22nd Conference on Flavor Physics and CP Violation

Charm results at Belle and Belle II

Speaker: Junxi Cui (崔峻熙) Southeast University

On behalf of the Belle II Collaboration

Chulalongkorn University, Bangkok, Thailand, May 27, 2024

Outline

➤ Quick introduction to Belle (II)

➢ Belle results: Search for rare decays
✓ $D^0 \rightarrow hh'e^+e^-_{\text{preliminary, intended to PRL}}$ ✓ $D \rightarrow p\ell_{\text{PRD 109, L031101 (2024)}}$ ✓ $\Xi_c^0 \rightarrow \Xi^0 \ell^+ \ell^-_{\text{PRD 109, 052003 (2024)}}$ Selle and Belle II analysis: Charmed Baryon

 $\checkmark \ \Xi^0_{\mathcal{C}}
ightarrow \Xi^0 h^0$ preliminary, intended to JHEP

➤ Summary

Belle @KEKB, recorded *fLdt* = 1 ab⁻¹

Experiments

- ✓ Belle and Belle II operate at asymmetric e^+e^- colliders
 - Collisions at or near $\Upsilon(4S)$, B-factories
 - KEKB (1999-2010), peak $\mathcal{L} = 2 \times 10^{34} cm^{-2} s^{-1}$

Belle II Online luminosity

Integrated luminosity Recorded Weekly

 $\mathcal{L}_{Becorded} dt = 478.93 \, [fb^{-1}]$

Date

17.5

_15.0

12.5

10.0

7.5

5.0

2.5

otal integrated W

• SuperKEKB, peak $\mathcal{L} = 4.7 \times 10^{34} cm^{-2} s^{-1}$

just started Run2 (Feb. 2024)

• Upgrade on collider and detector

- ✓ Combined analyses at Belle & Belle II
 - $\sim 1.4 \ ab^{-1}$ in total
 - Analyze Belle data with Belle II framework
 - For charm analyses, large statistics to improve precision

Charm physics at Belle (II)

 \checkmark Two ways to produce the charm sample at B-factories

- A large cross section for $e^+e^- \rightarrow c\bar{c}$ continuum process
- *B* decays from $\Upsilon(4S) \rightarrow B\overline{B}$
- $\checkmark~$ Full topics for charm physics
 - CP violation
 - $D^0 \overline{D}^0$ mixing
 - Amplitude analysis
 - Lifetime
 - Rare decay
 - Charmed baryon

Search for $D^0 \rightarrow hh'e^+e^-$

✓ Rare charmed meson decay

- Flavor changing neutral current (FCNC) $c \rightarrow u\ell\ell$ process is suppressed in the SM, sensitive to BSM
- LD contributions from vector meson dominance mode
- Search for new physics and LFU (Lepton Flavor Universality) tests

$\frac{c}{\bar{q}} \frac{w_{r}r^{r}}{b} \frac{v_{r}r^{r}}{v} u_{u} = \frac{\bar{q}}{\bar{q}}$ Long Distance (LD) $\frac{c}{w^{3}} \frac{s}{\bar{d}} \frac{\bar{d}}{v} \frac{\bar{q}}{\bar{d}} \frac{v_{r}r^{r}}{\bar{d}} \frac{v_{r}}{\bar{d}} \frac{v_{r}}{\bar$

Short Distance (SD)

PRELIMINARY

Belle 942/fb

Previous measurements on BFs and ULs @90% [$imes 10^{-7}$]

Experiment	$K^-K^+e^+e^-$	$\pi^-\pi^+e^+e^-$	$K^-\pi^+e^+e^-$
Babar (2019)			$40.0 \pm 5.0 \pm 2.3 \ (\rho^0/\omega)$ stat syst
BESIII (2019)	< 110	< 70	< 410
	$K^-K^+\mu^+\mu^-$	$\pi^-\pi^+\mu^+\mu^-$	$K^-\pi^+\mu^+\mu^-$
LHCb (2016-2017)	$1.54 \pm 0.27 \pm 0.19$	$9.64 \pm 0.48 \pm 1.10$	$4.17 \pm 0.12 \pm 0.40 \; (\rho^0/\omega)$

