Operational experience and performance of the Belle II Silicon Vertex Detector after the first SuperKEKB Long Shutdown

At 16th Pisa Meeting on Advanced Detectors, La Biodola, Isola d’Elba, Italy, May 26-31, 2024

Fumiaki Otani* on behalf of the Belle II SVD collaboration

SuperKEKB
- 7 GeV e+ e- collider, \sqrt{s} = 10.58 GeV for γ + (LS)
- Target integrated luminosity 50 ab\(^{-1}\)
- Target instantaneous luminosity 6 \times 10^{35} \text{cm}^{-2}\text{s}^{-1}

Belle II Silicon Vertex Detector (SVD)
- 4 layers of the Double-Sided Silicon Detector, strip pitch (um): 50/75 (P side, 160/240 (N side, x = y)
- Constitute VXD with 2 layers of DEPFET pixel detector (PXD); inner PXD 2 layer + outer 4 SVD layer
- Standalone ASIC: APV25, shaping time 50 ns
- Cooling: two-phase CO\(_2\) flow
- Provides precise hit information to reconstitute track, reconstruct vertex, particle identification with \(dE/dx\)

Belle II Detector

Timeline and operations
- 2022 June
 - Run 1
 - Recorded integrated luminosity: \(\mathcal{L} = 424\) fb\(^{-1}\)
 - Recorded instantaneous luminosity: \(\mathcal{L} = 4.3 \times 10^{35}\) cm\(^{-2}\) s\(^{-1}\)
 - Smooth and stable operation without major issue
 - Excellent physics performance
 - Good SNR (13-30)
 - Large hit efficiency (\(\geq 99\%\))
 - Masked strips < 1%

- 2024 January
 - Long Shutdown
 - VXD reinstallation for installing new PXD modules with the same SVD
 - SVD was split into its two halves to allow for the new PXD installation
 - Intensive hardware activities > 5 months
 - Several SVD tests were performed at each step to check the SVD condition and spot problems
 - Optimized the cooling condition (lowered cooling temperature) with higher PXD power consumption
 - Using cosmic-ray to check the VXD alignment and performance after VXD installation -- good agreement with expectation

- Run 2
 - Using cosmic-ray data taking campaign to check the detector readiness before starting SuperKEKB beam operation
 - Smooth and stable operation
 - Physics performance is as good as pre-LS1
 - SuperKEKB is trying to increase its beam current and optimize beam condition to achieve higher instantaneous luminosity
 - Higher background dose is anticipated, we are conducting SVD sanity checks on a weekly basis while monitoring the situation

Quantitative results
- Current hit occupancy is below 1%, but it is expected to rise as the background increases with higher beam luminosity in the future
- Higher occupancy will degrade tracking performance such as an increase of fake tracks.
- We will implement hit-time selection and cluster grouping methods, which are based on hit time to reject background and enhance occupancy acceptance
 - Hit time measured with reference to the collision event time (To) provided by the central drift chamber (CDC) now
 - SVD also has the same feature but offers a 2000 times faster computing speed to provide To. It speeds up the High Level Trigger (HLT) reconstruction and helps it cope with HLT reconstruction in the high luminosity condition.

VXD performance after LS1
- Noise increased 10 ~ 30% during Run 1 due to radiation damage on the sensor
 - Measured radiation dose of Run 1 in Layer 3 is \(< 70\) krad
 - Reduction in noise by up to 10% during LS1 due to lower operating temperature and annealing effect on the sensor
 - Noise has resumed its escalation from the beginning of Run 2
- No degradation in the cluster charge collection level and cluster SNR from Run 1, both are at the expected level. Hit efficiency also keeps high \(> 99\%\)
- Masked additional few noisy strips that appeared after a large beam abort, but still total masked strips < 1%
- No change found in the full depletion voltage due to radiation damage so far

No discrepancy with pre-LS1

Hit-time selection
- With excellent hit time resolution (< 3 ns) remove off-time tracks
 - \(t_{hit} < 50\) ns
 - \(t_{hit} - t_{beam} < 20\) ns
 - removed 50% off-time track with keeping signal efficiency > 99%
- Classified hit time on trigger event by event basis.
 - Select a group close to 0 and prominent as a signal group to form tracks
 - reduce more 16% fake track rate from Hit time selection method

Future background rejection
- High background data
 - With the High Level Trigger (HLT) reconstruction and helps it cope with HLT reconstruction in the high luminosity condition.

Cluster grouping
- Hit-time selection + Cluster grouping
- Estimated depletion voltage change with large dose s.t. \(> 0.4\) Mrad
 - Type inversion occurs at 2 Mrad, equivalent neutron fluence fluence \(6 \times 10^{19} n_{eq}/\text{cm}^2\)
 - Irradiated sensors confirmed to work with collecting charge well after type inversion
 - Linear correlation between dose and leakage current as NIEL hypothesis
 - The correlation is also confirmed in the operating sensors and the slope of dose vs leakage current is consistent

Sensor irradiation campaign: 90 MeV e+ beam at ELPH, Tohoku Univ. July 2022 up to 10 M rad
 - Observed the full depletion voltage change with large dose s.t. \(> 0.4\) M rad
 - Type inversion occurs at 2 M rad, equivalent neutron fluence fluence \(6 \times 10^{19} n_{eq}/\text{cm}^2\)
 - Irradiated sensors confirmed to work with collecting charge well after type inversion
 - Linear correlation between dose and leakage current as NIEL hypothesis
 - The correlation is also confirmed in the operating sensors and the slope of dose vs leakage current is consistent

Hit-time selection
- Hit-time selection can reject the red background region and the cluster grouping can reject the blue background region in the right figure above. These improvements lead to an increase in occupancy acceptance to about 6% for Layer 3.