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Chapter 1

Introduction

The rare decay B+ → K+νν̄ is a flavour-changing neutral current process, which is
suppressed in the standard model and thus sensitive to new physics contributions. Monte-
Carlo simulated data at Belle II is applied to optimize the separation between signal and
background and to estimate the sensitivity of the search. We can search for this decay in
upsilon resonance as shown in figure 1.1.

Figure 1.1: Cross sections of upsilon resonances [1]. The center-of-mass energy at upsilon
peak is visible.

From the Υ(4S), the two B mesons are produced as a pair and one of the B meson can
decay to K+νν̄. This process is possible by flavour change of the quark b → s. However,
this decay is suppressed in SM prediction. The upper limit of the branching fraction of
the decay is found in [3] as

Br(B+ → K+νν̄) < 1.6× 10−5 (1.1)
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As searching for a decay with extremely low branching fraction is strenuous work, Monte
Carlo data is produced with higher branching fraction of B+ → K+νν̄ decay. My workflow
of the analysis to search for the decay is shown in 1.2.

Figure 1.2: Workflow of the analysis

First of all, Monte Carlo datas are produced regularly at Belle II for both signal
B+ → K+νν̄ and background from Υ(4S). In this work, I do tagged analysis using
FEI skimmed data in which the FEI is already applied with selection cut. The FEI(Full
Event Interpretation) is the method of Belle II software to reconstruct tag B meson. By
the FEI, the information of the tag B meson can be analyzed to search for signal. Then I
search for the selection cuts to diminish the amount of background and ideally remove al-
most all of background at the end. The pre-cut, which is applied in early phase of analysis
to reduce background, is searched with help of machine learning(SVM, NN) as shown in
section 7.2 and 7.3. The result of the feature importance helps to reveal which variables
have good separation between signal and background to make pre-cut between them. The
distribution of the variables are displayed in section 6.1. The pre-cut and its test is done in
section 6.3.1. Then I do best candidate selection in section 6.3.2 to reduce the number of
candidates for signal. After that, I run the fBDT(section 7.1) and find cut on fBDT(section
6.3.3) to reduce remaining background. The fBDT(fast Boosted Decision Tree) is explained
in section 7.1. All selection cuts are determined to increase purity and maximize figure of
merit(FOM). Finally, the fitting is implemented to measure signal fraction from the data
and branching fraction of real data is compared in section 6.4. In section 2, the theoretical
knowledge of flavour physics is explained. In section 3, the structure of the Belle II detector
is explained with illustration of hardware. In section 4, the Belle II software that I use for
analysis is shortly introduced. In the appendix, the part of the topology analysis result
is added to show how the exact decays of signal and background appear. In appendix,
some parts of TopoAna result is shown, in which the exact decay trees of signal and part
of background are displayed.



Chapter 2

Theory of Flavour Physics

2.1 Flavour in the Standard model

The history of flavour physics started from the discovery of quarks and leptons in the
Standard Model, which elucidated mysterious substructure of particles and atoms. So
far, the quarks constitute the part of the elementary particles of the Standard Model,
which cannot be composed of underlying particles. The quarks, along with leptons, are
characterized by the flavour, with which we have six types of quarks in the Standard Model.

Figure 2.1: Elementary particles in the Standard Model [34]. There are six flavours of
quark. The quarks have different physical quantities and quantum number.
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As shown in figure 2.1, each quark has identifying quantum numbers, which are isospin
I3 and hypercharge Y . It is also visible that isospin and hypercharge are identical within
up-type quarks, and within down-type quarks likewise. Mass is another distinguishing
physical quantity in the determination of the generation. The hypercharge is built by
other quantum numbers, which are baryon number B, lepton number L, Strangeness S,
Charm C, Bottomness B′, Topness T .

Y = B + S + C +B′ + T (2.1)

These quantum numbers have to satisfy the Gell-Mann-Nishijima formula with electric
charge Q.

Q = I3 + Y (2.2)

Each quark has its antiparticle, that are called as antiquark and denoted with bar. The
antiquarks have almost identical properties, but its electrical charge has opposite sign,
while the value of the charge is same. The leptons also have antiparticles, for instance,
antineutrino are antiparticle of neutrino. The antiquarks play important role as elementary
particle to constitute mesons. For instance, the mesons include B meson, kaon and pion,
which participate in rare decay. The mesons are not elementary particle themselves, but
composed of quark and antiquark pair. In order to sort the mesons in a organized way,
Eightfold way is applied and it can make Meson octet as in figure 2.2.

Figure 2.2: A possible example of Meson octet [35].
.

Such idea was initiated from isospin, in which proton and neutron are regarded as the
same particle with different state, because they have almost the same mass and differ in
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charge. In meson octet, the isospin, strangeness and charge determine the position of kaons
and pions.

In the Standard Model, the Lagrangian is theorized in the way that it is invariant
under transformation of gauge symmetry. The symmetry group of the Standard model is
SU(3)× SU(2)×U(1). The Lagrangian of the Standard Model is largely divided in three
terms as follows.

LSM = LKin + LHiggs + LY uk (2.3)

Kinetic term describes the gauge bosons like gluons, W and B bosons. The Higgs term can
give the mass to gauge bosons by the Higgs mechanism. Spontaneous symmetry breaking
makes gauge group as SU(2)L × U(1)Y → U(1)em. After the spontaneous symmetry
breaking, W±, Z0 and photon appear with mass in the Standard Model. In order to find
the description of the flavour, the Yukawa term of the Lagrangian has to be investigated,
from which CKM matrix can be derived.

2.2 Cabibbo-Kobayashi-Maskawa(CKM) matrix

The CKM matrix describes the likelihoods of flavour change between the quarks, which
is the so-called quark mixing. Following figure 2.3 shows how easily the quark flavour can
turn into other flavour.

Figure 2.3: Strength of quark mixing(Flavour change). [36]

However, the representation of CKM matrix is required to obtain exact quantitative
value of this flavour change. By the fact that weak interaction violates the conservation
of quantum number and change the quark flavour, while strong interaction via gluons
conserves the quantum number, the Lagrangian of weak interaction has to be applied to
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derive CKM matrix. Yukawa term of the Lagrangian [22] is

Lyuk = −Y d
ijQ̄

iHdjR − Y
u
ij Q̄

iH̃ujR + h.c. (2.4)

The term Qi is doublet pairs of quarks with three generations as follows.

Qi =

(
uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

)
(2.5)

The right handed quarks have three components in the matrix as uiR = (uR, cR, tR).
After spontaneous symmetry breaking, the Higgs field produces vacuum expectation

value v and quark mass terms look in matrix form as

Lyuk = − v√
2

[d̄LYddR + ūLYuuR] + h.c. (2.6)

In this representation, the mass term is described in matrix. Therefore, the mass matrix
has to be diagonalized to obtain readable mass values so that the masses are eigenvalues
of the mass matrix in this case. For the diagonalization to be realized, we presume that
there are diagonal matrices Md, Mu. And the unitary matrices Ud, Uu are applied. YdY

†
d ,

YdY
†
d are hermitian and can be diagonalized, while Y is not hermitian alone. So Y Y † can

be diagonalized.

YdY
†
d = UdM

2
dU
†
d , YuY

†
u = UuM

2
uU
†
u (2.7)

Y alone can have different unitary matrices Kd, Ku as it doesn’t break the diagonalization
of (2.7).

Yd = UdMdK
†
d, Yu = UuMuK

†
u (2.8)

After this consideration, the Lagrangian would look like,

Lyuk = − v√
2

[d̄LUdMdK
†
ddR + ūLUuMuK

†
uuR] + h.c. (2.9)

The unnecessary matrices U and K can be cancelled by quark rotation, dR → KddR,
uR → KuuR, uL → UuuR, dL → UddL. This changes basis of the representation. Now the
Lagrangian is in mass basis.

Lmass = −md
j d̄
j
Ld

j
R −m

u
j ū

j
Lu

j
R + h.c. (2.10)

The kinetic terms are also affected by this change of basis, since the kinetic terms have the
quarks as well.

The kinetic terms are in flavour basis,

Lflavour ⊃
(
ūL d̄L

)i i/∂ + γµ

(
g′

6
Bµ + g

2
W 3
µ

g√
2
W+
u

g√
2
W−
µ

g′

6
Bµ − g

2
W 3
µ

)(uL
dL

)i

+ūiR

(
i/∂ + g

′ 2

3
/B

)
uiR + d̄iR

(
i/∂ − g′ 1

3
/B

)
diR

(2.11)
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The superset symbol ⊃ indicates that the Lagrangian actually includes more terms which
are not written here. Here we have to apply quark rotation as before to transform it into
the mass basis mass basis. After some matrix computations, Ku and Kd will be removed
by rotations dR → KddR. What makes interesting for the flavour change is mixing terms
of quarks. uR → KuuR. Bµ and W 3

µ are not involved in quark mixing term. Only W± are
left to be in quark mixing term as,

Lmass ⊃
e√

2 sin θω

[
W+
µ ū

i
Lγ

µ(V )ijdjL +W−
µ d̄

i
Lγ

µ(V †)ijujL

]
(2.12)

Now the quantities of quark mixing can be summarized in one matrix, which is called as
Cabibbo-Kobayashi-Maskawa(CKM) matrix.

V ≡ U †uUd =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 (2.13)

A representation of the CKM matrix is with standard parameters, that are Euler angles
θ and a phase δ. These parameters are from symmetry group and reduced to four by
transformation of group.

V =

 c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13eiδ13 c12c23 − s12s23s13eiδ13 s23c13
s12s23 − c12c23s13eiδ13 −c13s23 − s12c23s13eiδ13 c23c13

 (2.14)

Here the relations cij ≡ cos θij sij ≡ sin θij are applied.

Another representation was realized by Wolfenstein parametrization where λ ≡ sin θ12
describes, by solely using biggest value θ12, since other values are small and negligible.

V =

 1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 (2.15)

To make geometric representation of CKM matrix, a equation of unitary condition
(2.16) is applied.

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (2.16)

This unitary condition has reasonable lengths of all sides to visualized a triangle. The
unitary triangle of CKM matrix has a geometric form as in figure 2.4.
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Figure 2.4: The CKM unitarity triangle [24].



Chapter 3

Belle II detector

Figure 3.1: Structure of the Belle II detector [37].
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3.1 SuperKEKB

For the Belle II detector to observe the decay of the Υ(4S) meson, there has to be an
accelerator that can make collision of electron and positron. The SuperKEKB can make
it well with high luminosity and its structure is shown in figure 3.2.

Figure 3.2: Structure of SuperKEKB [37]. Electron and positron are accelerated in the
linear accelerator and collide in the belle II detector.

The SuperKEKB produces two beams of electron and positron in separate rings. One
is High Energy Ring(HER) in which electron beam is stored with an energy of 7 GeV.
The other one is Low Energy Ring(LER) where positron beam is stored with an energy of
4 GeV. By this collision of electron and positron beams in separate rings, center-of-mass
energy

√
s of 10.58 GeV can be achieved, which corresponds to the mass of the Υ(4S)

resonance.
The SuperKEKB produces beams with asymmetric energy, 4 GeV and 7 GeV of electron

and positron, so that the laboratory system gets Lorentz boost [14] relative to the center
of mass frame of Υ(4S). The boost has value of βγ in SuperKEKB as,

βγ =
Pe− − Pe+√

s
' Ee− − Ee−√

4Ee−Ee−
' 0.28 (3.1)

Such boost is used to improve vertex detection of B meson. The B mesons have almost
same direction of boost, therefore z direction of B meson can be separated better by using
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boosted laboratory system [14]. The exact values of SuperKEKB are shown in the following
table with comparison to KEKB.

KEKB SuperKEKB

Energy (GeV) (LER/HER) 3.5/8.0 4.0/7.0
ξy 0.129/0.090 0.090/0.088
β∗y 5.9/5.9 0.27/0.41

I(A) 1.64/1.19 3.60/2.262
Luminosity (1034cm−2s−1) 2.11 80

Table 3.1: Fundamental parameters of SuperKEKB and KEKB [9]. Total beam current
(I), vertical beam-beam parameter ξy and vertical beta function at the IP β∗y .

