
Domain-Specific Language for Querying
Particle Properties

David Christian Katheder

Master′s Thesis
at the Faculty of Physics

Ludwig–Maximilians–Universität München
Chair of Elementary Particle Physics

Supervisor:

Prof. Dr. Thomas Kuhr

Munich, 08.03.2022

Domänenspezifische Sprache zur
Abfrage von Teilcheneigenschaften

David Christian Katheder

Masterarbeit
an der Fakulität für Physik

Ludwig–Maximilians–Universität München
Lehrstuhl für Experimentelle Flavorphysik

Betreuer:

Prof. Dr. Thomas Kuhr

München, 08.03.2022

Chapter 1

Introduction

These days, Big Data is on everyone’s lips. Because of the infiltration of the internet
into every aspect of our lives, massive amounts of data and metadata are generated every
second. Tech giants like Google and Facebook gather, analyze and use this data for adver-
tising purposes.
One Definition for Big Data is that the sheer amount makes it impossible to store, process,
and analyze the records with a single computer [1]. This is not a new problem. Particle
physics had to deal with Big Data before it was the talk of the town. Particle physics
experiments gather large amounts of data of subatomic particle collisions to investigate
the fundamental structure of our universe.
From 1998 to 2010, as part of the Belle experiment, the asymmetric electron-positron col-
lider KEKB was operated by the Japanese High Energy Accelerator Research Organization
(KEK) in Tsukuba. The facility is also called a B-factory since the beam energies were
chosen to produce mainly B mesons in the collisions. The Belle experiment closely analyzed
the properties of pairs of B and anti-B mesons and confirmed the effect of CP-violation [2].
With technological advances in handling Big Data, particle physics experiments have be-
come more ambitious. For the successor experiment Belle II, the accelerator SuperKEKB
and detector were upgraded. The goal is to collect a total of 50 ab−1 which corresponds
to 60 Petabytes of raw data [3], which is 50 times more data than the previous Belle ex-
periment. The main objective is to make precision measurements in the B-sector of the
standard model and to search for leads to new physics. This huge amount of data needs
to be filtered in real-time and stored for later analysis. In addition to large amounts of
hardware in computing grids and storage facilities, the proper software for analyzing the
stored records is critical.
The Belle II Collaboration has developed a dedicated software framework called basf2
(Belle II Analysis Software Framework) for this purpose. It is used both for offline pur-
poses (e.g., reconstruction and analysis), as well as for online duties (e.g., data acquisition,
data quality monitoring, and high-level triggering) [4]. Due to the massive number of reg-
istered events, filtering and selection capabilities are essential. This work aims to extend
and improve event selection using a domain-specific language.

2 1. Introduction

Chapter 2

The Belle II Experiment

The Belle II Collaboration involves over 984 physicists from 115 institutions in 26 coun-
tries [5]. In the following sections, the accelerator and the detector are introduced briefly.
For more detailed descriptions, the resources [6–8] can be consulted. This is followed by a
description of the Belle II Analysis Software Framework.

2.1 SuperKEKB Accelerator

The electron positron accelerator SuperKEKB is located in Tsukuba, Ibaraki Prefecture,
Japan. It is an upgrade of its predecessor KEKB, which was successfully in operation for
more than ten years for the Belle experiment. A diagram of the SuperKEKB accelerator
facilities is shown in Figure 2.1. It is an asymmetric accelerator, as the colliding electron-
and positrons beams have different energies.

Figure 2.1: Overview of the SuperKEKB accelerator facilities. Taken from [2].

4 2. The Belle II Experiment

The following beam energies have been chosen:

E(e+) = 4 GeV, E(e−) = 7 GeV (2.1)

. This choice gives a center-of-mass energy of 10.58 GeV, which coincides with the mass of
the Υ(4S) resonance [8].
SuperKEKB is able to deliver e+e−-collisions with center-of-mass energies from just below
the Υ(1S) (9.46 GeV) to the Υ(6S) (11.24 GeV) resonance, yet the majority of the data
will be collected at the Υ(4S) resonance [7].
The interaction point where the beams collide is surrounded by the Belle II detector, which
measures the result of the particle collisions. The mass of the Υ(4S) resonance is a few
MeV above the mass of two charged or neutral B-mesons, allowing it to decay exclusively
into B-meson pairs [8].

