

On Backgrounds in $B^- \rightarrow K^- \nu \overline{\nu}$ and their Treatment at Belle II

Caspar Schmitt (for Belle II)

& Danny van Dyk (reporting on work w/ Nora Locht & Susanne Westhoff)

LMU Munich, Max Planck Institute for Physics Institute for Particle Physics Phenomenology, Durham

Beyond the Flavour Anomalies V

How to Reconstruct $B \to K \nu \overline{\nu}$ at Belle II

Well-known kinematics and $\Omega\approx 4\pi$ coverage at Belle II allow two types of reconstruction:

 $e^{-} \rightarrow \Upsilon(4S) \leftarrow e^{+}$ B_{sig} B_{tag} Khadronic decay

Exclusive reconstruction using $B_{\rm tag}$ reconstruction. Low efficiency, high purity. Inclusive reconstruction using event kinematics & topology. **High efficiency, low purity.**

Evidence for $B^- \rightarrow K^- \nu \overline{\nu}$ by Belle II (arXiv:2311.14647)

- Main challenge is large background contamination, which requires strong suppression.
- ► Inclusive and exclusive reconstruction operate largely on orthogonal data sets.
- Combined result is compatible with SM at 2.7 σ .

This talk focuses on inclusive method, (also validated in $B^+ \to \pi^+ K^0$).

Background Classes

Backgrounds that could be suppressed further at the cost of signal efficiency:

Reducible Backgrounds

B decays with kaons from D decays

- ► 52% semilept. with missing energy
- 47% hadronic
- 1% leptonic

fake K from particle mis-identification B decays with baryon-antibaryon pairs $B^-\to K^- K^0 \overline{K^0}$

Backgrounds that can hardly be suppressed further:

Interfering Backgrounds

 $B^- \to \tau^- (\to K^- \nu) \overline{\nu}$

[Kamenik, Smith 0908.1174]

- added incoherently to B⁻ backgrounds
- distribution included in HistFactory likelihood
- assumes SM dynamics

Reducible Backgrounds

Charged B background in inclusive reconstruction.

Neutral B background in inclusive reconstruction.

Candidate B	Fraction (%)
$B \rightarrow D(KX) l \nu_l X$	17.2
$B \rightarrow D^*[\pi D(KX)]/\nu_l$	16.1
$B ightarrow D^{(*)}(X) K X$	11.7
$B \rightarrow D(KX)X$	2.9

candidate K, assigned to $B_{\rm tag}$

D suppression:

mass and vertex of K and 1-2 charged particles is input to BDT.

Leading types of *B* background decays

Candidate B	Fraction (%)
$B \rightarrow D(KX) l \nu_l X$	17.2
$B ightarrow D^*[\pi D(KX)]/ u_l$	16.1
$B ightarrow D^{(*)}(X) K X$	11.7
B ightarrow D(KX)X	2.9

candidate K, assigned to $B_{\rm tag}$

D suppression:

mass and vertex of K and 1-2 charged particles is input to BDT.

Backgrounds with $D \rightarrow K_L^0 X$

- Fraction of charm meson decays to K_L^0 is less known and needs cross-check.
- Extract correction weights in pion sidebands.
- Correction weights validated in lepton sidebands.

Validation of $B \to KD(K_L^0 X)$ weights in electron (left) and muon (right) sideband.

Fake K from particle mis-identification

- Particle identification simulation is imperfect.
- Correction weights extracted from pure π , K samples in $D^{*+} \rightarrow \pi^+ D^0(K^-\pi^+)$.
- ► Correction weights cross-checked in $B^- \to D^0(K^+\pi^-)h^-$ with $h \in [\pi, K]$. Lepton mis-identification negligible.