The boost is decreased in SuperKEKB as shown that Energy difference of LER and
HER is smaller in SuperKEKB than in KEKB. The value of βγ was 0.42 in KEKB. But,
the luminosity is greatly improved in SuperKEKB. The lumonisity is defined in particle
physics as,

L =
1

σ

dN

dt
(3.2)

It includes the cross section(σ) and the number of events(N) with time(t). To obtain high
lumonisity, the collision of beams has to be more focused and the beam current should be
increased in order to obtain the higher number of events. The SuperKEKB accomplished
it by development of nano-beam scheme. By nano-beam scheme, the vertical direction of
particles, which are related to β∗y in table 3.1, is reduced. And crossing angle is increased
to make area of collision smaller, by that the number of events increases as in figure 3.3.

Figure 3.3: Schematic view of beam collision in the Nano-Beam scheme [9]. The larger
crossing angle makes smaller area of collision.
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3.2 Vertex detector

After leaving beam pipe, the particle enter the vertex detector which is composed of
a pixel detector(PXD) and a silicon vertex detector(SVD). The structure of the vertex
detector is shown in figure 3.4.

Figure 3.4: Structure of the vertex detector [10]. Inner part is PXD and enclosed by outer
SVD. Each part has multiple layers.

PXD is, once more, made of two layers of sensors with radii of 14 mm and 22 mm.
To achieve high precision of measurement of vertex in innermost detector, PXD was build
by pixel sensors, instead of strips. DEPFET(DEPleted Field Effect Transistor) pixels are
used to detect the position of the tracks, which can make it feasible that pixels can be very
thin down to 50 micron. Such thin pixels don’t require extra air cooling, because it’s only
active during the readout, when the particle is detected in sensor.

SVD is surrounding PXD and made of four layers which are double-sided silicon strip
detector(DSSDs) as shown in figure 3.5. By consideration of large data size and the number
of channel, it was more reasonable to build outer part SVD with strip sensors rather than
pixel sensors. The DSSDs construct ladder structure which is labeled with L3 to L6. It
measures two dimensional position of particles by horizontal and vertical direction of the
strips on the sensor. SVD can detect the particles in range 17◦ < θ < 150◦. Furthermore,
SVD can reconstruct the particle with low transverse momentum, down to a few tens of
MeV/c.
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Figure 3.5: Layout of SVD with four layers [10].

3.3 Central Drift Chamber (CDC)

The Central Drift Chamber(CDC) is filled with 50% Helium and 50% ethane gas, which
is optimal ratio for the performance so far since Belle I. And 14336 sense wires with an
inner radius of 160 mm and an outer radius of 1130mm are installed to detect charged
particles. When the charged particles enter the CDC, they induce ionization of the filled
gas by electric charge of the particles. Then the ionization makes signal in nearest sense
wire and the particles can continuously make further ionization as the particles continue
to move, which can be observed as a track in CDC. In this work, for example, K+ can be
reconstructed in CDC with this technical method. Moreover CDC can measure energy loss
of particle making particle identification of low momentum particle within CDC, without
reaching particle identification device.

3.4 Particle Identification

The particles that were not identified in CDC have to be identified after they leave the
CDC. The particle identification also takes information from other detectors and combines
the information for identification of particle. To indentify the particles, the particle iden-
tification was divided into two parts and it was developed to measure momentum and
velocity of particles to infer the mass of particle.

3.4.1 Time-Of-Propagation(TOP) - Barrel

First part of the particle identification is Time-Of-Propagation(TOP), where the principle
of Cherenkov radiation plays central role. The speed of light can be slower than c, when
the light is in a material. It means that the particle, which pass the material, can move
faster than the speed of light c. In this case, the Chrenkov photon can be produced. In the
TOP, Cherenkov photon is captured in quartz, where it is reflected with Cherenkov angle.
Fast particles would make short path to travel to reach photon detectors. The path of the
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particles is reconstructed by 2-dimensinal space(x, y) and time t. With the information of
velocity from travel time in quartz, the TOP can deduce the mass of the particles. The
structure of quartz bar is shown in figure 3.6.

Figure 3.6: The Cherenkov photon passes through quartz and the Cherenkov angle is
measured. By dependence of angle on velocity of the particles will make different path
and time to reach photon detector. The different information of mass can make feasible to
distinguish Kaon and Pion. [9].

3.4.2 Aerogel Ring-Imaging Cherenkov detector(ARICH) - End-
cap

In ARICH, analog principle from TOP was applied to identify the particles. The particles
also produce Cherenkov photons as in TOP, when it passes through aerogel. In this detector
as in TOP, the Cherenkov photons have distinguishable angles by different mass of the
particles. The Cherenkov photons are emitted and reach the photon detector which is
located away. And the photons are detected in ring form. Even though the positions (x,
y) are different, the same particle will make same radius of ring by the angle. One can
observe different rings by Kaon and Pion. Figure 3.7 depicts how the photons were emitted
and arrive at photon detector.
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Figure 3.7: Aerogel with 2cm thickness produce the Cherenkov photons with different
angle. The photons reach with photon detector as making ring form [9].

3.5 Electromagnetic calorimeter (ECL)

The Electromagnetic calorimeter(ECL) measures the deposited energy of photon and
electron that reached in ECL after particle identification. High resolution of energy mea-
surement was provided by total 8736 Caesium Iodide crystals doted with Thalium as scin-
tillation material. The barrel part contains 6624 CsI crystals and the two endcaps contain
2112 CSI crystals. The scintillator crystals cover a polar angle region of 12.4◦ < θ < 155.1◦.
Two Hamamatsu Photonics S2744-08 photodiodes were used for readout of scintillation
light. The photons that reached ECL create electron positron pairs that make again, as a
iterative process, bremsstrahlung photons. This process continues until the energy of the
created photons is too low for further processes [13]. Then the energies of all photons is
measured together.

Intrinsic energy resolution of the calorimeter was expressed as by following approximate
formula [9].

σE
E

=

√(
0.066%

E

)2

+

(
0.81%

4
√
E

)2

+ (1.34%)2 (3.3)

Superconducting solenoid is located around ECL to generate a magnetic field of 1.5T which
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causes curvature of charged tracks. This superconducting solenoid has diameter of 3.4m
and length of 4.4m. The muon goes through the ECL without making feasible measurement
and can be detected in next part of Belle II detector(KLM).

3.6 K0
L and µ detection (KLM)

The K0
L and muon detector(KLM) is outermost part of the Belle II detector where the K0

L

and muon are detected. The KLM is composed of the iron plates and detector elements.
The iron plates have thickness of 4.7cm and are located outer part of the solenoid. These
iron plates have a role to make the magnetic flux return of solenoid. The other role is
creating the hadronic showers of the particles in iron plates, which is the detection of the
K0
L. The detector elements are divided into barrel and endcap part. The barrel part cover

the range of angle from 45◦ < θ < 125◦ and this barrel and endcap together cover wider
range of angle 20◦ < θ < 155◦ as it is located outer part of Belle II detector. In barrel part,
there are 15 detector layers and 14 iron plates, while there are 14 detector layers and 14
iron plates in the endcaps. Muons and non-showering charged hadrons with momentum
above 0.6 GeV/c traverse KLM. The glass electrode RPCs detects charged particles in
KLM.
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Belle II Analysis Software Framework

The Belle II detector as hardware alone cannot investigate the particles. In order to
analyze the data gained from the detector, the Belle II software is indispensable. The
Belle II Analysis Software Framework(basf2) has numerous functionalities to reconstruct
the decay from the raw data.

To operate basf2, the externals and tools are developed [25]. The externals contains
third-party frameworks and libraries, on which basf2 is based and runs. In the externals,
for instance, there are python3, git and HEP software like ROOT, Geant4, and EvtGen.
The tools are shells and python scripts for the installation and setup of the externals and
basf2. And basf2 contains modules, which can selectively loaded by the users.

4.1 Path and Module

A module is a part of basf2, which executes a certain functionality of basf2. Because the
basf2 is split into many modules, it is entailed that many modules have to be run along
with in the process of analysis. But it would be fairly cumbersome to write many scripts
with code for running each module. Plus, the modules are dependent on each other, in
the case of wrong order of the modules, making some module dysfunctional. The more
efficient way became feasible by combining the modules with path as in figure 4.1.
By using path, one can write many modules in a so-called steering file and run at once.

In basf2, one can import modularAnalysis, which is a phython package and contain many
functions to run the modules. It is possible that the users of basf2 add or remove certain
module according to their need.

4.2 Reconstruction

The core part of decay analysis, in terms of software, is reconstruction. The recon-
struction enables us to figure out whole decay process in an organized way, which means
that one can connect a particle with its daughter particle. To do that, a python function
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Figure 4.1: Structure of path and modules [26].

reconstructDecay of basf2 is applied with decayString. In this work, one decayString

as example looks like, "B+:signal -> K+:charged ?nu". It reconstructs the decay of B+
and question mark is added on the nu to ignore neutrino, because the neutrino doesn’t
leave any signal in the detector. For the reconstruction of Υ(4S), the decayString looks
like, "Upsilon(4S):generic -> B+:signal B-:generic".

An additional functionality of reconstructDecay is applying selection cut on the re-
constructed particle. The candidates of reconstructed particle, which cannot pass the cut,
are removed in the output root file. This cut is classified as pre-cut, because it is applied
in early phase, before producing output file, while the selection cut during offline analy-
sis is called as post-cut. This pre-cut reduces the size of the output file so that it saves
storage and memory usage in offline analysis, which is especially advantageous, when high
statistics is used for analysis.

4.3 Full Event Interpretation

The B mesons pair arises from Υ(4S) resonance and one B meson is called tag B, which
doesn’t produce signal B+ → K+νν̄ we are looking for. In some cases, the reconstruction of
signal B is not sufficient. For instances, the decay of this work that are including neutrinos
cannot have full information about decay only with signal B, because neutrinos have no
interaction with detector. The reconstruction of tag B can give information even about
signal side like missing energy and momentum. The reconstruction of tag B easily enables
full reconstruction of Υ(4S), as we can have both reconstructed B mesons from Υ(4S). In
basf2, such reconstruction of tag B is accomplish by Full Event Interpretation(FEI) [18],
[20].

The FEI algorithm is schematically described in figure 4.2. The FEI get started from
top where final-state particles are reconstructed from tracks and ECL clusters. After that,
final-state particles are combined to reconstruct intermediate particles. At the end, the tag
B meson is finally obtained. In figure 4.3, the Full Reconstruction(FR), which is a tagging
algorithm used in Belle I experiment, is compared with FEI. FEI requires less computing
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Figure 4.2: Schematic description of the FEI algorithm. The reconstruction is carried out
from top to bottom. [20].

time and has higher tag-side efficiency than FR [20].
In the tagging process of FEI, the users can select channel of FEI. Hadronic and semilep-

tonic tagging methods are available in FEI. In Hadronic tagging, the B meson is recon-
structed in a hadronic decay mode, then momentum of tag B is known and the sample
is purer. But it has demerit having low efficiency and braching fraction. In Semileptonic
tagging, the tag B is reconstructed from the decay containing lepton and neutrino. While
semileptonic tagging has high efficiency and braching fraction, it lacks full kinematic in-
formation, because of the missing neutrino. In this analysis, hadronic tagging is selected
from FEI skim.
Main reason of using FEI in this work is for applying cut and doing fBDT training of
section 7.1 with the tag variables. Unlike the case of dispensing FEI and tag side, using
FEI we can acquire the variables of tag side, which have good properties to rejuct back-
ground. It makes feasible that one can have more chance to find out good selection cut
to distinguish the signal from the background. In the following section, the selection cut
for both signal and tag side will be described. In this analysis, the FEI skimmed MC data
was used, because applying FEI costs longer running time. In FEI skimmed data, FEI is
already applied by specialists at Belle II. The users should be aware of the FEI channel
and selection cut which were applied in skim.
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Figure 4.3: The older version FR is compared with the FEI [20]. The FEI has better
efficiency to reconstruct a tag B correctly, which has correct beam-constrained mass.