2.2 Detector

The Belle II detector is specifically designed to make precision measurements of B-physics
around the Υ(4S) resonance. An artistic rendering of the detector is shown in Figure 2.2a.
The detector is approximately 7 meters in diameter and about 7.5 meters long. A schematic
visualization of the detector components is shown in Figure 2.2b. The detector is built up

(a)

CDC

KLM

Solenoid

TOP

SVD

PXD

ECL

Barrel ForwardBackward

e-

e+IP

ARICH

(b)

Figure 2.2: (a) Artistic rendering of the Belle II detector, taken from [2]. (b) Schematic
top view of the detector depicting its components.

of several layers around the interaction point (IP) where the beams collide.
The innermost layer is the vertex detector (VXD) which consists of two components. The
pixel detector (PXD) consists of DEPFET based pixelated sensors [7]. Around it is the
silcon vertex detector (SVD) which is composed of double-sided silicon strip sensors. They

2.2 Detector 5

form the VXD, which is designed to precisely measure the positions of the decay points of
B-mesons and other particles.
This is followed by the central drift chamber (CDC), which is utilized for tracking. It is
used to measure momentum, dE/dx information, and trajectories of charged particles [2].
The Belle II detector has two components for particle identification which utilize the
Cherenkov effect to distinguish charged particles. The time of propagation (TOP) counter
is used in the barrel region and consists of quartz radiator bars. In the forward end-cap,
the aerogel ring-imaging Cherenkov detector (ARICH) is another component for particle
identification. The electromagnetic calorimeter (ECL) is utilized for energy measurements,
mainly of electrons and photons.
The KLM detector is used to identify K0

L mesons and muons. A superconducting solenoid
magnet generates a homogeneous magnetic field of 1.5 T in which all but the outermost
subdetectors are located [6].

6 2. The Belle II Experiment

2.3 Belle II Analysis Software Framework

basf2 can be categorized into three components. It consists of code specific to the Belle II
experiment, dependencies that are provided via the externals, and build- and configuration-
related tools [9]. The externals provide high-energy physics-specific software like ROOT
and Geant4, developed at CERN. However, it is also used to distribute about 90 supple-
mentary Python packages and C++ libraries like boost [7, 10]. ROOT is used in basf2
to read and write event data to files in their custom file format, but the library also pro-
vides statistical analysis and visualization tools [7, 11]. Geant4 is a software package for
simulating the passage of particles through matter and is used for generating Monte-Carlo
data [12]. The Belle II-specific code is divided into about 40 packages covering the entire
high-energy physics workflow, shown in Figure 2.3. It includes, among others, a package
for each detector component, the code for track reconstruction, and the tools for post-
reconstruction analysis [9].

Detector

Data Taking

Data Aquisition

Monte-Carlo

Event Generation Simulation

Reconstruction

Calibration Tracking,
Clustering,

PID
Calculation,

...

Analysis

Skimming Analysis

Figure 2.3: Overview of high-energy physics workflow. Adapted from [13].

2.3.1 Architecture

basf2 must be able to process vast amounts of data and operate in a flexible way. Figure 2.4
shows the data processing architecture. basf2 executes a series of dynamically loaded mod-
ules. The modules are arranged in a Path that executes the modules subsequently. Each
module encapsulates a data processing method. That can be a simple task like reading
data from files but also a very complex task like a full detector simulation [4]. During
execution, the modules can interact with a common DataStore. The DataStore provides
access to mutable objects or arrays of objects [7].
The framework core and most of the modules are implemented in C++. basf2 uses the
boost python library to create a Python interface. This way, the arrangement and configu-
ration of modules in a path can be made via simple Python scripts called “steering files”.
Python is a popular programming language for data science and data analysis. The full
functionality of the Python language can be used in the steering files. Excellent scientific
and data analysis packages like pandas, NumPy and SciPy can easily be integrated into
data analytics tasks [14–16]. The combination of C++ and Python is very beneficial be-
cause it combines the ease of use of the Python language with the performance of compiled

2.3 Belle II Analysis Software Framework 7

Module
#1

Module
#2

Module
#3

Module
#4

Path

Module chain

DataStore

Figure 2.4: The modular architecture of basf2. Every processing task is implemented in a
module. They are arranged in a Path and are subsequently executed. During execution,
they interact with a common DataStore. Adapted from [4].

code for complex routines. This allows data analysis scripts to be developed faster without
compromising performance too much.

2.3.2 Analysis Variablemanager

The Manager class from the analysis package handles all attributes and physical proper-
ties of Particle objects created from reconstructed data objects. There can be kinematic
and event-based properties. These are broadly called variables and are centrally managed
by the Manager class. The modules of the analysis package can read so-called mdst files
containing reconstructed particles.
The Manager class supports different types of variables. We distinguish between standard
variables, parameter- and metavariables. The class diagram of the Manager and the asso-
ciated variable class Var is shown in Figure 2.5. Var has name, group and description

Var

+ name: std::string
+ description: std::string
+ group: std::string
+ variabletype: VariableDataType
+ function: std::function<
 std::variant<double,int, bool>(Particle const*)>

+ extendDescriptionString(const std::string&): void

Manager

- m_variables: std::map<std::string, std::shared_ptr<Var>>
- m_parameter_variables:
 std::map<std::string, std::shared_ptr<ParameterVar>>
- m_meta_variables:
 std::map<std::string, std::shared_ptr<MetaVar>>
....