BABAR: PRL 122, 081802 BESIII: PRD 97, 072015 (2019) LHCb: PLB517, 558(2016); PRL 119, 181805 (2017)

$D^0 \rightarrow hh'e^+e^-$ results

✓ Signal observed for $D^0 \to K^- \pi^+ e^+ e^-$ in ρ/ω region (11.8 σ)

- $\mathcal{B} = (39.6 \pm 4.5(\text{stat}) \pm 2.9(\text{syst})) \times 10^{-7}$
- Compatible with BABAR and with SM expectation
- \checkmark No significant signal observed in other channels and regions
 - $hh' = KK, K\pi, \pi\pi; m_{ee}$ region: $\eta, \rho/\omega, \phi$, non-resonant
 - Set upper limits in (2.3-7.7) \times 10⁻⁷ at 90% CL
 - World's best limits to date

-6-

Search for neutral $D \rightarrow p\ell$

- Baryon Number Violation (BNV) is one of the required conditions to explain matter-antimatter asymmetry
 - Some models^[1-5] allow violation of baryon (B) and lepton (L) numbers with the difference $\Delta(B L) = 0$ conserved.
- ✓ Search in meson decays $D \to p\ell$
 - 8 channels in total for $D^0/\overline{D}{}^0$, $\ell = e, \mu$
 - X: non-SM gauge boson

- No significant signal observed
 - Set upper limits $(5-8) \times 10^{-7}$ at 90% CL
 - Most stringent limit to date
 - First measurement for $D \rightarrow p\mu$ modes

[1] PRD 8, 1240 (1973) [2] PRL 32, 438 (1974) [3] PRD 20,776 (1979) [4] PLB 91, 222 (1980) [5] PLB 314, 336 (1993)

Search for $\Xi_c^0 \to \Xi^0 \ell^+ \ell^-$

No neutrino-less semileptonic decays of charmed baryons observed yet.

Belle 980/fb [PRD 109, 052003 (2024)]

PRD 84, 072006(2011)
 PRD 97, 091101(2018)
 PRD 103, 013007 (2021)

- Only upper limits of $\Lambda_c \rightarrow p\ell^+\ell^-$ decays were set for charmed baryons^[1,2], which receive both W-exchange and FCNC process contributions.
- Theoretically face difficulties from the Hamiltonian helicity structure and hadronic form factors
- To understand W-exchange contribution in $\Lambda_c \rightarrow p\ell^+\ell^-$
- If observed, the signal channels would allow to test LFU

• Theoretical prediction gives upper limits at 2.35 (2.25) $\times 10^{-6}$ for electron (muon) mode^[3]

Study of $\Xi_c^0 \to \Xi^0 h^0$, $h^0 = \pi^0$, η, η'

- ✓ Hadronic two-body decay of charmed baryons
 - Nonfactorizable amplitudes from internal W-emission and W-exchange diagram lead to the difficulties for theoretical predictions
 - Feynman diagrams_[CJPH 78, 324 (2022)] for Cabibbo-favored signal modes $\Xi_c^0 \rightarrow \Xi^0 h^0$, only nonfactorizable amplitudes contribute to.

- Serval theoretical approaches developed to deal with nonfactorizable contributions, give various predictions on branching fractions ((0.5-26.7)× 10^{-3}) and decay asymmetry parameters_[see backup].
- Need experiment measurement to clarify the theoretical picture.