Chapter 5

Monte Carlo Simulation

In this analysis, MC datas, that contain signal, B meson pair and continuum, is used
and can be compared with the result of real data analysis from the references ??, ??. The
large MC data is produced at Belle II, but the analysts can also produce MC data them-
selves using a python function generators.add evtgen generator at Belle II software,
which imports EvtGen generator. The EvtGen is a software that can generates events
of B and D mesons. The MC data at Belle II is divided into signal MC data(B+ →
K+νν̄) and generic MC data for background with FEI skim, that I used as input data
of analysis. Such MC data of Belle II has a valuable feature MCMatching that real data
doesn’t have. The MCMatching relates reconstructed particles to MC particles to ex-
amine the quality of reconstruction. In this process, reconstructed particles are com-
pared to MC particles. This examination is necessary, because many particles can be
wrongly reconstructed and identified. This comparison is implemented by a python func-
tion modularAnalysis.matchMCTruth, which imports McMatching. In the case of B+ sig-
nal, the function is written as modularAnalysis.matchMCTruth(list name="B+:signal",

path=main). There are various variables that can examine in MCMatching. One of sim-
plest variable is isSignal. It is 1.0, if MCMatching decides correct reconstruction, and
0.0 otherwise. There are also similar type of MCMatching variables and the result of their
test is shown in figure 5.1.

1.0 0.0
isSignal 4663 119

isSignalAcceptMissing 4672 110
isSignalAcceptMissingNeutrino 4663 119
isSignalAcceptMissingGamma 4663 119

Table 5.1: The simple test is made with 265k events of signal MC data to compare MC-
Matching variables. The variables are from signal side.

The other variables in table 5.1 tolerate and accept loosing some particles as the
name itself explains. As it is shown in section 4.2, the neutrinos are already ignored
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during reconstruction. Therefore, isSignal and isSignalAcceptMissingNeutrino have
same value and it didn’t matter which one is selected for the calculation of efficiency.
isSignalAcceptMissing has slightly higher value, which implies that fake signals are
most likely to be there.

The MCMatching variables are not chosen for making selection cut, because the MC-
Matching variables don’t exist for real data. But, these can be useful to label the data in
supervised learning. For example, isSignal of signal side is always 0.0 for background, be-
cause no background can be recosntructed as signal. These value 1.0 and 0.0 of isSignal
can be label of machine learning.



Chapter 6

Analysis of B+→ K+νν̄ decay

6.1 Input variables

6.1.1 Variables for pre-cut

In this section, the plots of variables for pre-cut are introduced. No cuts are applied except
kaonID > 0.5(kaon identification probability). The variables for cut is divided into three
types, which are signal side, tag side and upsilon. These variables were searched by using
feature importance of machine learning(SVM and neural network). The variables with
high feature importance are selected to make pre-cut. Continuum suppression variables
don’t belong to this section, because these are input variables of fBDT training.

For the plotting of data WG1Template, which supports data visualization as a template at
Belle II,is imported and applied. Because of the high number of background candidates in
the absence of cut, the signal sample is scaled up by 50 times. Then the boundary between
signal and background becomes clearly visible and one can easily determine position of pre-
cut without loosing many signal candidates. Because this is pre-cut, the cuts don’t have
to be strict and one can tighten the cuts or apply fBDT cut additionally. Choosing highest
figure of merit and purity are not considered so that the pre-cuts don’t become strict.
Running steering file without cut makes runtime, memory usage and storage extremely
high, if full statistics applied. Therefore it was run with lowered statistics and I increase
statistics after testing and applying all pre-cuts in section 6.3.2. But, reasonable amount
of statistics is applied to see separation between signal and background clearly. Here 4834
signal candidates and 1837537 background candidates are produced from 260k events for
signal and 8 million events. When only part of entire statistics of MC14 is used, the cross
section of each background has to be correctly adjusted. The number of each background
candidates are adjusted as in the cross section in [7] by removing excessive amount of
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Physics process Cross section[nb]
Υ(4S) 1.110 ± 0.008
uū(γ) 1.61
dd̄(γ) 0.40
ss̄(γ) 0.38
cc̄(γ) 1.30

Table 6.1: Cross section of physics process of collision at
√
s = 10.58 GeV [7].

certain background in dataframe. The cross sections of relevant processes are shown in
table 6.1. Υ(4S) decays into either mixed or charged B meson pairs and quark pairs are
called as continuum. The charged B mesons are B+, B− and mixed B mesons are neutral
B. In the plots of this section, the fraction of each background adjusted by this cross
section.

In signal side, missingEnergyOfEventCMS, which is calculated by the definition,

missingEnergyOfEventCMS = ECMS −
∑
i

Ei (6.1)

ECMS is the energy of Υ(4S) and the sum runs over the energies of all reconstructed
particles Ei. The missingEnergyOfEventCMS has good separation between signal and
background, because signal produces two neutrinos and has more missing energy from
neutrinos as a result. In the Mbc(beam constrained mass, GeV/c2) of tag side, there was
already FEI skim cut Mbc > 5.24 GeV/c2, so the plot is empty in the region Mbc < 5.24
GeV/c2. The signal has peak near B meson mass in Mbc plot as signal comes from B
meson obviously. For all Rest of Event(ROE) variables, which are explained in section 6.2,
signal has a peak at smaller value than background. In upsilon side, ROE has to be zero
ideally, because signal can only be produced from upsilon and rest of upsilon doesn’t exist.
In the plot, the signal peaks are located near zero.

The distribution of the signal and tag side variables is shown in figure 6.1. And the dis-
tribution of upsilon variables is shown in figure 6.2. The Rest of Event and cleanMask(ROE
mask) are explained in section 6.2. ROE variables measure the physical quantity like en-
ergy, momentum in the Rest of Event, which is not from the associated given particle in
applying ROE. For instance, the roeP is momentum of unused tracks and clusters in Rest
of Event. The selection cuts on this plots are shown in section 6.3.1. The name of the
variables includes either Bsig or Btag, and either d0 for a daughter particle(signal B) of
upsilon or d1 for another daughter particle(tag B) of upsilon. If there isn’t any d0 or d1,
the variable is from upsilon. The definition of the remaining variables are given at Belle II
as follows.
roeE: Energy of unused tracks and clusters in ROE.[GeV]
Mbc: Beam constrained mass.[GeV/c2]
roeEextra(maskName): Extra energy from ECLClusters in the calorimeter that is not as-
sociated to the given Particle.[GeV]
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roeNeextra(maskName): Extra energy from neutral ECLClusters in the calorimeter that
is not associated to the given Particle.[GeV]
nROE Tracks(maskName): number of tracks in the related RestOfEvent object that pass
the selection criteria.
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Figure 6.1: Signal and tag side variables for the selection cuts.The selection cuts are shown in
section 6.3.1. GeV is used as unit.
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Figure 6.2: Upsilon variables for the selection cuts. The selection cuts are shown in section 6.3.1.
GeV is used as unit.
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6.1.2 Continuum Suppression after pre-cuts

The large fraction of background is contributed by continuum which do not produce B
meson pair. The continuum is made of quark pair and have higher momentum than B
meson pair. This high momentum makes distinction in thrust and direction of particles.
The continuum can be separated from signal with following variables in this section. All
of the variables in this section are input variables of fBDT training. All variables are
plotted after applying all pre-cuts and making best candidate selection as in the section
as in section 6.3.1 and 6.3.2. Because of the effect of the pre-cuts, shape of the plots can
differ from original one. The shape of KSFW moment plots with different condition can be
found in [5]. There aren’t dramatic difference by pre-cut, because continuum suppression
variables are not used in pre-cut. But, the most background candidates were removed
greatly, thus, height of background peak is lower and comparable with signal. In the plots
of this section, signal is not scaled up and stays with right fraction as given. If original
plot without pre-cut is shown, then signal needs to be scaled up as in [5], because there
are too many background candidates and tiny signal fraction is not visible.

One of the variables that has good discriminating power and feature importance for
continuum suppression is R2. To understand how R2 is formulated, the Fox–Wolfram
moments has to be defined in advance [7].

Hl =
N∑
i,j

|pi|
∣∣pj∣∣Pl(cos θi,j) (6.2)

θi,j is the angle between the i-th momentum ~pi and j-th ~pj, and Pl is the lth-order Legendre
polynomial. Rl is defined with Fox-Wolfram moments as 6.3.

Rl =
Hl

H0

(6.3)

R2 is used more often as special case of Rl. Thrust is generally defined as 6.4.

T =

∑N
i=1

∣∣∣~T · ~pi∣∣∣∑N
i=1 |~pi|

(6.4)

~T is the unit vector along which their total projection is maximal. and ~pi is i-th momen-
tum. Many variables are defined with this thrust, because the thrust of continuum has
good discrimination from B meson pair. ThrustOm is the magnitude of the ROE thrust
axis. CosTBTO is cosine of angle between thrust axis of the signal B and thrust axis of
ROE in center-of-mass frame. CosTBTO has high discrimination between the signal and
the continuum, because thrust axis of the signal B has spherical form of direction and
distributed well without peak, while the cosine angle between the two thrust axes of ROE
of the continuum has peak at 1.0. cosTBz is cosine of angle between thrust axis of the
signal B and z-axis in center-of-mass frame. These variables can also be used with ROE
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Figure 6.3: Continum suppression variables of signal and tag B mesons as input variables of
fBDT(section 7.1)
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mask, but here all variables are applied without ROE mask. The distributions of these
variables are shown in figure 6.3.

There are 16 Kakuno-Super-Fox-Wolfram (KSFW) moments which were developed to
distinguish B meson pairs from continuum. The defining formulas of KSFW moments are
given in [5]. The linear KSFW moments are defined as

hso il =
∑
b

Clb
|pb|Pl(cos θK+b)

2(2Ebeam − EK+)
(6.5)

The index i is defined differently to make sum run with index b over charged (i = 0) and
neutral(i = 1) ROE particles. The case of i = 2 only calculates missing momentum vector
[5]. The angle θK+b is measured by direction between particle of index b and signal K+.
Clb = 1 for even moments l. Clb = 0 is given for the neutral particles and equals to the
product of charges of the particle b and K+ for charged particles. pb is the momentum of
index b and Pl is the lth-order Legendre polynomial. The quadratic KSFW moments are
defined as

hoo l =
∑
a

∑
b

Clab
|pa||pb|Pl(cos θab)

(2(2Ebeam − EK+))2
(6.6)

The index a and b run over exclusively ROE particles. Clab = 1 is given for even moments
l. For odd moments, Clab = 0 is given, if a or b is neutral, or equals to the product of the
charges for charged particles. The distributions of KSFW variables are shown in figures
6.4, 6.5, 6.6, 6.7.
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Figure 6.4: KSFW variables of signal B meson as input variables of fBDT(section 7.1)
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Figure 6.5: KSFW variables of signal B meson as input variables of fBDT(section 7.1)
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Figure 6.6: KSFW variables of signal B meson as input variables of fBDT(section 7.1)
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Figure 6.7: KSFW variables of signal B meson as input variables of fBDT(section 7.1)
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6.2 Rest of Event

Independent of actual cut on the next section, Rest of Event is another useful method
to clean up background. Rest of Event enables looking into variables without including
signal particle. In other words, Rest of Event shows the distribution of background, which
should be cleaned up by applying ROE mask(selection cut). The ROE mask is the set of
selection cuts which removes candidates in Rest of Event. The ROE mask of the analysis
is defined as follows.

ROE mask

Track: nCDCHits > 0, thetaInCDCAcceptance == 1, pt > 0.1, abs(dr) < 1, abs(dz) < 3

ECL cluster: p ≤ 0.05, useCMSFrame(p) ≤ 3.2

First of all, the definition of the variables have to be introduced. nCDCHits is the num-
ber of CDC hits associated to the track. thetaInCDCAcceptance returns true, if particle
is within CDC angular acceptance 17◦ < θ < 150◦. p is momentum magnitude(GeV/c)
and useCMSFrame(p) is the momentum(GeV/c) in CMS frame. And dr is transverse dis-
tance(cm) in respect to IP for a vertex and dy is vertex or POCA in case of tracks z in
respect to IP. nCDCHits > 0 is implemented, because CDC has better momentum resolu-
tion than vector detector, which is necessary for the analysis of the decay. Additionally,
thetaInCDCAcceptance is made true so that only the angle range is analyzed. abs(dr)
< 1, abs(dz) < 3 rule out the long-lived particles and background tracks, which are not
coming from the IP. The cuts of ECL cluster remove the background from photons.

In this analysis, the FEI reconstructed tag B meson, therefore, Rest of Event of Upsilon
ideally should be empty. This result is shown in first figure 6.8. In all plots, the ROE mask
is compared with the result without ROE mask.

In both plots, ROE mask make the distribution of number of tracks move to zero. In
signal MC data, ideally, there should be no particle as ROE of upsilon by definition. For
the background, all continuums and BB pair datas were combined in single dataframe
and used to make plot. In ROE of background, there are still other particles as back-
ground. The next figure 6.9 shows the number of ECL clusters in the ROE. The ROE
particles were reduced by ROE mask by same principle, but here the second ECL cluster
cuts p ≤ 0.05, useCMSFrame(p) ≤ 3.2 of ROE mask removed ROE particles.