+ getVariable(const std::string& name)
+ createVariable(const std::string& name)
....

Figure 2.5: The variable manager stores shared pointers to variable objects. The Var class
has a name and stores a function object which takes a pointer-to-const of Particle and
returns a value of type std::variant<double,int,bool>.

members. The function member hosts a std::function object that can be called with

8 2. The Belle II Experiment

a pointer-to-const of type Particle in order to return the value of the requested property
for that object. All registered variables are stored by name in the m variables map.
Two additional maps are defined for parameter- and metavariables. Meta- and parameter-
variables can be dynamically created and are configurable with user-defined parameters.
The name is reminiscent of the concept of metaprogramming. They are frequently used
in cuts where they resemble a function call. The function name corresponds to the re-
quested metavariable, and the function arguments are the parameters used to modify the
variable’s construction. The getVariable method searches in the m variables map for
the requested Var object. If the lookup fails, the function tries to create a new variable dy-
namically using the createVariable method. The variable values can be of type double,
int, and bool, so the return value is defined as a C++ std::variant. A variant is a
type-safe container that can hold different data types. It also provides utility functions to
check and extract the variously typed values safely.

2.3.3 Cuts in basf2

The utility class GeneralCut located in the framework package provides a binary filter
functionality. In an analysis or a trigger we want to select particles based on a combination
of relevant properties. Selection criteria, so-called “cuts” are provided as a string:

5.2 < Mbc < 5.29 and abs(deltaE) < 2.0 (2.2)

. Valid cuts can contain the following components:

1. Ternary numeric conditions, e.g 5.2 < Mbc < 5.29

2. binary numeric conditions, e.g abs(deltaE) < 2.0

3. composite logic statements

4. variables, e.g Mbc

5. parameter- and meta-variables, e.g abs(deltaE)

6. numeric literals

All common comparison operators (<, <=, >, >=, ==, !=) can be used to form binary
and ternary numeric conditions.
The basic components of the cut are severely limited. Each statement on one side of the
comparison must be exactly a number, a variable or a metavariable/parametervariable.

2.3.4 GeneralCut implementation

Binary filter functionality is a basic feature that is needed in different modules for different
types of C++ objects. C++ is a strongly typed language, yet it must be achieved that in-
stances of different C++ classes can be filtered with cuts. This should be achieved without

2.3 Belle II Analysis Software Framework 9

duplicating code and classes. Modularity is achieved with C++ template metaprogram-
ming and separation of concerns of string parsing and variable and object management.
The GeneralCut class template incorporates the parsing implementation and provides the
check interface. GeneralCut has a private constructor and thus can only be constructed
from a string using the static member function compile. The class diagram can be seen
in Figure 2.6. It is responsible for processing the input into an object which can provide
the filtering function for the respective objects. For that is has several string processing
methods, preprocess, processLogicConditions, processTernaryNumericConditions,
processBinaryNumericCondtions and processVariable. To derive a cut class, Gener-

GeneralCut

- m_operation: Operation
- m_var: AVariableManager::Var const*
- m_number: double
- m_isNumeric: bool
- m_left: std::unique_ptr<GeneralCut>
- m_right: std::unique_ptr<GeneralCut>

+ compile(std::string): std::unique_ptr<GeneralCut>
+ check(Object const*): bool
+ print(): void
+ decompile(): std::string
- GeneralCut(std::string)
- preprocess(std::string): std::string
- processLogicConditions(std::string): bool
- processBinaryNumericConditions(std::string): bool
- processTernaryNumericConditions(std::string): bool
- processVariable(const std::string&): void
- get(AVariableManager::Object const*): double

AVariableManager

<<enumeration>>
Operation

EMPTY = 0
NONE = 1
AND = 2
OR = 3
LT = 4
LE = 5
GT = 6
GE = 7
EQ = 8
NE = 9

<<Interface>>
AVariableManager

+ getInstance(): AVariableManager&
+ getVariable(std::string): Var const*

<<typedef>>
Object

<<typedef>>
Var

Figure 2.6: Definition of GeneralCut class template. Variable management and variable-
type definitions are provided by dependency injection via template metaprogramming. The
GeneralCut template can be specialized by injecting a class which satisfies the AVariable-
Manager interface.