PRELIMINARY

Belle + Belle II 1.4/ab

 $\rightarrow \Xi^0 h^0$ results

✓ First measurements of the branching fractions

 $\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0) = (6.9 \pm 0.3 (\text{stat.}) \pm 0.5 (\text{syst.}) \pm 1.5 (\text{norm.})) \times 10^{-3}$

 $\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta) = (1.6 \pm 0.2(\text{stat.}) \pm 0.2(\text{syst.}) \pm 0.4(\text{norm.})) \times 10^{-3}$

 $\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta') = (1.2 \pm 0.3 (\text{stat.}) \pm 0.1 (\text{syst.}) \pm 0.3 (\text{norm.})) \times 10^{-3}$

- taking $\Xi_c^0 \to \Xi^- \pi^+$ as reference mode
- favoring predictions in SU(3) flavor symmetry_[JHEP 02, 235 (2023)]
- ✓ First asymmetry parameter $\alpha(\Xi_c^0 \to \Xi^0 \pi^0)$ measurement $\alpha(\Xi_c^0 \to \Xi^0 \pi^0) = -0.90 \pm 0.15$ (stat.) ± 0.23(syst.)
- through a simultaneous fit depending on differential decay rate

$$\frac{dN}{d\cos\theta_{\Xi^0}} \propto 1 + \alpha(\Xi_c^0 \to \Xi^0 h^0) \alpha(\Xi^0 \to \Lambda \pi^0) \cos\theta_{\Xi^0}$$

• consistent with predictions^[1-4]

[1]PRD 48, 4188 (1993) [2] PRD 101, 014011 (2020) [3] EPJC 7, 217 (1999) [4]PLB 794, 19 (2019)

PRELIMINARY at Belle + Belle II 1.4/ab

Summary

- > Belle and Belle II provide a unique environment for charm physics both in meson and baryon decays
 - sensitive in SM measurements and search for BSM physics
- > Belle is still producing important measurements for more than 10 years after the end of data taking
 - Search for rare decays: tightest to date/first measurement
 - FCNC $D^0 \rightarrow hh'e^+e^-$
 - BNV $D \to p\ell$
 - Semi-leptonic $\Xi_c^0 \to \Xi^0 \ell^+ \ell^-$
- > Belle + Belle II combined data sample provides the platform for further charm measurements
 - \mathcal{B} and α measurements for $\Xi_c^0 \to \Xi^0 h^0$
- > Belle II has started Run 2 data taking, expecting more physics results with a larger data sample

Thank you for your attention!

ULs (× 10^{-7}) for $D^0 \rightarrow hh'ee$

					BELLE		BESII	BABAR
m_{ee} region	$[MeV/c^2]$	Yield	Significance	B	UL @ 90% CL	Efficiency (%)	(UL @ 9	90% CL)
$K^+K^+e^+e^-$ $\eta^- ho^0/\omega^-$ non-resonant	520-560 > 675 > 200	-2.6 ± 1.8 3.5 ± 3.3	$< 0.1\sigma$ 2.0σ 1.5σ	- $1.2 \pm 0.9 \pm 0.1$ $3.1 \pm 3.0 \pm 0.4$	< 2.3 < 3.0 < 7.7	$\begin{array}{c} 3.53 \pm 0.04 \\ 6.00 \pm 0.06 \\ 3.19 \pm 0.04 \end{array}$	< 110	_
$\pi^-\pi^+e^+e^-$ η $ ho^0/\omega$ ϕ non-resonant	520-560 675-875 995-1035 > 200	$\begin{array}{c} 0.6 \pm 2.3 \\ 3.7 \pm 4.1 \\ 3.6 \pm 3.2 \\ -0.2 \pm 4.1 \end{array}$	$0.3\sigma \ 0.9\sigma \ 1.1\sigma \ < 0.1\sigma$	$egin{array}{c} 0.4 \pm 1.4 \pm 0.2 \ 2.0 \pm 2.2 \pm 0.8 \ 1.1 \pm 1.1 \pm 0.2 \ -0.2 \pm 3.4 \pm 0.9 \end{array}$	< 3.2 < 6.1 < 3.1 < 7.2	$5.31 \pm 0.05 \\ 5.69 \pm 0.05 \\ 9.41 \pm 0.06 \\ 3.69 \pm 0.04$	< 70	_
$K^-\pi^+e^+e^-$ η $ ho^0/\omega$ ϕ non-resonant	520-560 675-875 990-1034 > 560	$egin{array}{r} 4.0 \pm 2.7 \ 110 \pm 13 \ 4.6 \pm 2.4 \ 2.2 \pm 4.2 \end{array}$	$1.6\sigma \\ 11.8\sigma \\ 2.5\sigma \\ 0.4\sigma$	$\begin{array}{c} 2.2 \pm 1.5 \pm 0.5 \\ 39.6 \pm 4.5 \pm 2.9 \\ 1.4 \pm 0.8 \pm 0.3 \\ 1.3 \pm 2.4 \pm 0.6 \end{array}$	< 5.6 - < 2.9 < 6.5	5.09 ± 0.04 8.01 ± 0.06 9.19 ± 0.06 4.89 ± 0.09	< 410	< 31*