The next two figures 6.10, 6.11 show the momentum and extra energy of ROE particles.
In these plots, the ROE mask doesn’t make remarkable difference, even though the number
of ROE particles decreased clearly. However, the ROE variables like these can be used
for selection cut in the following sections, regardless of presence of ROE mask, because
the distribution of these variables still can produce good separation between signal and
background.
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Figure 6.8: The number of ROE particles is shown. Left plot is signal MC and right one
is generic MC(background).

Figure 6.9: The number of ECL clusters in the ROE is shown. Left plot is signal MC and
right one is generic MC(all of background).



6.2 Rest of Event 47

Figure 6.10: The variable roeP is shown. It is momentum of unused tracks and clusters in
ROE. Left plot is signal MC and right one is generic MC(background).

Figure 6.11: The variable roeEextra is shown. The extra energy coming from the particles
which are not associated to the given Particle(Upsilon). Left plot is signal MC and right
one is generic MC(background).
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6.3 Selection cut

Searching for selection cut is main part of analysis, because the goal is removing back-
ground and gain pure signal sample. The types of selection cuts are organized in this
category.

1. FEI skim cuts

2. pre-cuts from feature importances

3. Best candidates selection(sigProb cut)

4. fBDT cut

First thing to be mentioned is that FEI skim, because the FEI skimmed dataset is used to
save computation time. As FEI is already applied by Belle II researcher, FEI skim includes
its own cuts to remove common background.

List of the FEI skim cuts

Event: nCleanedTracks ≥ 3, nCleanedECLClusters ≥ 3, visibleEnergyOfEventCMS > 4,
2 < E ECL FEI < 7

B+: Mbc > 5.24, abs(deltaE) < 0.200, sigProb > 0.001, extraInfo(dmID)==25

Track: abs(z0) < 2.0, abs(d0) < 0.5, pt > 0.1

Cluster: E > 0.1, 0.296706 < theta < 2.61799

These cuts were applied, before starting analysis. FEI skim should have loose cuts
to remove background and retain true B mesons. The definitions of the variables for the
selection cut are given at Belle II as follows.
nCleanedTracks: The number of clean Tracks in the event Clean tracks are defined by the
tracks which pass the given cut assuming a pion hypothesis.
nCleanedECLClusters: The number of clean Clusters in the event Clean clusters are de-
fined by the clusters which pass the given cut assuming a photon hypothesis.
visibleEnergyOfEventCMS: The visible energy in center-of-mass frame.[GeV]
E ECL FEI: Cleaned tracks and clusters in ECL.
Mbc: Beam constrained mass of the B meson.[GeV/c2]
deltaE: Difference between upsilon energy and half the center of mass energy.[GeV]
sigProb: The probability for correct reconstruction of tag B by FEI.
extraInfo(dmID): Extra information stored under the dmID.
z0: The tracking parameter, the z-coordinate of the point-of-closest-approach.
d0: The tracking parameter, the signed distance to the point-of-closest-approach in the
r − π plane.[cm]
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pt: Transverse momentum.[GeV/c]
E: Energy.[GeV]
theta: Polar angle.[rad]

After that, the variables with good discrimination were searched. Machine learning of
scikit-learn was applied to produce feature importances of variables and the variables with
high importance were selected to make selection cut. And these cuts moved in the steering
file as pre-cut to reduce size of output root file, and statistics(the number of events) is
increased up to full dataset. After running steering file again with full statistics, best
candidate selection was made. Then, finally, fBDT was run to classify the signal and
background for higher purity and figure of merit.

6.3.1 Pre-cut

List of the selection cuts

KaonID: kaonID > 0.5 applied in advance.

Signal: missingEnergyOfEventCMS > 1.85 and roeE< 8.0

Tag: roeEextra(cleanMask) < 2.5 and Mbc > 5.265

Upsilon: roeEextra() < 2.0 and nROE Tracks() < 3.0 and roeP() < 1.5 and roeNeextra()
< 2.0

The variables and cuts were determined to make pre-cut sufficiently loose. It means that
only little amount of signal candidates should be lost by pre-cut.

First of all, kaonID cut was applied, before applying other cuts. The kaonID cut removed
roughly half of kaon candidates which are very likely to be wrongly reconstructed. If the
kaonID is not present, the signal candidates are twice more, but the half of them have
isSignal=0.0. The purity was sacrificed by kaonID cut as the half of signal candidates is
removed, but the better candidates with isSignal=1.0 for are obtained. The other cuts were
determined as above. The ROE mask doesn’t play important role to make cut, because
ROE mask doesn’t make better separation between signal and background, but it moves
both in the direction of zero. Therefore, it is quite irrelevant, whether one chooses ROE
variable with mask or without mask, if we only apply the selection cut. These pre-cuts
were tested, before I apply in steering file. It is fairly infeasible to run steering file with
full statistics of MC14, if pre-cut is not applied, because memory and storage limit in work
environment. I applied these cuts with fraction of full statistics, which approximately
amounts to 260k events for signal and 8 million events for background. But, a lot of
candidates were already removed by FEI skim cuts. In the table 6.2, it is shown how these
cuts affect the number of candidates, figure of merit and purity that are shown in (6.8)
and (6.11).

In this table, the cuts are additive from left to right. At the end, where upsilon cut
was added, all of cuts are applied and highest FOM and purity are achieved. Efficiency for
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kaonID Signal cut added Tag cut added Upsilon cut added
Sig cand 4834 4609 4294 4077
Bkg cand 5307608 72886 33676 14390

FOM 2.2938·10−6 1.8948·10−5 2.7169·10−5 3.9638·10−5

Purity 0.091% 5.95 % 11.31 % 22.08 %

Table 6.2: Selection cuts remove the background candidates. After all cuts, 99.73% of
background candidates are removed. FOM and purity increases as more cuts are added.

FOM is calculated for correct reconstruction of both signal and tag side. After all cuts are
applied, 99.73% of background candidates are removed. But, remaining background still
lowers purity. For the next step of removing background, all cuts are moved in steering
file to be pre-cut. Since pre-cuts reduce size of output root file, the statistics can be now
increased to maximum. Then new output file is used in best candidate selection and fBDT
for higher purity to be accomplished.

Usually, one try to maximize the FOM by removing background in order to accomplish
best sensitivity. Conventional formulations of FOM [28] look simplified as (6.7).

a)
S√
B

or b)
S√
B + S

(6.7)

S is the number of signal candidates and B is the number of background candidates.
However, this formulation offers limited merit to obtain useful sensitivity. a) is simplest
formulation, but it can cause divergence problem(infinite value), as B → 0. It overesti-
mates sensitivity at low background [28]. This could be often problematic, because analyst
endeavors to remove the background candidates as much as possible. This divergence prob-
lem is shunned in b) by adding S. Then this formulation looks a bit similar to purity and
has same demerit as purity. It is not clear how much the value b) should be maximized.
One can intentionally maximize it up to 99% or even more as loosing massive signal can-
didates and reconstruction efficiency. Another problem which occurs, if the actual signal
fraction of real data is not known. In MC data, signal fraction is set arbitrarily high to
make analysis easier. Thus, the value b) and purity are simply influenced by the way
how much signal sample is produced in MC data. The cross section of real data is not
concerned.

In this analysis, a different useful formulation of FOM (6.8) was exclusively used from
[28] to have more advantages of analysis.

FOM =
ε(t)

a/2 +
√
B(t)

(6.8)

ε(t) is reconstruction efficiency and a is the number of sigma. a = 3 is used to calculate
FOM. B(t) is the number of background candidates after all cuts. t is defined as set of all
cuts which are applied before calculating FOM. The equation (6.8) is quite different from
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usual FOM, as it was calculated by using efficiency. This formulation can prevent from
loosing efficiency massively, when the FOM is being maximized. Background B(t) should
be removed as much as possible, but efficiency ε(t) should remain as moderate value at the
same time.

The formulation of purity is explained in [17]. The signal purity is given as

p =
NS(1− α)

NS(1− α) +NBβ
(6.9)

The NS and NB are the number of signal and background candidates respectively without
applying any cut. α is the fraction of signal, which is wrongly classified as background,
and β is the fraction of background, which is wrongly classified as signal [17]. α and β can
be reformulated as

1− α =
NS(t)

NS

, β =
NB(t)

NB

(6.10)

t is again the set of all cuts that are applied in signal or background sample. By combining
the two equations of 6.9 and 6.10, the signal purity is now simply as

p =
NS(t)

NS(t) +NB(t)
(6.11)
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6.3.2 Best candidate selection

Before doing best candidate selection, the all pre-cuts are implenmented and statistics is
increased up to entire MC14 dataset, which amounts 50 million events for signal and 5.687
billion events(1 ab−1) for background. The two informative variables for best candidates
selection were chosen for plots 6.12a, 6.12b. In the left plot 6.12a, one can find that one

(a) The number of candidates per event (b) Rank of signal probability in tag side

Figure 6.12: There are still multiple candidates per event. Only one candidate per event
can be selected by signal probability rank.

event produces many candidates. Because not all candidates can be the particle that we
are searching for, only one candidate per event should be selected by some criteria. In right
plot 6.12b, the candidates are ranked by signal probability of tag B. The lower value of the
plot means that the candidates have higher signal probability. By assessing this rank, one
candidate per event with highest signal probability is selected. Before selecting the best
candidates, there were 47290 signal candidates and 983334 background candidates. The
signal candidates are simply from the signal MC data. After the best candidate selection,
there are 27626 signal candidates and 671850 background candidates. However it makes
more sense that we have one candidate per event of tag B to search for signal.
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6.3.3 fBDT cut

After making pre-cut and best candidate selection, one can make cut on the output of
fBDT training. Since the most variables with good discrimination were already applied as
pre-cut, the continuum suppression variables become the input variables in fBDT training.
The shape of these variables which became input of fBDT are shown in section 6.1.2 and
the principle and the result of fBDT is explained in section 7.1. The fBDT is applied to
find final cut, which removes more background candidates.

In figure 6.13a, the output distribution of fBDT is shown. In this plot, the signal and
background are classified and have separation. By making a cut on this plot 6.13a, we can
finally obtain more pure signal sample as many background candidates are purged by cut.
Determination of cut requires some criteria, which depend on goal of analysis. If the highest
purity is demanded, the cut move as near as possible to 1.0 with sacrificed efficiency. By the
cut fBDT > 0.991 the number of background candidates can be zero. However, it would
be more desirable to use FOM in equation 6.8 as criteria to determine fBDT cut for saving
efficiency. In figure 6.13b, the FOM is plotted with fBDT cut. As the plot shows, the FOM
doesn’t increase unceasingly, it reaches peak and decreases. This enables determination of
cut on the peak where FOM is maximal with certain cut. The cut near 1.0 maximizes the
purity, but FOM is not maximum as the efficiency drops. In the result of fBDT training,
the FOM reaches peak by the cut fBDT > 0.82. However, here the target variable for label
is isNotContinuumEvent. It doesn’t distinguish between signal and other B meson pair.
Thus, the other B meson pairs are included in signal. To obtain correct signal sample,
the fBDT output result is combined in previous input dataframe and redefine signal as
isSignal of tag side equals 1.0. Then we can also remove wrongly reconstructed signal
by tag side. There were 16953 signal candidates and 155539 background candidates before
fBDT cut. Then there are finally 7699 signal candidates and 18594 background candidates
after the cut fBDT > 0.82. This number of candidates makes 29.28% purity. This count
is calculated only by the test dataset of fBDT, which has smaller size of data, because test
dataset is not used in training and is suitable for further analysis. The efficiency is 0.01584%
after cut fBDT > 0.82. By this fBDT cut, the continuum is mostly removed, because the
input variables are continuum suppression variables. The B meson pairs are not effectively
removed by this fBDT cut. The B meson pairs should have been distinguished and removed
by pre-cut, for intance, missingEnergyOfEventCMS cut. Because it can distinguish signal
with two neutrinos from other B meson pairs, which don’t produce the neutrino.
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(a) fBDT output distribution

(b) fBDT cut is chosen with maximum FOM.
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6.4 Fitting

The input data for fitting has the same number of events as in section 6.3(260k events
for signal and 8 million events for background).The same pre-cut are applied on the input
data, but only one cut of missingEnergyOfEventCMS is removed for fitting. This is reason
why there are a bit more signal candidates and its shape of the distribution is different. I
used RooFit[33] as a framework for an unbinned maximum likelihood fit. At first, I fit the
signal and background sample separately with different probability density functions. The
plot of fit looks as in figure 6.14.