Treatment of $B^- \rightarrow K^- n\overline{n}$ background

- Weak detector interaction of n, \overline{n} mimics signal.
- \blacktriangleright Not yet measured but assume threshold enhancement effect from B \rightarrow Kpp.
- **Presuming isospin symmetry**, simulation is reweighted to $B^0 \rightarrow K^0 \rho \overline{\rho}$.
- ► Reweighting affects extracted signal strength by $\Delta \mu = -0.2$ and increases efficiency to half the signal effiency.
- Systematic uncertainty derived from full exclusion of $B^- \rightarrow K^- n\overline{n}$.

Threshold enhancement effect in $B^- \rightarrow K^- p \overline{p}$ at BaBar^a versus 3-body phase-space simulation.

^ahep-ex 0507012

$B^- \rightarrow K^- K^0 \overline{K^0}$ backgrounds

- $B^- \rightarrow K^- K_S^0 K_S^0$ are reweighted according to 1201.5897.
- Assuming isospin symmetry, same weights are applied to $B^- \rightarrow K^- K^0_L K^0_L$.
- Using $B^- \to K^- K^0_S K^0_S$ as signal mode with a fit in ΔE , obtain *sweights* to extract $m_{K^0_S K^0_S}$ for signal in data.
- Good agreement with signal simulation after reweighting.

K_L^0 reconstruction efficiency

Backgrounds with K_L^0 mimic signal due to weak detector response and uncertainties in simulation.

- Cross-check K_L^0 reconstruction efficiency in $e^+e^- \rightarrow \gamma \phi(K_L^0 K_S^0)$.
- K_L^0 momentum can be inferred from \sqrt{s} and remaining final state particles:

$$P_{\mathcal{K}^0_{\mathcal{L}}} = P_{\Theta^+\Theta^-} - P_{\gamma} - P_{\mathcal{K}^0_{\mathcal{S}}}$$

• Geometrically associate calorimeter clusters with K_l^0 momentum and find

$$\epsilon(K_L^0) = \frac{\#K_L^0 \text{ with cluster}}{\#K_L^0 \text{ total}} \quad \Rightarrow \quad \Delta \epsilon = \frac{\epsilon_{\text{simulation}}(K_L^0)}{\epsilon_{\text{data}}(K_L^0)} \approx 1.17.$$

• Simulation of K_L^0 adjusted by $\Delta \epsilon$ with 50% uncertainty as syst. uncertainty.

Interfering Backgrounds

Theory Predictions for $B^- \to \tau^- (\to K^- \nu) \overline{\nu}$ in the SM

► $B^- \rightarrow \tau^- (\rightarrow K^- \nu) \overline{\nu}$ pollutes signal through intermediate on-shell τ contributions [Kamenik,Smith 0908.1174]

- SM shape and normalization of background known
- kinematic distribution distinct from signal
 - signal: phasespace suppr. competes with form factor
 - background: linear q^2
- can BSM physics modify shape or norm?
- aim: prepare for reinterpretation of both signal and irreducible background(s)
 - Nora's ongoing master project at RU Nijmegen

preliminary results

► assuming only left-handed neutrinos contribute, the shape of the long-distance background is fixed to SM-like shape, regardless of WET-like BSM contributions to $B^- \rightarrow \tau^- \overline{\nu}$ or $\tau^- \rightarrow K^- \nu$ interactions

13/14

- only interference of operators with different ν chiralities allows for a helicity flip of the τ , leads to a different shape of the background in a BSM scenario
- ► implementing combined WET-aware MC of signal and this background in EOS

outlook

• continue with study of background for $B^- \to K^{*-} \nu \overline{\nu}$

- First evidence for $B^- \rightarrow K^- \nu \overline{\nu}$ at Belle II, consistent with SM at 2.7 σ .
- Novel inclusive reconstruction method, cross-checked with traditional hadronic B tagging.
- ► Backgrounds contributions validated in data-driven tests.
- ► Interfering background stable in shape under BSM interpretation
- Main phenomenological bottlenecks:
 - Assumption on $B \to KK_SK_S \iff B \to KK_LK_L$ isospin symmetry.
 - Size of isospin asymmetry in $B \to K p \overline{p} \iff B \to K n \overline{n}$.
 - Assumption on same threshold enhancement effect in $B \to K p \overline{p} \iff B \to K n \overline{n}$.
 - ▶ Background $B \rightarrow K_S K_L K_L$ experimentally challenging. Ideas for constraint?
- Work ongoing in $B \to h\nu\overline{\nu}$ with $h \in [K^{*0}, K^{*+}, K_S^0]$.