alCut accepts a variable manager type as a template argument. In C++, we can derive
classes from templates at compile time by supplying types that are substituted for the tem-
plate arguments. Template arguments can be integral C++ types but also classes. This
allows modularity because GeneralCut can be specialized with different variable manager
classes. They can each define their own object and variable types but must comply with
the AVariableManager interface in Figure 2.6. There are primarily two variable managers
in basf2. One in the analysis package and another in the high-level trigger (HLT) package.
In addition, mock variable manager classes are defined for unittest purposes. The variable
manager is defined as a singleton pattern. This ensures that during program execution,
only one global instance of the variable manager class exists and can be requested glob-
ally [17]. This is important because all valid variables must be registered in the same
variable manager object in order to pass pointers to the GeneralCut objects via the tem-
plate argument dependent getVariable method. GeneralCut has an enumeration member

10 2. The Belle II Experiment

called m operation which designates the type of the cut object. The check method pro-
vides the binary evaluation interface for the object type defined in the variable manager.
The return value is true if the conditions in the cut for the object are met. The decompile

method is used to convert the cut object back to the cut statement that created it. print
does the same but passes it to standard output instead of returning it. Cut rules can
be arbitrarily nested and naturally have a tree-like structure. GeneralCut must map the
different constructs in the language. This is achieved using the enum operation and the
two pointer-members m left and m right. During compilation, the cut is manually split
into left and right sub-statements. Depending on the detected operator, the enum value is
set, and child objects are allocated.

2.3.5 Cut processing algorithm

The cut parsing is done in the GeneralCut constructor. The schematic structure of the
algorithm is shown in Figure 2.7. It starts with preprocessing and cleaning of the text
input, which is done by the preprocess method. In this step, the text pruning func-
tion boost::algorithm::trim is used to split off leading and trailing whitespace char-
acters. In addition, global brackets are removed and the cut is trimmed again with
boost::algorithm::trim.
If the cut is empty after this step, m operation is set to EMPTY and the initialization is
finished, otherwise processing continues. The return value of check is true for any object
if the enum value is set to EMPTY.
Processing logic condtitions and their combinations with and/or, is performed by the
processLogicConditions method. In order to split cuts into the sub-conditions at the
right places, the cut is scanned from the beginning for the keywords. During the scanning
process, all terms that are in brackets are ignored, which means that nested conditions will
be processed later. The precedence of and over or is achieved by first scanning the cut
completely for or-statements. This achieves that the weaker binding or operator is broken
up preferentially.
In both cases, the cut is split into two substrings which are used to initialize the children
m left and m right. The enum value is set to AND or OR accordingly. In this case, the
check function evaluates the two children members recursively and combines their return
value according to the enum value.
If no logic conditions are found, an attempt is made to interpret the cut as a ternary
numeric comparison. This is done by scanning the string for two consecutive comparison
operators, again ignoring all parenthesized subexpressions. The ternary comparison is split
into two binary comparisons initializing m left and m right. The enum value is set to
AND since the ternary comparison is satisfied exactly when both sides are true.
If the search for a ternary comparison fails, an attempt is made to interpret the remaining
string as a binary comparison. It is scanned for comparison operators and divided the left
and right sides. This initializes the child members and sets the enum value according to
the found comparison operator.
If all previous processing functions have not been able to perform any action, it is a basic

2.3 Belle II Analysis Software Framework 11

GeneralCut(std::string) preprocess cut is cut empty? End

processLogicConditions

Yes

No

logic condition
found?

processTernaryNumeric
Conditions

ternary numeric
condition found?

Yes

processBinaryNumeric
Conditions

No

binary numeric
condition found?

Yes

try numeric conversion

No

numeric conversion
successful

Yes

processVariable

Yes

No

No

Figure 2.7: Flowchart of GeneralCut constructor routine. In order to parse the different
cut constructs, multiple helper functions are called in sequence to process input. When
the pattern is found, the input is cleaved, and child elements are initialized with the
constituents. This initialization is recursive, as it is also carried out for the construction
of all child elements. The routine of helper functions is applied until the cut is completely
processed.

12 2. The Belle II Experiment

component and can be either a number, variable or metavariable/parametervariable. The
enum value is set to NONE, and an attempt is made to convert the string to a number.
If successful, the flag m isNumeric is set. When evaluated with check, this the numeric
value is returned. If the conversion fails, the exception is caught, and processVariable is
called with the string input.
This method fetches the singleton instance of the variable manager and tries to request a
pointer to the associated variable object via getVariable. m isNumeric is set to false.
Fetching the variable pointer may fail to result in a runtime error if the requested name
does not exist. When check is called with the object to be tested, the function mem-
ber of the variable object is evaluated with the object, returning the value of the object’s
property.

