J/ψ factory $10^{12} J/\psi$ per year
 - $L \sim 10^{35} \text{cm}^2\text{s}^{-1}$
 - polarized beam (phase II)

- CPV sensitivity in hyperon’s decay
 - $10^{-4} - 10^{-5}$
 - challenging SM predictions

- Together with LHCb will further constrain UT
- Unique measurements in many modes
- UT consistent with SM or not?

More on STCF on Qipeng Hu talk later today
Summary

- CPV studies are a key ingredient of e^+/e^- colliders
- Large CPV program in B physics at Belle II
 - Precise measurement of Unitary Triangles
 - Search for new physics
 - Results on Run1 show significantly better performance compared to Belle
- Hyperon polarization in J/ψ, $\psi(2S)$ decays at BESIII
 - new way to study CPV
Backup

AS REQUESTED, I FIT MY PRESENTATION ON ONE POWERPOINT SLIDE.

I HAD TO USE ALL OF THE WHITE SPACE, BUT I THINK IT WAS WORTH IT TO FIT EVERYTHING ON ONE PAGE.

IT'S ACTUALLY ONLY ONE BULLET POINT, BUT IT'S A LONG ONE.
Belle and Belle II

- Asymmetric e^+e^- colliders - B factories, also charm and τ factories
- Belle Belle II: $e^+(3.5 \text{ GeV}) e^-(8 \text{ GeV})$ $e^+(4 \text{ GeV}) e^-(7 \text{ GeV})$
- Improved vertex resolution allows lower boost
- 424 fb$^{-1}$ (362 fb$^{-1}$ at $\Upsilon(4S)$) collected at Belle II so far; Goal: 50 ab$^{-1}$
sin(2\phi_1/\beta) future

- Expected to be dominated by systematics with 50/ab
- Mostly from alignment of vertex detector and tag-side interference
- Penguin pollution will need to be constrained from B → J/ψπ^0

![Belle II Physics Book](https:// doi.org/10.1093/ptep/ptz106)
Flavour Tagger

- Used to determine the quark-flavour of B_{tag}
- Many different final states considered, combined with two layers of MVA discriminators.
 - Developed also a Deep Neural Network with similar performance.

Performance measured on data using $B^0\to D^{(*)}h^+$ decays

- Effective efficiency:

$$\varepsilon_{eff} = \sum_i \varepsilon_i (1 - 2w_i)^2$$

$$= (30.0 \pm 1.2 \pm 0.4)\%$$
Time dependent $B \rightarrow \eta'K_S$

- Mediated by loop diagram, CPV expected to be the same as in $B^0 \rightarrow J/\psi K_S$ (tree)
- Deviation would be indication of new physics in the loop
- Reconstruct in 2 sub-channels:
 - $\eta' \rightarrow \eta(\rightarrow \gamma \gamma)\pi^+\pi^-$, $\eta' \rightarrow \rho\gamma$ (and $\eta' \rightarrow \eta(\rightarrow \pi^+\pi^-\pi^0)\pi^+\pi^-$)
- Found ~800 signal in total, performed time dependent fit in ΔE, M_{BC}, ContSupp and ΔT variables

<table>
<thead>
<tr>
<th>Channel</th>
<th>Signal yield</th>
<th>$C_{\eta'K_S}$</th>
<th>$S_{\eta'K_S}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta' \rightarrow \eta(\gamma\gamma)\pi^+\pi^-$</td>
<td>358 ± 20</td>
<td>-0.10 ± 0.13</td>
<td>0.69 ± 0.14</td>
</tr>
<tr>
<td>$\eta' \rightarrow \rho\gamma$</td>
<td>471 ± 29</td>
<td>-0.24 ± 0.10</td>
<td>0.65 ± 0.13</td>
</tr>
<tr>
<td>$\eta' \rightarrow \eta(\pi^+\pi^-\pi^0)\pi^+\pi^-$</td>
<td>55 ± 8</td>
<td>0.11 ± 0.32</td>
<td>0.25 ± 0.50</td>
</tr>
<tr>
<td>Sim. fit</td>
<td>829 ± 35</td>
<td>-0.19 ± 0.08</td>
<td>0.67 ± 0.10</td>
</tr>
</tbody>
</table>

- In agreement with WA and $B^0 \rightarrow J/\psi K_S$ result
Time dependent $B \rightarrow \eta' K_S$

arXiv:2402.03713
Time dependent $B \rightarrow \phi'K_S$

- Two tracks from ϕ, clean signature
- Major challenge: non resonant background with opposite-CP
- Helicity for longitudinal polarization
- Found ~ 160 signal in total, performed time dependent fit in ΔE, M_{BC}, ContSupp and ΔT variables

\[S = 0.54 \pm 0.26 \pm 0.06 \]
\[C = -0.31 \pm 0.20 \pm 0.05 \]