Backup

Systematic Uncertainties

Source	Correction	$\substack{ \text{Uncertainty} \\ \text{type} }$	Uncertainty size	Impact on σ_{μ}
Normalization of $B\bar{B}$ background		Global, 2 NP	50%	0.88
Normalization of continuum background		Global, 5 NP	50%	0.10
Leading B -decays branching fractions		Shape, 5 NP	O(1%)	0.22
Branching fraction for $B^+ \to K^+ K^0_{\rm L} K^0_{\rm L}$	q^2 dependent $O(100\%)$	Shape, 1 NP	20%	0.48
p-wave component for $B^+ \to K^+ K^0_{\scriptscriptstyle \rm S} K^0_{\scriptscriptstyle \rm L}$	q^2 dependent $O(100\%)$	Shape, 1 NP	30%	0.02
Branching fraction for $B \to D^{(**)}$		Shape, 1 NP	50%	0.42
Branching fraction for $B^+ \to n\bar{n}K^+$	q^2 dependent $O(100\%)$	Shape, 1 NP	100%	0.20
Branching fraction for $D \to K_L X$	+30%	Shape, 1 NP	10%	0.14
Continuum background modeling, BDT_c	Multivariate $O(10\%)$	Shape, 1 NP	100% of correction	0.01
Integrated luminosity		Global, 1 NP	1%	< 0.01
Number of $B\bar{B}$		Global, 1 NP	1.5%	0.02
Off-resonance sample normalization		Global, 1 NP	5%	< 0.01
Track finding efficiency		Shape, 1 NP	0.3%	0.20
Signal kaon PID	p, θ dependent $O(10 - 100\%)$	Shape, 7 NP	O(1%)	0.07
Photon energy scale		Shape, 1 NP	0.5%	0.07
Hadronic energy scale	-10%	Shape, 1 NP	10%	0.36
$K_{\rm L}^0$ efficiency in ECL	-17%	Shape, 1 NP	8%	0.21
Signal SM form factors	q^2 dependent $O(1\%)$	Shape, 3 NP	O(1%)	0.02
Global signal efficiency		Global, 1 NP	3%	0.03
Simulated sample size	—	Shape, 156 NP	O(1%)	0.52

Leading B^- and B^0 background decays

Signal B	Fraction $(\%)$	Signal B	Fraction $(\%)$
$B^{\pm} \to D^0 \mu^{\pm} \nu_{\mu}$	12.0	$B^0 \to D^*(2010)^{\pm} \mu^{\pm} \nu_{\mu}$	7.1
$B^{\pm} \to D^* (2007)^0 \mu^{\pm} \nu_{\mu}$	9.1	$B^0 \to D^{\pm} K^{\pm} K^0$	6.5
$B^{\pm} \to D^0 e^{\pm} \nu_e$	8.7	$B^0 \to D^{\pm} K^{\pm}$	6.1
$B^{\pm} \to D^* (2007)^0 e^{\pm} \nu_e$	6.7	$B^0 \to D^*(2010)^{\pm} e^{\pm} \nu_e$	5.1
$B^{\pm} \to D^0 e^{\pm} \nu_e \gamma$	4.1	$B^0 \to D^{\pm} \mu^{\pm} \nu_{\mu}$	4.6
$B^{\pm} \to K^{\pm} K^0_L K^0_L$	3.5	$B^0 \to D^{\pm} \pi^{\pm}$	3.4
$B^{\pm} \to D^* (2007)^0 e^{\pm} \nu_e \gamma$	3.3	$B^0 \to D^{\pm} e^{\pm} \nu_e$	3.3
$B^{\pm} \to D^0 K^{\pm}$	3.1	$B^0 \to D^*(2010)^{\pm} K^{\pm} K^0$	2.7
$B^{\pm} \to D^* (2007)^0 K^{\pm}$	2.6	$B^0 \to D^*(2010)^{\pm} e^{\pm} \nu_e \gamma$	2.4
$B^{\pm} \to D^0 \pi^{\pm}$	2.3	$B^0 \to D^*(2010)^{\pm} K^{\pm}$	2.4