^a Excluding resonance regions, which is same for all three modes.

BESIII PRD97(2019)072015 BABAR PRL122(2019)081802

ULs for $D \rightarrow p\ell$

TABLE I. Reconstruction efficiency (ϵ), signal yield (N_s), signal significance (S), upper limit on the signal yield ($N_{p\ell}^{UL}$), and branching fraction (\mathcal{B}) at 90% confidence level for each decay mode.

Decay mode	ϵ (%)	N_S	$\mathcal{S}\left(\sigma ight)$	N_{pl}^{UL}	$\mathcal{B} \times 10^{-7}$
$D^0 \rightarrow pe^-$	10.2	-6.4 ± 8.5		17.5	< 5.5
$\bar{D}^0 \rightarrow p e^-$	10.2	-18.4 ± 23.0		22.0	< 6.9
$D^0 \rightarrow \bar{p} e^+$	09.7	-4.7 ± 23.0		22.0	< 7.2
$\bar{D}^0 \rightarrow \bar{\bar{p}} e^+$	09.6	7.1 ± 9.0	0.6	23.0	< 7.6
$D^0 \rightarrow p\mu^-$	10.7	11.0 ± 23.0	0.9	17.1	< 5.1
$\bar{D}^0 \rightarrow p\mu^-$	10.7	-10.8 ± 27.0		21.8	< 6.5
$D^0 \rightarrow \bar{p}\mu^+$	10.5	-4.5 ± 14.0		21.1	< 6.3
$\bar{D}^0 \to \bar{p}\mu^+$	10.4	16.7 ± 8.8	1.6	21.4	< 6.5

Theoretical Predictions for $\Xi_c^0 \rightarrow \Xi^0 h^0$

Reference	Model	$\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0)$	$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta)$	$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta')$	$\alpha(\Xi_c^0 \to \Xi^0 \pi^0)$
Körner, Krämer [5]	quark	0.5	3.2	11.6	0.92
Ivanov et al. [6]	quark	0.5	3.7	4.1	0.94
Xu, Kamal [7]	pole	7.7	-	-	0.92
Cheng, Tseng [8]	pole	3.8	-	-	-0.78
Żenczykowski [9]	pole	6.9	1.0	9.0	0.21
Zou et al. [10]	pole	18.2	26.7	-	-0.77
Sharma, Verma [11]	CA	-	-	-	-0.8
Cheng, Tseng [8]	CA	17.1	-	-	0.54
Geng <i>et al.</i> [12]	$SU(3)_F$	4.3 ± 0.9	$1.7^{+1.0}_{-1.7}$	$8.6^{+11.0}_{-6.3}$	-
Geng et al. [13]	$SU(3)_F$	7.6 ± 1.0	10.3 ± 2.0	9.1 ± 4.1	$-1.00\substack{+0.07\\-0.00}$
Zhao et al. [14]	$SU(3)_F$	4.7 ± 0.9	8.3 ± 2.3	7.2 ± 1.9	-
Huang et al. [15]	$SU(3)_F$	$2.56 {\pm} 0.93$	-	-	-0.23 ± 0.60
Hsiao <i>et al.</i> [16]	$SU(3)_F$	$6.0{\pm}1.2$	$4.2^{+1.6}_{-1.3}$	-	-
Hsiao et al. [16]	SU(3) _F -breaking	$3.6{\pm}1.2$	7.3 ± 3.2	-	-
Zhong et al. [17]	$SU(3)_F$	$1.13^{+0.59}_{-0.49}$	$1.56{\pm}1.92$	$0.683^{+3.272}_{-3.268}$	$0.50^{+0.37}_{-0.35}$
Zhong et al. [17]	SU(3) _F -breaking	$7.74^{+2.52}_{-2.32}$	$2.43^{+2.79}_{-2.90}$	$1.63^{+5.09}_{-5.14}$	$-0.29^{+0.20}_{-0.17}$
Xing et al. [18]	$SU(3)_{F}$	$1.30 {\pm} 0.51$	-	-	-0.28 ± 0.18