- Results competitive with best measurements
 - HFLAV $C_{CP} = 0.01 \pm 0.14$, $S_{CP} = 0.74^{+0.11}_{-0.13}$

\[\text{arXiv:2307.02802} \]
Time dependent $\mathbf{B} \rightarrow \mathbf{K}_S \mathbf{K}_S \mathbf{K}_S$

- $b\rightarrow s$ decay mediated by penguin loop, potentially sensitive to new physics
 - Very reliable theoretically
- B vertex challenging: no prompt tracks from B, but only reconstructed $\mathbf{K}_S \rightarrow \pi^+ \pi^-$ extrapolated back;
 - For TD analysis (S_{CP}), using only candidates with enough hits on inner silicon vertex detector;
- Signal from 3-dimensional fit: $M_{\mathbf{BC}}$, $M_{\mathbf{KsKsKs}}$, BDT Cont.Supp.
- Signal yield = 158 ± 14 events

$S = -1.37^{+0.35}_{-0.45} \pm 0.03$
$C = -0.07 \pm 0.20 \pm 0.05$
Measurement of ϕ_2/α

- The measurement of ϕ_2 from $B \rightarrow \pi\pi$ (or $B \rightarrow \rho\rho$) final states comes from an isospin analysis:

 The following equalities hold:

 \[\frac{1}{\sqrt{2}} A^{+-} + A^{00} = A^{+0} \]
 \[\frac{1}{\sqrt{2}} \tilde{A}^{+-} + \tilde{A}^{00} = \tilde{A}^{+0} \]
 \[A^{+0} = \tilde{A}^{+0} \]

- Observables (for e.g. $B \rightarrow \pi\pi$):
 - branching fractions of: $B^0 \rightarrow \pi^+\pi^0, \pi^+\pi^-, \pi^0\pi^0$;
 - direct (time-independent) CP asymmetries: C^{+}, C^{00};
 - time-dependent CP asymmetries: S^{+}, S^{00}.

- Belle II will be able to measure all these observables;
- We expect to push the sensitivity to α to $\sim 1^\circ$.

M. Gronau and D. London, PRL 65 (1990), 3381
Measurement of ϕ_2/α

Two amplitudes of comparable size with different weak phase:

\[
\phi_2 = (\bar{A}^+, A^0), \quad \phi^\text{eff}_2 = (\bar{A}^{+-}, A^{++})
\]

Isospin analysis [Gronau-London PRL, 64 3381 (1990)].

Constraints:

- B^0 and B^\pm amplitudes:
 \[
 A^{+0} = A^{+-}/\sqrt{2} + A^{00}
 \]
 \[
 \bar{A}^{+0} = \bar{A}^{+-}/\sqrt{2} + \bar{A}^{00}
 \]
 \[
 |A^{+0}| = |\bar{A}^{+0}|
 \]

Similar for $B \rightarrow \rho\rho$

- Need all branching fractions;
- Direct CP asymmetries: C^{+-}, C^{00};
- TD CP asymmetries: S^{+-}, S^{00};
 - S^{00} reduces folding ambiguities
- Belle II will be able to measure all these observables
 - Final sensitivity $\sim 1^\circ$
Toward ϕ_2/α: $B^0 \rightarrow \pi^0 \pi^0$

New for FCPC 2024

Previous results
[PRD107 (2023) 112009]
Toward ϕ_2/α: $B^0 \rightarrow \pi^0\pi^0$

Table I. Fractional systematic uncertainties on the branching fraction and absolute systematic uncertainties on the CP asymmetry. Total systematic uncertainties, resulting from their sums in quadrature, are also given, and compared with statistical uncertainties.

<table>
<thead>
<tr>
<th>Source</th>
<th>\mathcal{B}</th>
<th>A_{CP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>π^0 efficiency</td>
<td>8.6 %</td>
<td>n/a</td>
</tr>
<tr>
<td>$\Upsilon(4S)$ branching fractions (1 + f^+/f^0)</td>
<td>2.5 %</td>
<td>n/a</td>
</tr>
<tr>
<td>Continuum-suppression efficiency</td>
<td>1.9 %</td>
<td>n/a</td>
</tr>
<tr>
<td>$B\bar{B}$-background model</td>
<td>1.7 %</td>
<td>0.034</td>
</tr>
<tr>
<td>Sample size N_{BB}</td>
<td>1.5 %</td>
<td>n/a</td>
</tr>
<tr>
<td>Signal model</td>
<td>1.2 %</td>
<td>0.021</td>
</tr>
<tr>
<td>Continuum-background model</td>
<td>0.9 %</td>
<td>0.025</td>
</tr>
<tr>
<td>Wrong-tag probability calibration</td>
<td>n/a</td>
<td>0.008</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>9.6 %</td>
<td>0.048</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>15.9 %</td>
<td>0.303</td>
</tr>
</tbody>
</table>