Decays with exotic D** mesons amount to 3% and 5% respectively.

Vertices and masses of signal K and 1 or 2 charged particles enter BDT to identify D decays.

Signal K and One Charged Particle Invariant Mass

B meson backgrounds with baryon-antibaryon pairs

Decay	Reference	${\mathcal B}$	Other Assumption	\mathcal{B} estimate for $B^+ \to K^+ \nu \bar{\nu}$
$B^+ \to n\bar{n}K^+$	BaBar 21	2.9×10^{-6}	iso	$2.9 imes 10^{-6}$
$B^+ \to n\bar{n}\pi^+$	Belle 22	1.8×10^{-6}	iso, $\pi \to K$ misID	$1.8 imes10^{-8}$
$B^0 o n \bar{n} K^{*0}$?		iso and missing π^0	$2.9 imes10^{-7}$
$B^+ \to n \bar{n} K^{*+}$	Belle 22	2.9×10^{-6}	iso, missing π^0	$2.9 imes10^{-7}$
$B^+ o p \bar{n} K_L^0$?	2.9×10^{-6}	$p \to K^+$ misID	$2.9 imes10^{-8}$
$B^0 \to n\Lambda K^+ K^-$	Belle 23	4×10^{-6}	iso, missing π^0 and K^-	$4 imes 10^{-8}$
$B^0 \to \bar{n}\bar{\Lambda}K^+K^-$	Belle 23	4×10^{-6}	iso and missing π^0 and K^-	$1 imes 10^{-8}$
$B^+ \to \bar{n}\bar{A}K^+K^0_L$?	4×10^{-6}	iso, missing π^0 and missing \bar{n}	$4 imes 10^{-8}$
$B^+ \to \Lambda\Lambda(1520)K^+$	Belle 23	2×10^{-6}	iso, missing π^0 and K_L^0/N	$2 imes 10^{-8}$
$B^+ \to \Lambda \Lambda K^+$	Belle 24	3×10^{-6}	iso , 2 missing $\pi^0 { m s}$	$3 imes 10^{-8}$
$B^+ ightarrow n \bar{n} l \nu$	LHCb [25]	1×10^{-5}	iso and $l \to K^+$ misID	$3 \times 10^{-7} (3 \text{ leptons})$
$B^+ o n ar n l u \gamma$	not measured	1×10^{-4}	iso, $l \to K^+$ misID , HS lifted, missing γ	$1 \times 10^{-6} (3 \text{ leptons})$
$B^0 \to n \bar{p} l \nu$	LHCb 25	1×10^{-5}	iso, $\bar{p} \to K^+$ misID, missing l	1×10^{-8} (1 leptons)
$B^0 ightarrow n \bar{n} K^+ \pi^-$	LHCb <u>26</u>	6×10^{-6}	iso, missing π^-	$6 imes 10^{-7}$
$B^0 \to D^0 n \bar{n}$	Belle 27	3.5×10^{-5}	iso, missing 1 to 3 tracks	1×10^{-6}
$B^0 \to D^0 n \Lambda$	Belle 28	1.4×10^{-5}	iso, missing 2 particles	$1 imes 10^{-7}$
Total				$6.4 imes 10^{-6}$