(a) Fitting of signal MC data. (b) Fitting of background MC data.

Figure 6.14: Fitting for signal and background by roofit.

Since applying only one probability density function cannot make precise fit, two func-
tions are applied for each signal and background. Then the curve of fit can become more
flexible to adjust to input data. Two Gaussian functions are summed for signal, and one
Gaussian and one landau function are summed for background. The Gaussian function is
basic probability density function defined as

g(x;µ, σ) =
1

σ
√

2π
exp

(
−1

2

(x− µ)2

σ2

)
(6.12)

The µ is mean value and σ2 is variance. These two parameters have to be optimized during
fit process. The landau function looks as

p(x;µ, c) =
1

πc

∫ ∞
0

e−t cos

(
t

(
x− µ
c

)
+

2t

π
log

(
t

c

))
dt (6.13)

The mean and variance are not defined as Gaussian function, but the analogous parameters
are used. The µ is the location parameter and c is the scale parameter. Both parameters
have certain ranges as c ∈ (0,∞) and µ ∈ (−∞,∞). These parameters are optimized
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well by fit, and now the parameters are fixed before making composite fit of signal and
background. Exceptionally, sigma and scale of background functions are not fixed and
can float. Fixing the parameters averts screw-up of searching for optimal parameters
during composite fitting of signal and background. Additionally, the proportions of each
probability density functions in composite fit is also fixed. In tables 6.3 and 6.4, the results
of the parameters of signal and background fit are shown.

Value Error
Proportion 6.896e−1 5.36261e−2

Mean of Gauss1 2.947 3.82018e−2

Mean of Gauss2 3.698 5.00640e−2

Sigma of Gauss1 4.343e−1 3.19250e−2

Sigma of Gauss2 7.351e−1 1.61256e−2

Table 6.3: The parameters of the fit result of signal. The proportion is the fraction of
second Gaussian function.

Value Error
Proportion 1.638e−1 1.37085e−2

Mean of Gauss 2.914 1.44904e−2

Location of Landau 2.558 8.13646e−2

Sigma of Gauss 8.125e−1 9.03393e−2

Scale of Landau 4.216e−1 3.97969e−2

Table 6.4: The parameters of the fit result of background. The proportion is the fraction
of Landau function.

The proportion means that the portion of first probability density function, when the
two probability density functions are summed. The functions are summed in a way as

S = fg1(x) + (1− f)g2(x) (6.14)

g1 is the first probability density function and g2 is the second probability density function.
S is the summed probability function of g1 and g2. f determines the proportion(fraction)
of the probability density function. This principle is same in all cases that I summed two
probability density functions. Now the fit has to be executed jointly by both signal and
background such as real data. Then I combine again the two probability density functions
of signal and background to make final fit. The plot of composite fit is shown in figure
6.15. The resulting parameters of composite fit are shown in table 6.5.

From the table 6.5, one can see the estimated signal and background yield from fit.
Actual signal and background yields from input data is 4099 for signal and 15805 for
background. The fit result deviates slightly from the correct value of input data, but it
is acceptable approximately within 1 sigma. Plus, the both sigma of Gauss and Scale of



6.4 Fitting 57

Figure 6.15: Composite fitting of signal and background for missing energy(GeV) in center-
of-mass frame.

Value Error
Signal yield 4.3042e+3 2.21206e+2

Background yield 1.55937e+4 2.45162e+2

Sigma of Gauss(background) 8.108e−1 8.59253e−3

Scale of Landau(background) 4.086e−1 3.29244e−2

Table 6.5: The parameters in composite fit result. Signal and background yields are
extracted the fraction of each data from fit.

Landau decreased as they float during the composite fit. The shape of the fit could be
slightly different, if these two parameter didn’t float.

It is necessary to examine the quality and validation of the fit. One way is calculating
residual and pull, then one can make plot with the residual and pull values in Roofit.

The residual is simply the difference between actual value and fit value for each bin.
Pull is also defined for each bin as

Pull =
Nfit −Ndata

σ
(6.15)

Nfit is value of fit and Ndata is actual value of input data for that bin. And σ is statistical
uncertainty of each bin. In ideal case of the fit, approximately 68% of all residual are
within 1 sigma around 0 and rest is not. By this residual distribution, the 68% of the all
pull is in the range [−1, 1].
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Figure 6.16: Residual and pull distribution from composite fitting result.

Another way for examining validity of fitting is calculating value of χ2. Its definition
and resulting value from fit are shown in equation 6.16.

χ2 =
n∑
i=1

(Oi − Ei)
Ei

2

= 7.234 (6.16)

Oi is fit value and Ei is actual value of input data. There are four floating parameters of
fit and 40 bins are given. This value of χ2 is divided by the number of degrees of freedom.
Thus, the ideal value of this χ2 calculation should be close to 1 as a good fit.

It is also feasible to calculate branching fraction with the signal yield of fit. The formula
of the branching fraction looks as

Br =
Nfit

2f+−NBBε
(6.17)

Nfit is the value of the signal yield from fitting and NBB is the number of events of B
meson pairs without cut. ε is the reconstruction efficiency, and f+− is multiplied, because
the decay is now considered only from charged B meson pair. The number of events of
neutral B meson pair should not be in calculation. f+− is 0.5 here for MC data analysis. In
MC data, one can only take the number of events from charged B meson pair in calculation.
In many previous result of experiment, the branching fraction limit is known, for example,
a strict limit was found in [3].

Br(B+ → K+νν̄) < 1.6× 10−5 (6.18)

From this branching fraction limit, we can calculate limit of signal yield. I insert the
efficiency value from the input data of the fitting, in which the efficiency for correct recon-
struction of both signal and tag side is 0.0048409. The NBB is 471 × 106 in [3] and I use
f+− = 0.5. Then the limit of Nfit can be calculated as

Nfit < Br · 2f+− ·NBB ≈ 41 (6.19)
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This value gives the limit of the signal yield from the real data. From this result, we can
realize that the signal fraction of B+ → K+νν̄ of real data is much lower than MC data,
because we obtained Nfit = 4304 from the fitting of MC data, even though the real data
has much more the number of events than the input MC data. It indicates that analysis
and fitting of real data would be much more challenging than MC data, because of extreme
rareness of the signal sample.



Chapter 7

Machine Learning

In the analysis of rare decays, it is fairly arduous to search for variable one by one,
because one cannot know beforehand, which variable has good discriminating power be-
tween signal and backgorund. To save the energy and time of analyst, Multivariate Anal-
ysis(MVA) is contained in basf2, in which the multiple variables are processed and used
to distinguish signal from background by exploiting the correlation between variables. In
this analysis, I used fBDT, SVM and neural network as shown in this section. The fBDT
is already core part of basf2 and widely used in Belle II research. I have run fBDT to make
final cut at the end of analysis. I used SVM to produce feature importances to search
variables for cuts. I have also run neural network(Multilayer Perceptron) along with SVM.
The neural network is more modern method, therefore its application and utility should
be researched further at Belle II.

7.1 fast Boosted Decision Tree(fBDT)

FastBDT is stochastic gradient-boosted decision trees with speed optimization [19]. Its
training and evaluation are well developed within basf2. The principle of decision trees for
classification is seemingly akin to making selection cut. But, it differs from the fact that
decision tree works with multiple variables and cuts are applied many times within one
variables(feature). A schematic overview of decision tree is shown in figure 7.1.

The input varibles of fBDT are continuum suppression variables including KSFW vari-
ables, which are shown in section 6.1.2. These could come from signal side, tag side and
upsilon. After testing fBDT training of all variables, tag side variables have highest score
and discrimination for classification than signal and upsilon variables. As a result of that,
tag side variables were chosen for fBDT training.
Since the process of fBDT is supervised learning, the data has to be labeled. Here
isNotContinuumEvent is used as target variable to label, instead of isSignal, because
continuum suppression variable cannot distinguish well between signal and background
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Figure 7.1: The left image is visualization of decision trees with two features x1 and x2.
The right image shows applied decision tress on two dimensional space. Each line on the
space corresponds to a cut of tree. [29].

fBDT parameters value
The number of tree 200
The number of level 3

Shrinkage 0.1
The number of cuts 4

Table 7.1: The hyperparameters of fBDT training.

from B meson pair. The hyperparameters of fBDT training is used as shown in table 7.1.
The higher number of trees and level can make classification more precise, but it has

to be adjusted moderately, because high value can cause overfitting. Shirinkage makes
some parameter closer to 0 during training so that the training model becomes less com-
plex. Shirinkage(learning rate) should be lowered sufficiently to get precise classification,
but lower value requires higher training time. The training time was short with the low
shirinkage due to speed optimization of fBDT. The result of fBDT training is shown below.
At first, ROC curve of fBDT training is shown in figure 7.2.

The test dataset is assigned as 30% of whole dataset. The test dataset has to be
used for further analysis, because the training dataset can be biased after the training.
The test and training dataset are shown separately, but both results have almost iden-
tical curves. It means that the overfitting was avoided successfully. In figure 7.3, the
difference between test and train dataset is plotted for both signal and background. The
difference between test and train dataset is quite small as it also confirms that the result
is reasonable to be used for making cut. Signal is distributed near 1.0, as target variable
isNotContinuumEvent is given to signal. The process and result of making cut on fBDT
distribution is elaborated in section 6.3.3.
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Figure 7.2: ROC curve and score of test and training dataset. The higher AUC(Area under
the ROC Curve) implies better performance in classification.
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Figure 7.3: The overtraining plot with signal and background distribution.
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7.2 Support Vector Machine(SVM)

Support vector machine(SVM) is a classical method of machine learning for classifica-
tion. It works especially well for binary classification, which is often the case of particle
physics(signal and background).
The classification works by splitting datas with hyperplane in multidimensional space as
shown in figure 7.4. In particle physics, one side of hyperplane would be classified as signal
and other side becomes background. The support vectors adjust the position of hyperplane
so that the distance between two different types of data becomes maximized, which leads
to better quality of classification. In 2D space, hyperplane is simply line, which is one
dimensional object. And in 3D space, hyperplane is 2 dimensional plane. As this way gen-
eralizes, in n dimension, hyperplane is n-1 dimensional object and it cannot be visualized
anymore.

Figure 7.4: Hyperplane of SVM [30].

In many cases of classification in multidimensional space, the hyperplane cannot easily
split datas, if the separation in dataset is not large. To solve this problem, kernel method
was developed. The kernel maps the data in different space as shown in figure 7.5. In the
new space, it is possible that the data has better separation to be classified. There are
many types of kernels and the dimension of new space is determined by type of kernel. In
this analysis, Radial basis function(RBF) kernel is used, which maps the datas in infinite
dimensional space. Equation 7.1 shows the form of RBF kernel. γ is hyperparameter of
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Figure 7.5: Kernel trick of SVM [30].

SVM and ‖x− x′‖2 is distance between two feature vectors.

K(x,x′) = exp(−γ‖x− x′‖2) (7.1)

How the RBF kernel maps data in infinite dimensional space can be shown intuitively by
making expansion of RBF kernel as follows.

exp

(
−1

2
‖x− x′‖2

)
= exp(

2

2
x>x′ − 1

2
‖x‖2 − 1

2
‖x′‖2)

= exp(x>x′) exp(−1

2
‖x‖2) exp(−1

2
‖x′‖2)

=
∞∑
j=0

(x>x′)j

j!
exp

(
−1

2
‖x‖2

)
exp

(
−1

2
‖x′‖2

) (7.2)

By expansion of RBF kernel, the sum runs over the infinite number of inner product with
index j. Because the each inner product term is polynomial kernel, the RBF kernel is sum
of infinite number of the polynomial kernels. Each polynomial kernel has finite dimension
and all polynomial together contribute to infinite dimension of RBF kernel by sum. More
strict proofs of theoretical foundation have to be found in the reference of mathematics.
From now on, the result with MC14 input data will be shown. I labeled the data as
signal, if it is signal MC data. And the rest of generic MC data is labeled as background.
First of all, correlation matrix of input features is made in figure 7.6. It displays how
the input features are similar with each other. Strongly correlated features contribute to
classification with similar amount. Typically, ROE variables without ROE mask and same
ROE variables with ROE mask have very high correlation, because only position of peak
is shifted by ROE mask. And roeE, roeP and roeM have maximum correlation. Therefore,
one of them could be removed to avoid redundant classification and high memory and
storage usage.