Previous results
[PRD107 (2023) 112009]
$B^+ \rightarrow K^+\pi^0 / \pi^+\pi^0$

- $B^+\rightarrow K^+\pi^0$ enters in “Kπ” puzzle
- Using common selection for both channels
 - Enhance pion and kaon final state
 - Background from continuum $qq\bar{q}$ reduced with MVA
- BR and A^{CP} from 3D fit on M_{bc}, ΔE, BDT
 - Simultaneous fit to both samples
 - $D^+\rightarrow K_s\pi^+$ and $D^0\rightarrow K^-\pi^+$ for detector asymmetries
- Results:

$$B(\pi^+\pi^0) = (6.1 \pm 0.5 \pm 0.5) \times 10^{-6}$$
$$B(K^+\pi^0) = (14.3 \pm 0.7 \pm 0.8) \times 10^{-6}$$
$$A^{CP}(\pi^+\pi^0) = -0.09 \pm 0.09 \pm 0.02$$
$$A^{CP}(K^+\pi^0) = 0.01 \pm 0.05 \pm 0.01$$

WA: $A^{CP}_{K^+\pi^0} = 0.030 \pm 0.013$, $A^{CP}_{\pi^+\pi^0} = 0.03 \pm 0.04$
Toward ϕ_2/α: $B \to \rho \rho$

- Broad resonances of vector mesons, π^0 in final state
 - multiple non-negligible peaking background contributions
- CP analysis requires measurement of longitudinal polarization:
 - angular analysis using helicity angles of ρ’s

$$B^0 \to \rho^+ \rho^-$$

$$B^+ \to \rho^+ \rho^0$$

$B(B^0 \to \rho^+ \rho^-) = [2.67 \pm 0.28\,\text{(stat)} \pm 0.28\,\text{(syst)}] \times 10^{-5}$,

$f_L = 0.956 \pm 0.035\,\text{(stat)} \pm 0.033\,\text{(syst)}$,
Toward ϕ_2/α: $B^+ \rightarrow \rho^+\rho^0$

- Similar to $B^0 \rightarrow \rho^+\rho^-$
- 6D fit: ΔE, BDT, $2*M(\pi\pi)$, 2*helicity angles
 - Template fit w/ correlation
- Results:
 - $N(sig) = 345 \pm 31$

\[
\mathcal{A}^{CP} = -0.069 \pm 0.068 \text{ (stat)} \pm 0.060 \text{ (syst)}
\]
\[
B = (23.2^{+2.2}_{-2.1}) \text{ (stat)} \pm 2.7 \text{ (syst))} \cdot 10^{-6}
\]
\[
f_L = 0.943^{+0.035}_{-0.033} \text{ (stat)} \pm 0.027 \text{ (syst)}
\]

WA: $\mathcal{A}^{CP} = -0.05 \pm 0.05, B = (24.0 \pm 1.9) \cdot 10^{-6}$

arXiv:2206.12362
Toward ϕ_2/α: $B^0 \to \pi^0\pi^0$

- ϕ_2/α from isospin analysis of $B \to \pi\pi/\rho\rho$ modes
 - Belle II will measure all modes
- $B^0 \to \pi^0\pi^0$ most challenging mode, very hard for LHCb
- Fake photons background reduced with multivariate algorithm for $\pi^0 \to \gamma\gamma$ purity
 - Control channel: $B^0 \to D^0(K^+\pi^0)\pi^0$
- Using Flavour Tagger to get direct CP asymmetry
- Results:
 - N Yield: 93 ± 18
 - $B = (1.38 \pm 0.27 \pm 0.22) \times 10^{-6}$
 - $A_{\text{CP}} = 0.14 \pm 0.46 \pm 0.07$
- Competitive with Belle with $1/3$ of dataset
Belle/Belle II combined results on γ/ϕ_3