Table 1. Theoretical predictions for the branching fractions and decay asymmetry parameters for $\Xi_c^0 \to \Xi^0 h^0$ decays. Branching fractions are given in units of 10^{-3} .

Ref. [17] with breaking scenario suits best for B measurements

- [5] J. G. Körner and M. Krämer, *Exclusive non-leptonic charm baryon decays*, Z. Phys. C 55 (1992) 659.
- [6] M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij, and A. G. Rusetsky, Exclusive nonleptonic decays of bottom and charm baryons in a relativistic three-quark model: Evaluation of nonfactorizing diagrams, Phys. Rev. D 57 (1998) 5632.
- Q. P. Xu and A. N. Kamal, Cabibbo-favored nonleptonic decays of charmed baryons, Phys. Rev. D 46 (1992) 270.
- [8] H. Y. Cheng and B. Tseng, Cabibbo-allowed nonleptonic weak decays of charmed baryons, Phys. Rev. D 48 (1993) 4188.
- [9] P. Żenczykowski, Nonleptonic charmed-baryon decays: Symmetry properties of parity-violating amplitudes, Phys. Rev. D 50 (1994) 5787.
- [10] J. Q. Zou, F. R. Xu, G. B. Meng, and H. Y. Cheng, Two-body hadronic weak decays of antitriplet charmed baryons, Phys. Rev. D 101 (2020) 014011.
- [11] K. K. Sharma and R. C. Verma, A study of weak mesonic decays of Λ_c and Ξ_C baryons on the basis of HQET results, Eur. Phys. J. C 7 (1999) 217.
- [12] C. Q. Geng, Y. K. Hsiao, C. W. Liu, and T. H. Tsai, Antitriplet charmed baryon decays with SU(3) flavor symmetry, Phys. Rev. D 97 (2018) 073006.
- [13] C. Q. Geng, C. W. Liu, and T. H. Tsai, Asymmetries of anti-triplet charmed baryon decays, Phys. Lett. B 794 (2019) 19.
- [14] H. J. Zhao, Y. L. Wang, Y. K. Hsiao, and Y. Yu, A Diagrammatic Analysis of Two-Body Charmed Baryon Decays with Flavor Symmetry, JHEP 02 (2020) 165.
- [15] F. Huang, Z. P. Xing, and X. Z. He, A global analysis of charmless two body hadronic decays for anti-triplet charmed baryons, JHEP 03 (2022) 143.
- [16] Y. K. Hsiao, Y. L. Wang, and H. J. Zhao, Equivalent SU(3)_f approaches for two-body anti-triplet charmed baryon decays, JHEP 09 (2022) 35.
- [17] H. Zhong, F. Xu, Q. Wen and Y. Gu, Weak decays of antitriplet charmed baryons from the perspective of flavor symmetry, JHEP 02 (2023) 235.
- [18] Z. P. Xing, et al., Global analysis of measured and unmeasured hadronic two-body weak decays of antitriplet charmed baryons, Phys. Rev. D 108 (2023) 053004.

Systematic uncertainties for $\mathcal{B}(\Xi_c^0 \to \Xi^0 h^0)$

Table 5. Relative systematic uncertainties (%) for branching fraction ratio measurements. The uncertainties in last two rows are correlated systematic uncertainties from intermediate branching fractions and background shape, and others are uncorrelated ones.