Another heat map in figure 7.7 shows an overview of hyperparameters of SVM. C
determine how much we forbid wrong classification. If the hyperplane split the datas, it
is inevitable that some fraction of datas are classified as wrong class. Low C makes the
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Figure 7.6: Correlation matrix of input variables. The variables which have maximum
correlation(1.0) with each other were removed.

training more tolerant with such wrong points of datas. And gamma makes the hyperplane
more flexible and closer to datas. The higher score is feasible with high gamma, but high
value of gamma can cause overfitting more easily. This gamma can be interpreted as
analogy of the number of tree and level in fBDT, even though it has geometrically different
shape.

In scikit-learn, permutation importance is defined as follows. For each feature j of
the dataset, the dataset is shuffled randomly and one obtains corrupted(shuffled) dataset.
The shuffle repeats with certain number(K). One can choose the number of repetition.
The shuffled dataset would have low score(sk,j) as it contributes worse in machine learning
training. Then the difference of scores(s, sk,j) by a feature between original dataset and
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Figure 7.7: Overview of hyperparameters and scores with some data for test. The statistics
was reduced to calculate many times with short run time. The higher C and gamma tend
to make higher scores.

shuffled dataset is defined as importance.

ij = s− 1

K
ΣK
k=1sk,j (7.3)

If there was bad separation between signal and background, the difference of scores(importance)
would be small, because original feature has already low score(s). Therefore, the separation
between signal and background is very likely to be proportional to permutation importance.
To make reasonable analysis, the number of shuffles(K) is 10 in this training. The high
number of shuffles increases runtime and CPU usage very greatly, because it has to shuffle
all input features of training repeatedly. Because of this reason, the 260k events for signal
and 8 million events for background are used as input data, which are not full statistics
of MC14 dataset. Nevertheless, the output result of feature importance in figure 7.8 gives
reasonable information about which variables have good discriminating power. Because
it is supervised learning, the data has to be labeled. All type of background datas were
combined as one dataframe and labeled as 0. And signal MC data was labeled as 1. The
target variable is not used to label the data.

By using reduced statistics(260k events for signal and 8 million events for background),
it is more convenient to run many times in short time until we find the variables with
good discrimination between signal and background. SVM and Neural network that I
applied don’t have speed optimization yet unlike fBDT. However, the feature importance
is dependent on the machine learning method that was used to calculate, it cannot perfectly
be proportional to actual separation of variables. The importances can give different values,
when hyperparameter or machine learning method itself is changed. To solve this problem
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(a) Signal side features of test set (b) Signal side features of train set

(c) Tag side variables of test set (d) Tag side variables of train set

Figure 7.8: Permutation feature importances of SVM
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and make the result more objective independent of certain machine learning training, I
have run neural network with same condition and produced the feature importances.

The result of this SVM training as follows. Score and AUC score are always 0.99 for
both signal and tag side. Test dataset is assigned as 25% of whole dataset. The test and
train dataset have same score(0.99). And the feature importance result is very similar in
test and train set. It means that overfitting is avoided successfully. The hyperparameter
C = 1.0 is set for all and gamma is ’scale’. This gamma in the case of ’scale’ is defined in
scikit-learn as equation 7.4.

gamma(= scale) =
1

n features · V ar(X)
(7.4)

n features is simply the number of features and V ar(X) is variance.
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7.3 Neural Network

Neural network is implemented with same input data of SVM and this can give com-
parable result. The 260k events for signal and 8 million events for background are used as
input data, which is same in SVM training. The Multi-layer Perceptron(MLP) of scikit-
learn is applied for classification. The diagram that illustrates the mechanism of MLP is
shown in 7.9.

Figure 7.9: A schematic diagram of Multi-layer Perceptron (MLP) with one hidden layer
from scikit-learn library [38].

The perceptron is connected to other perceptrons of previous layers with a value which
is called weight. The sum of all weights in one perceptron becomes input value in an
activation function. The activation function produces output value and transfer it to the
next layer. After it repeats in all hidden layer, the output is calculated. The dimension of
X in the final output function f(X) can differ from the dimension of the input features.
The final output function has to pass logistic function to be value between 0 and 1 in binary
classification, which squeezes the value between 0 and 1. In more general case, where many
classes exist, the output function has to pass softmax function that are general version of
the logistic function as

softmax(z)i =
exp zi∑k
l=1 exp zl

(7.5)

l corresponds to class and k is the total number of classes. In neural network, the weight
and hyperparameters are adjusted by minimizing the loss function. The loss function
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makes output for measurement of how much the prediction of neural network training
deviates from actual value. The lower value of loss function output means more precise
prediction. There are several different ways to make this process. In Stochastic Gradient
Descent(SGD), the neural network updates weights minimizing the Cross-Entropy loss
function. The Cross-Entropy loss function looks as follows in binary classification.

Loss = −(y log(p) + (1− y) log(1− p)) (7.6)

p is predicted output of neural network and y is actual binary indicator(label). In Limited-
memory BFGS(L-BFGS), the Hessian matrix is approximated to minimize the loss function
and optimize the hyperparameters. The first-order partial-derivative of multivariate func-
tion is simply gradient of the function. In second-order partial-derivative of the function,
there are a lot of components and all possible values can be written as the components of
the Hessian matrix, which is shown in following equation.

Hf =



∂2f
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∂2f
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(7.7)

However, calculating the all components of this Hessian matrix demands challenging
computing power. Therefore, the L-BFGS uses the method to approximate the Hessian
matrix and find descending direction for the optimization. The detailed mechanism of
L-BFGS is elaborated in [32]. The epoch is the number determining how many times the
training data passes the neural network. The higher epoch can produce better quality of
classification, but it should be moderate value to avoid overfitting. The resulting hyper-
parmeters and condition of the MLP training is shown in table 7.2.

First of all, ReLU function is chosen as activation function, which always produces zero
as output value for negative input value. The parameter alpha is analogous to gamma
of SVM, which can be adjusted to avoid overfitting. The low alpha is more prone to
incur overfitting. The hidden layer sizes as (15, ) implies that MLP has one hidden layer
with 15 units. The solver L-BFGS is chosen more often in smaller dataset. For larger data,
SGD(stochastic gradient descent) is often chosen as the solver. The tol stands for tolerance
for optimization. The tol determines convergence in which the minimal loss or maximal
score is reached. The convergence is defined as a point where the loss or score is not
being improved for the n iter no change(10) iteration. max iter is defined as the number
so that the solver iterates until convergence or the max iter. max fun is the maximum
number of loss function calls, with which the solver cannot iterate more than this number.
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activation ReLU: f(x) = max(0, x)
alpha 1

hidden layer sizes (15,)
solver L-BFGS

tol 0.0001
max fun 15000
max iter 200

n iter no change 10

Table 7.2: The hyperparameters and condition of MLP training for both signal and tag
side.

Early stopping, which breaks the traininig before the maximum number of the iteration,
is not executed in this training. And many hyperparameters which are only relevant for
SGD or Adam solver are not included in the table, because the L-BFGS is applied. The
result of the feature importace of MLP training is shown in figure 7.10. The result shows
the similar order as SVM shows, but nTracks(the number of tracks based on event) has
clearly higher imporatnace in MLP than SVM. It has quite good separation between signal
and backgorund, but it was not used in pre-cut, because pre-cut is made as loose cut and
applying cut on nTracks without loosing signal candidates was difficult. The MLP training
also has score(0.99) and the overfitting is avoided, because the test and train set produced
similar result.
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(a) Signal side features of test set (b) Signal side features of train set

(c) Tag side variables of test set (d) Tag side variables of train set

Figure 7.10: Permutation feature importances of MLP



Summary

In this analysis, the rare decay B+ → K+νν̄ is searched. The crucial method that
supports achieving this goal was Full Event Interpretation. As I used FEI skimmed data,
many selection cuts were previously applied and diminished size of background, by which
the runtime and memory usage could also be reduced during the analyzing the data. Plus,
the reconstruction of B meson offered more variables of tag B meson to find selection cut
and also to make input data in fBDT.

In general, the continuum could be easily distinguished from signal and ruled out to
obtain pure signal sample, because the continuum has distinct physical characteristics
and Belle II research already organized the recommended continuum suppression variables
very well. But, the background of B meson pairs is harder, because the signal is also
produced from the B meson. To distinguish the background of B meson, I had to ap-
ply modularAnalysis.buildEventKinematics, by which the ’missing’ variables can be
imported. Using such variables with ’missing’ is reasonable, because the signal decay
B+ → K+νν̄ produces two neutrinos that cannot be detected in Belle II detector and can
be only found with missing physical quantities. But, some variables of event kinematics
also don’t have distinguishing signal distribution from B meson pair. It is worth that the
more event kinematics variables are searched to remove more background candidates of B
meson as it implements distinguishing physical quantities of neutrino. The selection cuts
including pre-cuts could be compared by examining the purity and FOM. However, as the
result of the fitting is shown, the purity cannot be absolute value to measure quality of the
analysis, because the MC data has much higher signal sample than real data and this frac-
tion of signal is easily manipulated in MC production process, which doesn’t have specific
meaning as the fraction of the real data. But, relative value of purity for the comparison of
selection can be a intellectual way to examine the quality of the selection cut. The pre-cut
couldn’t be easily made for high purity, because the pre-cut is intended to be loose for
further analysis process and should preserve the signal candidates.

In machine learning, SVM and MLP of scikit-learn were used at first with low statistics
to repeat run many time so that the good candidate variable for the selection cut can
be found. Unlike fBDT, the SVM and MLP don’t have speed optimization for analyzing
Belle II data. This was also why the input data of SVM and MLP had lower statistics.
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In fBDT, the large dataset(1 ab−1) can be input data in training without causing high
runtime. When it comes to the score of ML, the SVM and NN always had higher score
than fBDT. Presumably, the different input variable made better classification and higher
score with SVM and NN. As shown in the section 6.1, some input variables for the SVM
and NN, which were also used as pre-cut, have certainly stronger discriminating power
than continuum suppression variables for the fBDT. This is also visible in the distribu-
tions of input variables in section 6.1. Therefore, one cannot easily conclude that fBDT
made worse performance than other methods. One of limit of the fBDT training in this
analysis was that the fBDT classified only to distinguish the continuum from the signal.
The background of B meson pair should also be distinguished. It would be instructive to
search for different input variables, in addition to missingEnergyOfEventCMS, to classify
the signal better from other B meson. Then determination of the new target variable and
hyperparameter optimization in fBDT would be needed. The search for such variables
can demand a measurement of separation between signal and background. For example,
this measurement is Jensen-Shannon distance in [5]. In this analysis, I tried to measure
the separation with the permutation feature importance of ML. It is desirable that more
methods for the measurement of separation are searched.

Lastly, the fitting was performed to estimate signal yield and compare it with the result
from the branching fraction limit of the real data. The primary issue is that the real data
has extremely tiny signal fraction(/ 41 ) compared to MC data. The analyzing such a
tiny signal sample appears to be almost infeasible with the current technique. One can
import smaller signal sample from MC data for fit to organize a similar condition of real
data. The many new technique and methods still have to be searched to analyze in more
challenging circumstance.
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Appendix A

Topology Analysis

TopoAna is a software for topology analysis that is available for Belle II research [27].
It offers an opportunity to look into whole decay trees of signal and background in MC
data. By looking at result of the topology analysis, one can strategically come up with
the selection cut or criteria to rule out certain dominant decay in background. The result
of TopoAna is ranked by nEtr(the number of entries). The decay trees with high nEtr are
shown in this appendix and rest of them is not included.