Limitations It is not possible to use formulas directly in the cut because the processing
functions of GeneralCut are not able to parse arithmetic.
Each formula must be wrapped with the formula metavariable so that it can be processed.
The parsing of arithmetic within the formula metavariable is done by another utility class,
FormulaParser, from the framework package. This is a significant restriction, which is
what the re-implementation is trying to improve. Through that, a much cleaner writing of
selection criteria is possible.

Chapter 3

Compiler Structure

Computers are designed to decode simple instructions in binary format and execute them
very quickly. Humans need a way to make the required routines understandable to the
computer. Compilers serve as translators between humans and machines. They map
source code written in programming languages into semantically equivalent machine lan-
guages [18]. Programming languages can be divided into several classes [18]:

1. First-generation machine languages encode instructions in binary format, which com-
puters can decode and execute.

2. Second-generation languages are human-readable representations of instructions, e.g.,
assembly code.

3. Third-generation languages also called higher-level programming languages, which
include general purpose languages such as C and Fortran.

4. Fourth-generation languages, also called domain-specific languages, are designed for
specific applications and purposes e.g., SQL for relational database queries.

Before the advent of higher-level programming languages, programs had to be written in
machine and assembly languages, which is very error-prone and cumbersome. A great
achievement of computer science was the development of higher-level programming lan-
guages and associated compilers that automatically convert source code into machine code.
Higher-level programming languages offer better abstractions of elementary programming
elements. In addition, they are better suited to represent the concepts familiar to humans
and thus facilitate programming. Furthermore, programs for different computer architec-
tures can be compiled from the same source code [20].

3.1 Overview

The conversion process to machine code is very complex and is therefore divided into sev-
eral stages and can be seen in Figure 3.1. The first three stages, lexical, syntactic, and

14 3. Compiler Structure

Lexical Analyzer

character stream

token stream

Syntax Analyzer

Type checking

syntax tree

Compiler Frontend

syntax tree

Compiler Backend Intermediate Code Generator

Machine Independent Code Optimizer

Code Generator

Machine-dependent code Optimizer

intermediate representation

target machine code

target machine code

intermediate representation

Symbol Table

Figure 3.1: Overview of a compilation process of source code. Input processing is a multi-
stage process, which can be divided into a compiler frontend and backend. The first stages
are lexical analysis and grammar-based synthesis. After that, semantic analysis is applied
to the syntax tree. The compiler backend turns this intermediary representation into target
machine code in several conversion steps while applying optimizations. Adapted from [18].

semantic analysis, are called the compiler frontend. This brings the source code into an
intermediate representation which often has the form of a syntax tree.
Modern compilers are extremely complex programs. They have not only the task to trans-
late into machine language in a semantically correct way but are also expected to perform
performance-enhancing code optimizations. The last three phases take over this task and
are called compiler backend. This typically transforms the syntax tree into a machine-
independent representation and applies code optimizations. This program is then further
converted into assembly code via the Code Generator. In the last stage, the assembly code
is converted into a machine-dependent binary representation while further optimizations
can be made.
For the design of a domain-specific language, a compiler frontend is necessary to create a
grammar-based parser. Established software packages exist to automatically generate the

3.2 Compiler Frontend 15

components of a compiler frontend from formal definitions. The basic components of a
compiler frontend are presented in the following.

3.2 Compiler Frontend

Semantic analysis is not necessary for our application in a domain-specific language since
we do not allocate statically typed symbols and assign values. The first two stages of the
compiler frontend are described below.

3.2.1 Lexical Analyzer

A lexer, often also called a scanner, is a program that reads text input incrementally and
groups it into so-called tokens [18]. The character stream is converted into a string of tokens
which facilitates the subsequent syntax analysis. In this phase, illegal characters can be
detected and reported. In addition, the transition to the token representation eliminates
irrelevant formatting characters. An example of tokenization is shown in Figure 3.2. The
cut is broken up into its constituent tokens. Optionally, a token can have an attribute
value if it represents a datatype or carries a name of an identifier.

Lexical Analyzer

5.2 < Mbc and abs(deltaE) < 2

?5.2? ?<? ?IDENTIFIER,"Mbc"? ?and? ?IDENTIFIER,"abs"? ?ARGUMENTTUPLE,"deltaE"? ?<? ?2?

Figure 3.2: Tokenization example for a cut. The scanner splits the input into tokens and
ignores irrelevant characters such as spaces.

Lexer generators In principle, it is possible to write a scanner program by hand, but
this could be very complex and difficult to maintain depending on the scope of application.
For this reason, scanners are typically generated automatically by lexer generators. These
programs can automatically generate source code or routines from a set of token defini-
tions. Tokens are defined with regular expressions and are passed to the lexer generator as
a list in a configuration file.
Regular expressions are a notation for describing strings and patterns. There are several
metacharacters and constructs to represent patterns. Table 3.1 lists the essential metachar-
acters. If the actual character should be matched instead of the metacharacter, it has to be

16 3. Compiler Structure

Table 3.1: Explanations of essential metacharacters for regular expressions which are used
to describe patterns. Adapted from [19].