Source	$\frac{\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$		$\frac{\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$		$\frac{\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta')}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$	
bource	Belle	Belle II	Belle	Belle II	Belle	Belle II
Tracking	0.7	0.8	0.7	0.7	1.0	1.5
π^{\pm} PID	0.4	0.2	0.4	0.2	1.4	0.2
π^0 reconstruction	4.4	8.8	2.3	4.3	2.3	4.2
Photon reconstruction	-	-	4.0	2.0	4.0	1.9
MC statistics	0.8	0.7	0.9	0.9	1.2	1.0
α uncertainty	1.1	1.2	3.0	3.4	1.0	3.5
Ξ^0 signal mass window	0.5	2.0	0.5	2.0	0.5	2.0
Normalization mode statistics	1.0	1.3	1.0	1.3	1.0	1.3
Broken-signal ratio $(n_{\rm broken}/n_{\rm sig})$	2.1	1.5	3.5	3.6	3.6	5.7
Broken-signal PDF	0.2	0.1	7.3	7.5	2.0	1.1
Mass Resolution	-	-	7.2	7.0	2.4	1.4
Intermediate states \mathcal{B}	-	-	0.5	0.5	1.3	1.3
Background shape	4.9	4.9	9.2	9.2	6.8	6.8
Total	7.2	10.6	15.3	15.6	9.9	11.2

Values for $\mathcal{B}(\Xi_c^0 \to \Xi^0 h^0)$

Mode	$N_{ m Belle}^{ m obs}$	$\varepsilon_{\text{Belle}}$ (%)	$N_{ m Belle~II}^{ m obs}$	$\varepsilon_{\text{Belle II}}$ (%)
$\Xi_c^0 \rightarrow \Xi^- \pi^+$	36340 ± 348	13.92 ± 0.05	13719 ± 184	$13.38 {\pm} 0.03$
$\Xi_c^0 \rightarrow \Xi^0 \pi^0$	1315 ± 66	1.09 ± 0.01	869 ± 46	1.71 ± 0.01
$\Xi_c^0 \to \Xi^0 \eta$	81 ± 15	0.80 ± 0.01	60 ± 11	1.12 ± 0.01
$\Xi_c^0 \to \Xi^0 \eta'$	23 ± 6	$0.46 {\pm} 0.01$	8±4	0.81±0.01

Results	Belle	Belle II	Combined
$\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0) / \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	$0.47 \pm 0.02 \pm 0.03$	$0.51 \pm 0.03 \pm 0.05$	$0.48 \pm 0.02 \pm 0.03$
$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta) / \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	$0.10 \pm 0.02 \pm 0.01$	$0.14 \pm 0.02 \pm 0.02$	$0.11 \pm 0.01 \pm 0.01$
$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta') / \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	$0.12 \pm 0.03 \pm 0.01$	$0.06 \pm 0.03 \pm 0.01$	$0.08 \pm 0.02 \pm 0.01$

are taken from ref. [39]. We combine the Belle and Belle II branching fraction ratios and uncertainties using formulas in ref. [44]:

$$r = \frac{r_1 \sigma_2^2 + r_2 \sigma_1^2}{\sigma_1^2 + \sigma_2^2 + (r_1 - r_2)^2 \epsilon_r^2},$$

$$\sigma = \sqrt{\frac{\sigma_1^2 \sigma_2^2 + (r_1^2 \sigma_2^2 + r_2^2 \sigma_1^2) \epsilon_r^2}{\sigma_1^2 + \sigma_2^2 + (r_1 - r_2)^2 \epsilon_r^2}},$$
(5.3)

where r_i , σ_i and ϵ_r are the branching fraction ratio, uncorrelated uncertainty, and relative correlated systematic uncertainty from each data sample, respectively. The branching

[44] G. D'Agostini, On the use of the covariance matrix to fit correlated data, Nucl. Instrum. Methods Phys. Res., Sect. A 346 (1994) 306.