Table 1: Decay trees and their respective initial-final states.

rowNo
decay tree

(decay initial-final states)
iDcyTr nEtr nCEtr

1
Υ(4S) → B+B−, B+ → ρ+D̄0, B− → νeν̄eK

−, ρ+ → π0π+, D̄0 → π0π−K+

(Υ(4S) 99K νeν̄eπ0π0π+π−K+K−)
302 66 66

2
Υ(4S) → B+B−, B+ → νeν̄eK

+, B− → ρ−D0, ρ− → π0π−, D0 → π0π+K−

(Υ(4S) 99K νeν̄eπ0π0π+π−K+K−)
338 57 123

3
Υ(4S) → B+B−, B+ → νeν̄eK

+, B− → π−D0, D0 → π0π+K−

(Υ(4S) 99K νeν̄eπ0π+π−K+K−)
1 35 158

4
Υ(4S) → B+B−, B+ → νeν̄eK

+, B− → ρ−D∗0, ρ− → π0π−, D∗0 → π0D0, D0 → π0π+K−

(Υ(4S) 99K νeν̄eπ0π0π0π+π−K+K−)
345 29 187

5
Υ(4S) → B+B−, B+ → π0π+π+D∗−, B− → νeν̄eK

−, D∗− → π−D̄0, D̄0 → π0π−K+

(Υ(4S) 99K νeν̄eπ0π0π+π+π−π−K+K−)
250 27 214

6
Υ(4S) → B+B−, B+ → ρ+D̄∗0, B− → νeν̄eK

−, ρ+ → π0π+, D̄∗0 → π0D̄0, D̄0 → π0π−K+

(Υ(4S) 99K νeν̄eπ0π0π0π+π−K+K−)
262 27 241

7
Υ(4S) → B+B−, B+ → νeν̄eK

+, B− → π0π−π−D∗+, D∗+ → π+D0, D0 → π0π+K−

(Υ(4S) 99K νeν̄eπ0π0π+π+π−π−K+K−)
25 26 267

8
Υ(4S) → B+B−, B+ → π+π+π−D̄0, B− → νeν̄eK

−, D̄0 → π0π−K+

(Υ(4S) 99K νeν̄eπ0π+π+π−π−K+K−)
740 26 293

9
Υ(4S) → B+B−, B+ → ρ+D̄0, B− → νeν̄eK

−, ρ+ → π0π+, D̄0 → π−K+

(Υ(4S) 99K νeν̄eπ0π+π−K+K−)
1097 24 317

10
Υ(4S) → B+B−, B+ → νeν̄eK

+, B− → π−D∗0, D∗0 → π0D0, D0 → π0π+K−

(Υ(4S) 99K νeν̄eπ0π0π+π−K+K−)
79 23 340

11
Υ(4S) → B+B−, B+ → νeν̄eK

+, B− → π+π−π−D0, D0 → π0π+K−

(Υ(4S) 99K νeν̄eπ0π+π+π−π−K+K−)
224 21 361

12
Υ(4S) → B+B−, B+ → π+D̄0, B− → νeν̄eK

−, D̄0 → π0π−K+

(Υ(4S) 99K νeν̄eπ0π+π−K+K−)
263 19 380

13
Υ(4S) → B+B−, B+ → νeν̄eK

+, B− → D∗0a−1 , D
∗0 → D0γ, a−1 → ρ0π−, D0 → π0π+K−,

ρ0 → π+π−

(Υ(4S) 99K νeν̄eπ0π+π+π−π−K+K−γ)
140 18 398

14
Υ(4S) → B+B−, B+ → νeν̄eK

+, B− → ρ−D0, ρ− → π0π−, D0 → π+K−

(Υ(4S) 99K νeν̄eπ0π+π−K+K−)
299 18 416

15
Υ(4S) → B+B−, B+ → ρ+D̄∗0, B− → νeν̄eK

−, ρ+ → π0π+, D̄∗0 → D̄0γ, D̄0 → π0π−K+

(Υ(4S) 99K νeν̄eπ0π0π+π−K+K−γ)
329 18 434

16
Υ(4S) → B+B−, B+ → D̄∗0a+1 , B

− → νeν̄eK
−, D̄∗0 → π0D̄0, a+1 → ρ0π+, D̄0 → π0π−K+,

ρ0 → π+π−

(Υ(4S) 99K νeν̄eπ0π0π+π+π−π−K+K−)
81 17 451

3

A.1 Signal(B± → K±νν̄) 79

A.1 Signal(B± → K±νν̄)



rowNo
decay tree

(decay initial-final states)
iDcyTr nEtr nCEtr

17
Υ(4S) → B+B−, B+ → νeν̄eK

+, B− → ρ−D0, ρ− → π0π−, D0 → K−a+1 , a
+
1 → ρ0π+,

ρ0 → π+π−

(Υ(4S) 99K νeν̄eπ0π+π+π−π−K+K−)
725 17 468

18
Υ(4S) → B+B−, B+ → ρ+D̄∗0, B− → νeν̄eK

−, ρ+ → π0π+, D̄∗0 → π0D̄0, D̄0 → π−K+

(Υ(4S) 99K νeν̄eπ0π0π+π−K+K−)
257 16 484

19
Υ(4S) → B+B−, B+ → νeν̄eK

+, B− → ρ−D∗0, ρ− → π0π−, D∗0 → D0γ,D0 → π0π+K−

(Υ(4S) 99K νeν̄eπ0π0π+π−K+K−γ)
277 16 500

20
Υ(4S) → B+B−, B+ → D̄∗0a+1 , B

− → νeν̄eK
−, D̄∗0 → π0D̄0, a+1 → ρ0π+, D̄0 → π−K+,

ρ0 → π+π−

(Υ(4S) 99K νeν̄eπ0π+π+π−π−K+K−)
308 16 516

21
Υ(4S) → B+B−, B+ → νeν̄eK

+, B− → π0π+π−π−D∗0, D∗0 → D0γ,D0 → π0π+K−

(Υ(4S) 99K νeν̄eπ0π0π+π+π−π−K+K−γ)
36 15 531

22
Υ(4S) → B+B−, B+ → νeν̄eK

+, B− → ρ0π−D0, ρ0 → π+π−, D0 → π0π+K−

(Υ(4S) 99K νeν̄eπ0π+π+π−π−K+K−)
143 15 546

23
Υ(4S) → B+B−, B+ → π0π+π+π−D̄∗0, B− → νeν̄eK

−, D̄∗0 → π0D̄0, D̄0 → π0π−K+

(Υ(4S) 99K νeν̄eπ0π0π0π+π+π−π−K+K−)
251 15 561

24
Υ(4S) → B+B−, B+ → π+π+π−D̄0, B− → νeν̄eK

−, D̄0 → π−K+

(Υ(4S) 99K νeν̄eπ+π+π−π−K+K−)
413 15 576

25
Υ(4S) → B+B−, B+ → π+D̄∗0, B− → νeν̄eK

−, D̄∗0 → π0D̄0, D̄0 → π0π−K+

(Υ(4S) 99K νeν̄eπ0π0π+π−K+K−)
672 15 591

26
Υ(4S) → B+B−, B+ → π0π+π+D∗−, B− → νeν̄eK

−, D∗− → π0D−, D− → π−π−K+

(Υ(4S) 99K νeν̄eπ0π0π+π+π−π−K+K−)
306 14 605

27
Υ(4S) → B+B−, B+ → ρ+D̄0, B− → νeν̄eK

−, ρ+ → π0π+, D̄0 → π+π−K0
S ,K

0
S → π+π−

(Υ(4S) 99K νeν̄eπ0π+π+π+π−π−K−)
141 13 618

28
Υ(4S) → B+B−, B+ → νeν̄eK

+, B− → ρ−D0, ρ− → π0π−, D0 → π+π−K̄∗, K̄∗ → π+K−

(Υ(4S) 99K νeν̄eπ0π+π+π−π−K+K−)
191 13 631

29
Υ(4S) → B+B−, B+ → ρ+D̄0, B− → νeν̄eK

−, ρ+ → π0π+, D̄0 → K+a−1 , a
−
1 → ρ0π−,

ρ0 → π+π−

(Υ(4S) 99K νeν̄eπ0π+π+π−π−K+K−)
259 13 644

30
Υ(4S) → B+B−, B+ → νeν̄eK

+, B− → D∗0a−1 , D
∗0 → π0D0, a−1 → ρ0π−, D0 → π0π+K−,

ρ0 → π+π−

(Υ(4S) 99K νeν̄eπ0π0π+π+π−π−K+K−)
1424 13 657

31
Υ(4S) → B+B−, B+ → π0π+π+π−D̄∗0, B− → νeν̄eK

−, D̄∗0 → π0D̄0, D̄0 → π−K+

(Υ(4S) 99K νeν̄eπ0π0π+π+π−π−K+K−)
502 12 669

32
Υ(4S) → B+B−, B+ → νeν̄eK

+, B− → π0π+π−π−D∗0, D∗0 → π0D0, D0 → π+K−

(Υ(4S) 99K νeν̄eπ0π0π+π+π−π−K+K−)
1187 12 681

4
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Table 1: Decay trees and their respective initial-final states.

rowNo
decay tree

(decay initial-final states)
iDcyTr nEtr nCEtr

1
Υ(4S) → B+B−, B+ → µ+νµD̄

∗0, B− → ρ−D0, D̄∗0 → π0D̄0, ρ− → π0π−, D0 → π0π+K−,
D̄0 → π0π−K+

(Υ(4S) 99K µ+νµπ
0π0π0π0π+π−π−K+K−)

286 80 80

2
Υ(4S) → B+B−, B+ → ρ+D̄0, B− → µ−ν̄µD

∗0, ρ+ → π0π+, D̄0 → π0π−K+, D∗0 → π0D0,
D0 → π0π+K−

(Υ(4S) 99K µ−ν̄µπ0π0π0π0π+π+π−K+K−)
16168 76 156

3
Υ(4S) → B+B−, B+ → π0π+π+D∗−, B− → µ−ν̄µD

∗0, D∗− → π−D̄0, D∗0 → π0D0, D̄0 → π0π−K+,
D0 → π0π+K−

(Υ(4S) 99K µ−ν̄µπ0π0π0π0π+π+π+π−π−K+K−)
41735 51 207

4
Υ(4S) → B+B−, B+ → ρ+D̄0, B− → µ−ν̄µD

0, ρ+ → π0π+, D̄0 → π0π−K+, D0 → π0π+K−

(Υ(4S) 99K µ−ν̄µπ0π0π0π+π+π−K+K−)
7482 50 257

5
Υ(4S) → B+B−, B+ → ρ+D̄0, B− → µ−ν̄µD

∗0, ρ+ → π0π+, D̄0 → π0π−K+, D∗0 → D0γ,
D0 → π0π+K−

(Υ(4S) 99K µ−ν̄µπ0π0π0π+π+π−K+K−γ)
47956 46 303

6
Υ(4S) → B+B−, B+ → µ+νµD̄

∗0, B− → π0π−π−D∗+, D̄∗0 → π0D̄0, D∗+ → π+D0, D̄0 → π0π−K+,
D0 → π0π+K−

(Υ(4S) 99K µ+νµπ
0π0π0π0π+π+π−π−π−K+K−)

127168 39 342

7
Υ(4S) → B+B−, B+ → e+νeD̄

∗0, B− → ρ−D0, D̄∗0 → π0D̄0, ρ− → π0π−, D0 → π0π+K−,
D̄0 → π0π−K+

(Υ(4S) 99K e+νeπ0π0π0π0π+π−π−K+K−)
34282 38 380

8
Υ(4S) → B+B−, B+ → µ+νµD̄

∗0, B− → ρ−D0, D̄∗0 → D̄0γ, ρ− → π0π−, D0 → π0π+K−,
D̄0 → π0π−K+

(Υ(4S) 99K µ+νµπ
0π0π0π+π−π−K+K−γ)

132795 38 418

9
Υ(4S) → B+B−, B+ → ρ+D̄0, B− → e−ν̄eD

0, ρ+ → π0π+, D̄0 → π0π−K+, D0 → π0π+K−

(Υ(4S) 99K e−ν̄eπ0π0π0π+π+π−K+K−)
223564 36 454

10
Υ(4S) → B+B−, B+ → ρ+D̄0, B− → e−ν̄eD

∗0, ρ+ → π0π+, D̄0 → π0π−K+, D∗0 → π0D0,
D0 → π0π+K−

(Υ(4S) 99K e−ν̄eπ0π0π0π0π+π+π−K+K−)
184765 35 489

11
Υ(4S) → B+B−, B+ → µ+νµD̄

∗0, B− → ρ−D∗0, D̄∗0 → π0D̄0, ρ− → π0π−, D∗0 → π0D0,
D̄0 → π0π−K+, D0 → π0π+K−

(Υ(4S) 99K µ+νµπ
0π0π0π0π0π+π−π−K+K−)