Metacharacter Description
. ...matches any character (except \n and \r).
a* ...represents zero or any number of occurrences of a.
a+ ...represents one or any number of occurrences of a.
a | b ...represents the occurrence of a or b.
a? ...represents zero or one occurrence of a.
(ab) ...parentheses can be used to group subexpressions into a unit and

apply operations such as +, *, or | to the whole subexpression.
[ABC] ...square brackets are used to describe a selection of characters.
[a-zA-Z] A hyphen can define a character range when used inside of

a square bracket. This example describes the ranges a-z and A-Z.
\d ...is a short-hand notation for [0-9].

escaped with a backslash. There are also shorthand notations for frequently used patterns
and formatting characters.

3.2.2 Syntax Analyzer

The purpose of syntax analysis (also known as parsing) is to convert the sequence of tokens
into a data structure, the so-called syntax tree, which represents the underlying structure
of the input [20].

Context-free grammars

In order to check the sequence of tokens for correctness and to impose structure, fixed
rules must first be defined that describe valid compositions of tokens. This set of rules is
called grammar and defines the structure of the programming language. The definition of
a grammar requires the following ingredients [18]:

1. A set of tokens is usually referred to as terminals. The terminals are all basic building
blocks that can occur in the language.

2. A set of non-terminals must be specified. Each non-terminal defines an arrangement
of terminals and non-terminals.

3. The composition of each non-terminal must be defined by one or more production
rules.

4. A non-terminal must be declared as a start symbol. Typically, this is the first pro-
duction rule in the grammar.

3.2 Compiler Frontend 17

Each production rule consists of a non-terminal on the left side, also called the head, and a
right side called the body [18]. The notation of the grammar is called Backus-Naur-form.
In the body, the construct of the non-terminal is defined. If several derivations exist for
a non-terminal, they are grouped and can be written compactly, separated with a vertical
bar. If a grammar allows the derivation of two different syntax trees, it is ambiguous. One
typical example is expression parsing involving operators of different precedence. Whether
the ambiguity of a grammar is a problem depends on the area of application. For the
domain-specific language, it is essential that the grammar is non-ambiguous. A common
strategy to eliminate ambiguity is to add a non-terminal for every precedence level. Non-
terminals are ordered in the grammar hierarchy according to their precedence level [18]. A
simple grammar for exemplary purposes is shown in Listing 3.1.

Listing 3.1: Toy grammar for parsing expressions which include addition and multiplication
of integers.

〈sum〉 ::= 〈term〉 (1)

| 〈sum〉 + 〈term〉 (2)

〈term〉 ::= INTEGER (3)

| 〈term〉 * INTEGER (4)

The token set consists of INTEGER and the two operators for addition and multiplication.
It defines the start symbol sum. Operator precedence of multiplication is achieved by
introducing the term non-terminal. In bottom-up parsing, the multiplication rules are
going to be applied first. A syntax tree for an example input is illustrated in Figure 3.3.
The tree nodes represent the applied grammar rules, and the tree structure implicitly
contains the order in which the operations must be evaluated.

Predictive parsing

The goal of predictive parsing is to construct programs that are able to generate a syntax
tree automatically according to the grammar definition. A possible construction is the
LR-parser which uses stack automata generated from the grammar rules to process the
tokens [20]. LR-parsers are often also called shift-reduce parsers. The stack holds infor-
mation about parsed symbols and already made state transitions. At each processing step,
either a shift, reduce or goto action can be performed [20]:

• shift reads a token from the input and pushes it on the stack together with the state
transition.

• reduce replaces N top elements on the stack with the corresponding non-terminal if
they match a body of a production rule. After the reduce action, the parser is in the
topmost state in the stack.

18 3. Compiler Structure

3 + 5 * 2

term

sum

term

sum

term

Figure 3.3: Derived syntax tree according to the example grammar. The tree nodes corre-
spond to the production rules, and the structure implicitly contains the order in which the
operations must be evaluated. The leaves of the tree correspond to the token sequence.

• goto is executed when encountering non-terminals on top of the stack. The parser
switches to the specified state.

Production rules are applied bottom-up with the goal to arrive at the start symbol. The
chosen action in each step is derived from decision tables, which can be constructed from
the grammar. If the input is not legal, there will be a situation during parsing in which
no legal action can be chosen. Table 3.2 shows the parser table for the grammar, which
is specified in Listing 3.1. Each row represents a parser state, and each entry is a valid

Table 3.2: Parsing table for grammar specified in Listing 3.1.