- Best sensitivity from the BPGGSZ method, exploiting the interference in the $D^0 \to K_S \pi^+ \pi^-$ Dalitz plot:

$$A_{CP\pm} \equiv \frac{B(B^- \to D_{CP\pm} K^-) - B(B^+ \to D_{CP\pm} K^+)}{B(B^- \to D_{CP\pm} K^-) + B(B^+ \to D_{CP\pm} K^+)}$$

$$R_{CP\pm} \equiv \frac{B(B^- \to D_{CP\pm} K^-) + B(B^+ \to D_{CP\pm} K^+)}{B(B^- \to D_{flav} K^-) + B(B^+ \to D_{flav} K^+)}$$

which are related to ϕ_3:

$$R_{CP\pm} = 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \phi_3$$

$$A_{CP\pm} = \pm 2r_B \sin \delta_B \sin \phi_3 / R_{CP\pm}$$
Belle/Belle II combined results on γ/ϕ_3

- Considering $D^0 \to K^+K^-$ as CP+, $D^0 \to K_S\pi^0$ as CP-, and $D^0 \to K^-\pi^+$ as flavor specific final state, we measure (on the Belle + Belle II data set):

$$R_{CP^+} = 1.164 \pm 0.081 \pm 0.036,$$
$$R_{CP^-} = 1.151 \pm 0.074 \pm 0.019,$$
$$A_{CP^+} = (+12.5 \pm 5.8 \pm 1.4)\%,$$
$$A_{CP^-} = (-16.7 \pm 5.7 \pm 0.6)\%.$$

- The A_{CP}’s differ from each other at $\sim 3.5\sigma$;
- This translates into constraints on ϕ_3:

<table>
<thead>
<tr>
<th>ϕ_3 (°)</th>
<th>68.3% CL</th>
<th>95.4% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[8.7, 20.5]$</td>
<td>$[83.8, 96.1]$</td>
<td></td>
</tr>
<tr>
<td>$[163.4, 173.1]$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| τ_B | 0.282, 0.489 | 0.069, 0.560 |

Stefano Lacaprara, INFN Padova, FPCP2024, Bangkok 30/5/2024

arXiv:2308.05048 [hep-ex]
Polarized hyperon pairs in e^+e^- collisions

- Angular distribution of $\frac{d^2\sigma}{d\Omega} \propto 1 + \alpha_\psi \cos^2 \theta$, $\alpha_\psi \in [-1.0, 1.0]$
- Unpolarized e^+e^- beams \Rightarrow transverse polarized hyperon (if $\Delta \Phi \neq 0$):
\[e^+ e^- \rightarrow J/\psi \rightarrow \Xi^+ \Xi^- \rightarrow \Lambda (\rightarrow p \pi^- \pi^-) \Lambda (\rightarrow \bar{n} \pi^0) \pi^+ + cc \]

- CPV in hyperons might arise from interference of S and P-wave
 - 10 billion \(J/\psi \) events: \((144+123)k\) signal events (91% purity)
 - 9 helicity angles, 8 global parameters
- Several decay properties of \(\Xi^- \) and \(\Lambda \) are determined:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>This work</th>
<th>Previous result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_J/J)</td>
<td>0.611 ± 0.007(^{+0.013}_{-0.007})</td>
<td>0.586 ± 0.012 ± 0.010 [18]</td>
</tr>
<tr>
<td>(\Delta \Phi_{J/J}) (rad)</td>
<td>1.30 ± 0.03(^{+0.02}_{-0.03})</td>
<td>1.213 ± 0.046 ± 0.016 [18]</td>
</tr>
<tr>
<td>(\sigma_2)</td>
<td>-0.867 ± 0.015(^{+0.014}_{-0.010})</td>
<td>1.01 ± 0.07 [29]</td>
</tr>
<tr>
<td>(\sigma_3)</td>
<td>0.863 ± 0.014(^{+0.012}_{-0.008})</td>
<td>0.913 ± 0.028 ± 0.012 [17]</td>
</tr>
<tr>
<td>(\alpha_A/J)</td>
<td>0.877 ± 0.015(^{+0.014}_{-0.010})</td>
<td>1.01 ± 0.07 [29]</td>
</tr>
<tr>
<td>(\alpha_B/J)</td>
<td>0.863 ± 0.014(^{+0.012}_{-0.008})</td>
<td>0.913 ± 0.028 ± 0.012 [17]</td>
</tr>
</tbody>
</table>

No CPV at \(<10^{-2}\) precision level
- SM predictions \(~10^{-4}-10^{-5}\)
- \(\Delta I = \frac{3}{2} \) transition in \(\Lambda \) decay
Hyperon at Super Tau-Charm Facility (STCF)

- Many (null) results so far
 - BESIII and Belle
- BESIII: today
 - 10 billion J/ψ
- At super J/ψ factory
 - $10^{12} J/\psi$ per year
- CPV sensitivity in hyperon’s decay
 - $10^{-4} - 10^{-5}$
 - challenging SM predictions