16945 34 523

12
Υ(4S) → B+B−, B+ → ρ+D̄0, B− → e−ν̄eD

∗0, ρ+ → π0π+, D̄0 → π−K+, D∗0 → π0D0,
D0 → π0π+K−

(Υ(4S) 99K e−ν̄eπ0π0π0π+π+π−K+K−)
61188 34 557
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13
Υ(4S) → B+B−, B+ → π0π+π+π−D̄∗0, B− → ρ−D0, D̄∗0 → π0D̄0, ρ− → π0π−, D0 → π0π+K−,
D̄0 → π0π−K+

(Υ(4S) 99K π0π0π0π0π0π+π+π+π−π−π−K+K−)
58871 33 590

14
Υ(4S) → B+B−, B+ → ρ+D̄0, B− → π0π+π−π−D∗0, ρ+ → π0π+, D̄0 → π0π−K+, D∗0 → π0D0,
D0 → π0π+K−

(Υ(4S) 99K π0π0π0π0π0π+π+π+π−π−π−K+K−)
32585 32 622

15
Υ(4S) → B+B−, B+ → µ+νµD̄

0, B− → ρ−D0, D̄0 → π0π−K+, ρ− → π0π−, D0 → π0π+K−

(Υ(4S) 99K µ+νµπ
0π0π0π+π−π−K+K−)

59324 32 654

16
Υ(4S) → B+B−, B+ → µ+νµD̄

∗0, B− → π−D∗0, D̄∗0 → π0D̄0, D∗0 → π0D0, D̄0 → π0π−K+,
D0 → π0π+K−

(Υ(4S) 99K µ+νµπ
0π0π0π0π+π−π−K+K−)

72516 32 686

17
Υ(4S) → B+B−, B+ → µ+νµD̄

∗0, B− → π+π−π−D0, D̄∗0 → π0D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(Υ(4S) 99K µ+νµπ
0π0π0π+π+π−π−π−K+K−)

71631 29 715

18
Υ(4S) → B+B−, B+ → π0π+π+D∗−, B− → e−ν̄eD

∗0, D∗− → π−D̄0, D∗0 → π0D0, D̄0 → π0π−K+,
D0 → π0π+K−

(Υ(4S) 99K e−ν̄eπ0π0π0π0π+π+π+π−π−K+K−)
23209 28 743

19
Υ(4S) → B+B−, B+ → ρ+D̄0, B− → e−ν̄eD

∗0, ρ+ → π0π+, D̄0 → π0π−K+, D∗0 → D0γ,
D0 → π0π+K−

(Υ(4S) 99K e−ν̄eπ0π0π0π+π+π−K+K−γ)
22992 27 770

20
Υ(4S) → B+B−, B+ → π0π+π+D∗−, B− → ρ−D0, D∗− → π−D̄0, ρ− → π0π−, D0 → π0π+K−,
D̄0 → π0π−K+

(Υ(4S) 99K π0π0π0π0π+π+π+π−π−π−K+K−)
47494 27 797

21
Υ(4S) → B+B−, B+ → e+νeD̄

∗0, B− → π−D0, D̄∗0 → π0D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(Υ(4S) 99K e+νeπ0π0π0π+π−π−K+K−)
94916 27 824

22
Υ(4S) → B+B−, B+ → µ+νµD̄

∗0, B− → ρ−D∗0, D̄∗0 → π0D̄0, ρ− → π0π−, D∗0 → D0γ,
D̄0 → π0π−K+, D0 → π0π+K−

(Υ(4S) 99K µ+νµπ
0π0π0π0π+π−π−K+K−γ)

376688 27 851

23
Υ(4S) → B+B−, B+ → µ+νµD̄

∗0, B− → ρ−D0, D̄∗0 → D̄0γ, ρ− → π0π−, D0 → π+K−,
D̄0 → π0π−K+

(Υ(4S) 99K µ+νµπ
0π0π+π−π−K+K−γ)

74370 26 877

24
Υ(4S) → B+B−, B+ → µ+νµD̄

∗0, B− → ρ−D0, D̄∗0 → π0D̄0, ρ− → π0π−, D0 → π+K−,
D̄0 → π0π−K+

(Υ(4S) 99K µ+νµπ
0π0π0π+π−π−K+K−)

113562 26 903

25
Υ(4S) → B+B−, B+ → ρ+D̄0, B− → π0π−π−D∗+, ρ+ → π0π+, D̄0 → π0π−K+, D∗+ → π+D0,
D0 → π0π+K−

(Υ(4S) 99K π0π0π0π0π+π+π+π−π−π−K+K−)
156471 26 929
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Table 1: Decay trees and their respective initial-final states.

rowNo
decay tree

(decay initial-final states)
iDcyTr nEtr nCEtr

1
e+e− → π0π+π−D∗+D∗−γI , D∗+ → π+D0, D∗− → π−D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π+π+π+π−π−π−K+K−γI)
100319 84 84

2
e+e− → π0π+π−D∗+D∗−, D∗+ → π+D0, D∗− → π−D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π+π+π+π−π−π−K+K−)
343224 65 149

3
e+e− → π+π−D∗+D∗−γI , D∗+ → π+D0, D∗− → π−D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π+π+π+π−π−π−K+K−γI)
94207 53 202

4
e+e− → π+π−ρ−D∗+D̄∗0, ρ− → π0π−, D∗+ → π+D0, D̄∗0 → π0D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π0π+π+π+π−π−π−K+K−)
9250 51 253

5
e+e− → π0π+π−D∗0D̄∗0γI , D∗0 → π0D0, D̄∗0 → π0D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π0π0π+π+π−π−K+K−γI)
33609 51 304

6
e+e− → π0π+π−π−D∗+D̄∗0, D∗+ → π+D0, D̄∗0 → π0D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π0π+π+π+π−π−π−K+K−)
106145 49 353

7
e+e− → π+π−D∗+D∗−, D∗+ → π+D0, D∗− → π−D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π+π+π+π−π−π−K+K−)
541814 48 401

8
e+e− → π+π+π−D∗−D∗0γI , D∗− → π−D̄0, D∗0 → π0D0, D̄0 → π0π−K+, D0 → π0π+K−

(e+e− 99K π0π0π0π+π+π+π−π−π−K+K−γI)
18162 47 448

9
e+e− → π+π−ρ+D∗−D∗0, ρ+ → π0π+, D∗− → π−D̄0, D∗0 → π0D0, D̄0 → π0π−K+, D0 → π0π+K−

(e+e− 99K π0π0π0π0π+π+π+π−π−π−K+K−)
58868 46 494

10
e+e− → π0π+ρ−D∗+D∗−γI , ρ− → π0π−, D∗+ → π+D0, D∗− → π−D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π0π+π+π+π−π−π−K+K−γI)
167638 45 539

11
e+e− → π0π+D∗−D∗0γI , D∗− → π−D̄0, D∗0 → π0D0, D̄0 → π0π−K+, D0 → π0π+K−

(e+e− 99K π0π0π0π0π+π+π−π−K+K−γI)
90363 44 583

12
e+e− → π+π−ρ+D∗−D∗0γI , ρ+ → π0π+, D∗− → π−D̄0, D∗0 → π0D0, D̄0 → π0π−K+, D0 → π0π+K−

(e+e− 99K π0π0π0π0π+π+π+π−π−π−K+K−γI)
264880 44 627

13
e+e− → π+π−ωD∗+D∗−, ω → π0π+π−, D∗+ → π+D0, D∗− → π−D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π+π+π+π+π−π−π−π−K+K−)
120373 43 670

14
e+e− → π+π−ρ−D∗+D̄∗0γI , ρ− → π0π−, D∗+ → π+D0, D̄∗0 → π0D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π0π+π+π+π−π−π−K+K−γI)
200357 43 713

15
e+e− → π+π−π−D∗+D̄∗0, D∗+ → π+D0, D̄∗0 → π0D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π+π+π+π−π−π−K+K−)
470853 43 756

16
e+e− → ρ0π+π−D∗+D∗−, ρ0 → π+π−, D∗+ → π+D0, D∗− → π−D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π+π+π+π+π−π−π−π−K+K−)
509230 43 799

17
e+e− → π+π−π−D∗+D̄∗0γI , D∗+ → π+D0, D̄∗0 → π0D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π+π+π+π−π−π−K+K−γI)
80530 39 838
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18
e+e− → π0π0π+π−D∗+D∗−γI , D∗+ → π+D0, D∗− → π−D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π0π+π+π+π−π−π−K+K−γI)
129107 39 877

19
e+e− → π0π+π−D∗0D̄∗0, D∗0 → π0D0, D̄∗0 → π0D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π0π0π+π+π−π−K+K−)
196476 39 916

20
e+e− → π0π+π+π−D∗−D∗0, D∗− → π−D̄0, D∗0 → π0D0, D̄0 → π0π−K+, D0 → π0π+K−

(e+e− 99K π0π0π0π0π+π+π+π−π−π−K+K−)
202149 39 955

21
e+e− → π+π−ωD∗+D∗−γI , ω → π0π+π−, D∗+ → π+D0, D∗− → π−D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π+π+π+π+π−π−π−π−K+K−γI)
5995 38 993

22
e+e− → π0π−D∗+D̄∗0, D∗+ → π+D0, D̄∗0 → π0D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π0π+π+π−π−K+K−)
19476 38 1031

23
e+e− → π0π+π−ρ+D∗−D∗0, ρ+ → π0π+, D∗− → π−D̄0, D∗0 → π0D0, D̄0 → π0π−K+, D0 → π0π+K−

(e+e− 99K π0π0π0π0π0π+π+π+π−π−π−K+K−)
165338 38 1069

24
e+e− → π0π+π−ρ+D∗−D∗0γI , ρ+ → π0π+, D∗− → π−D̄0, D∗0 → π0D0, D̄0 → π0π−K+, D0 → π0π+K−

(e+e− 99K π0π0π0π0π0π+π+π+π−π−π−K+K−γI)
10567 37 1106

25
e+e− → π0π−D∗+D̄∗0γI , D∗+ → π+D0, D̄∗0 → π0D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π0π+π+π−π−K+K−γI)
44343 37 1143

26
e+e− → π0ρ0π−D∗+D̄∗0γI , ρ0 → π+π−, D∗+ → π+D0, D̄∗0 → π0D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π0π+π+π+π−π−π−K+K−γI)
67347 37 1180

27
e+e− → π0π+π−ωD∗+D∗−, ω → π0π+π−, D∗+ → π+D0, D∗− → π−D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π0π+π+π+π+π−π−π−π−K+K−)
137375 37 1217

28
e+e− → π0π−ωD∗+D̄∗0, ω → π0π+π−, D∗+ → π+D0, D̄∗0 → π0D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π0π0π+π+π+π−π−π−K+K−)
230976 37 1254

29
e+e− → π0π−ωD∗+D̄∗0γI , ω → π0π+π−, D∗+ → π+D0, D̄∗0 → π0D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π0π0π+π+π+π−π−π−K+K−γI)
255940 37 1291

30
e+e− → π0ρ0π+π−D∗+D∗−, ρ0 → π+π−, D∗+ → π+D0, D∗− → π−D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π+π+π+π+π−π−π−π−K+K−)
304006 37 1328

31
e+e− → π0π+π−ρ−D∗+D̄∗0γI , ρ− → π0π−, D∗+ → π+D0, D̄∗0 → π0D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π0π0π+π+π+π−π−π−K+K−γI)
338000 37 1365

32
e+e− → π0π+π−π−D∗+D̄∗0γI , D∗+ → π+D0, D̄∗0 → π0D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π0π+π+π+π−π−π−K+K−γI)
464869 37 1402

33
e+e− → π0π+ρ−D∗+D∗−, ρ− → π0π−, D∗+ → π+D0, D∗− → π−D̄0, D0 → π0π+K−, D̄0 → π0π−K+

(e+e− 99K π0π0π0π0π+π+π+π−π−π−K+K−)
59801 36 1438

34
e+e− → π0π+π+π−D∗−D∗0γI , D∗− → π−D̄0, D∗0 → π0D0, D̄0 → π0π−K+, D0 → π0π+K−

(e+e− 99K π0π0π0π0π+π+π+π−π−π−K+K−γI)
141592 36 1474

35
e+e− → π0π+D∗−D∗0, D∗− → π−D̄0, D∗0 → π0D0, D̄0 → π0π−K+, D0 → π0π+K−

(e+e− 99K π0π0π0π0π+π+π−π−K+K−)
277876 35 1509
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