State INTEGER PLUS TIMES $ sum term
0 s3 g1 g2
1 s4 a
2 r1 s5 r1
3 r3 r3 r3
4 s3 g6
5 s7
6 r2 s5 r2
7 r4 r4 r4

transition from this state. The columns each represent the elements at the top of the stack.
These are all terminals, non-terminals, and the end symbol $. In each parsing step, either
a shift s, reduce r, or goto g action can be performed.
The state change for shift and goto are indicated in the table by the following numbers.
The numbers in the reduce table entries indicate which grammar rule is applied and cor-
responds to the enumeration in Listing 3.1.

3.2 Compiler Frontend 19

Table 3.3: Example of a shift-reduce parser routine for grammar in Listing 3.1, which
executes the rules specified in parsing table 3.2. Tokens are shifted onto a stack together
with the current state information (indicated in bold). An overview of the parser state,
stack, lookahead token (LA), and the unscanned input is given for every step.

Step Current state Stack LA Unscanned Action
0 0 0 3 3 + 5 * 2 $ s3
1 3 0 3 3 + + 5 * 2 $ r3
2 0 0 term(3) + + 5 * 2 $ g2
3 2 0 term(3) 2 + + 5 * 2 $ r1
4 0 0 sum(3) + + 5 * 2 $ g1
5 1 0 sum(3) 1 + + 5 * 2 $ s4
6 4 0 sum(3) 1 + 4 5 5 * 2 $ s3
7 3 0 sum(3) 1 + 4 5 3 * * 2 $ r3
8 4 0 sum(3) 1 + 4 term(5) * * 2 $ g6
9 6 0 sum(3) 1 + 4 term(5) 2 * * 2 $ s5
10 5 0 sum(3) 1 + 4 term(5) 2 * 5 2 2 $ s7
11 7 0 sum(3) 1 + 4 term(5) 2 * 5 2 7 $ $ r4
12 4 0 sum(3) 1 + 4 term(10) $ $ g6
13 6 0 sum(3) 1 + 4 term(10) 6 $ $ r2
14 0 0 sum(13) $ $ g1
14 1 0 sum(13) 1 $ $ a

Furthermore, there is the accept action a, which signals that the input parsing was success-
ful. An example of a shift-reduce parser is given in Table 3.3. It shows all parser actions
and state transitions for an exemplary input. Parser generator frameworks allow binding
of auxiliary functions, which are executed when reductions are applied. This can be used
to recursively build a syntax tree data structure.

20 3. Compiler Structure

Chapter 4

Domain-specific language

4.1 Choice of lexer and parser generators

One of the most popular lexer generator is lex, implemented in 1975 at Bell Laborato-
ries [21]. lex and its newer implementation flex are widely distributed and available on
most UNIX-based systems [21]. It is an executable that translates a configuration file into
C source code. The source code can be compiled into a lexer program with a C-compiler.
It is commonly used with the parser generator GNU Bison to create compiler frontend
source code in C/C++. They have their language for writing configuration files which are
processed by the executables, generating source code. This procedure would need to be
integrated into the build process of basf2. Today, Python packages implement the same al-
gorithms but are easier to use. In terms of comprehensibility, choosing a well-documented
Python library that implements the same algorithms is preferred. A Python-based scanner
and parser generator framework are relatively easy to integrate because basf2 already sup-
ports external Python dependencies via the externals. In addition, basf2 already uses the
boost python library to achieve a hybrid C++/Python architecture. It can also be used to
embed the Python interpreter in C++ modules to run a compiler frontend implemented
in Python.
The SLY package was chosen to implement the compiler frontend [22]. It is a lightweight
package without dependencies. It provides two classes, sly.Lexer and sly.Parser, which
can be derived from to create own lexer and parser implementations.

4.2 Scanner

Token definition The allowed tokens have to be defined for the domain-specific lan-
guage. Table 4.1 shows the complete list of tokens. The constructs needed for this are the
following:

1. Structure tokens. Square brackets group logical statements. We define LBRACK and
RBRACK for opening and closing square brackets. In addition, round brackets are used

22 4. Domain-specific language

Table 4.1: Token specification for the domain-specific language.

Token Regular expressions
LBRACK \[
RBRACK \]
LPAREN \(
RPAREN \)
EQUALEQUAL ==

GREATER >
LESS <
GREATEREQUAL >=
LESSEQUAL <=
NOTEQUAL ! =
PLUS \+
MINUS -

TIMES *
DIVIDE /

POWER (**|^)

IDENTIFIER [a-zA-Z][a-zA-Z 0-9]*

INTEGER (0x[0-9a-fA-F]+|\d+)
DOUBLE (?i)((\d+\.\d*|\d*\.\d+)(e(-|\+)?\d+)?\d+(e(-|\+)?\d+))
BOOLEAN (true|True|false|False)

ARGUMENTTUPLE

in formulas to group subexpressions. For this, the tokens LPAREN and RPAREN are
defined.

2. Comparison operators. We want to allow all standard comparisons in cuts and add
regular expressions for all operators.

3. Boolean Operators. It should be possible to combine logical expressions using the
boolean operators and & or. It should also be possible to negate logical expressions
using the unary operator not.

4. Arithmetic operators. All standard arithmetic operators must be tokenized in order
to parse formulas correctly. The POWER token stands for the exponentiation operator,
and both the Python notation and the circumflex character are possible.

5. Data types. Literals of different data types should be possible in cuts. DOUBLE tok-
enizes floating-point numbers in all possible notations, including scientific notations
The INTEGER token allows hexadecimal representations, besides the normal notation
for integers.

6. Identifiers and reserved keywords. The IDENTIFIER token is used to match all names
in a cut. Many reserved keywords overlap with the IDENTIFIER token definition.

4.3 Parser 23

Their token attributes and types can be remapped to the correct values in the
IDENTIFIER scanning function.

The basf2 framework allows the user to create new objects with self-selected names in many
places, such as new particle lists. Some metavariables accept these names as arguments
and return properties related to them. This makes it impossible to tokenize the metavari-
able arguments since the self-selected names do not necessarily match the specified token
definitions. This is the reason why the token ARGUMENTTUPLE is not defined via a regular
expression. An escape mechanism is provided in the scanning procedure to allow arbitrary
arguments. This works similarly to the way multi-line comments work in C++. There is a
well-defined start and end of the sequence of characters that are supposed to be matched.
Metavariables in cuts always start with a valid IDENTIFIER token. If the immediately
following token is an opening parenthesis, it finds the matching closing parenthesis in the
string, and everything in between is captured as an ARGUMENTTUPLE token. This substring
is then split on the comma delimiter to produce a list of the individual arguments used for
variable creation.

SLY implementation Part of the lexer class implementation is shown in Listing 1 in
the appendix. The whole set of tokens needs to be declared in the class body. For each
token, a regular expression can be set via an identically named class attribute or a method.
The regular expressions are bound to the scanning methods with a decorator. The SLY
Lexer class has a tokenize method that receives a string as an argument and returns a
Python generator from which the tokens can be yielded.

4.3 Parser

In the following, the grammar of the domain-specific language is explained. It also briefly
described how the parser is created from the grammar using the SLY package.

4.3.1 Grammar Definition

The complete grammar definition for the domain-specific language is shown in Listing 4.1.
Tokens are denoted in capital letters. Non-terminals are written lowercase wrapped in
angular brackets. Literal characters and keywords are enclosed in single quotation marks.
The grammar rules are numbered and can be divided into two logically separated units.

24 4. Domain-specific language

〈cut〉 ::= ε (1)

| 〈boolean expression〉 (2)

〈boolean expression〉 ::= 〈disjunction〉 (3)

〈disjunction〉 ::= 〈conjunction〉 (4)

| 〈disjunction〉 'or' 〈conjunction〉 (5)

〈conjunction〉 ::= 〈negation〉 (6)

| 〈conjunction〉 'and' 〈negation〉 (7)

〈negation〉 ::= 〈bracket expression〉 (8)

| 'not' 〈negation〉 (9)

〈bracket expression〉 ::= 〈relational expression〉 (10)

| '[' 〈boolean expression〉 ']' (11)

〈relational expression〉 ::= 〈expression〉 (12)

| 〈expression〉 〈comparison operator〉 〈expression〉(13)

| 〈expression〉 〈comparison operator〉 〈expression〉(14)

〈comparison operator〉 〈expression〉 (15)

〈comparison operator〉 ::= '==' | '>' | '<' | '>=' | '<=' | '!=' (16)

〈expression〉 ::= 〈sum〉 (17)

〈sum〉 ::= 〈term〉 (18)

| 〈sum〉'+'〈term〉 (19)

| 〈sum〉'-'〈term〉 (20)

〈term〉 ::= 〈factor〉 (21)

| 〈term〉'*'〈factor〉(22)

| 〈term〉'/'〈factor〉(23)

〈factor〉 ::= 〈power〉 (24)

| '+'〈factor〉 (25)

| '-'〈factor〉 (26)

〈power〉 ::= 〈primary〉 (27)

| 〈primary〉 POWER
〈factor〉 (28)

〈primary〉 ::= '('〈expression〉')'(29)

| 〈function〉 (30)

| IDENTIFIER (31)

| INTEGER (32)

| BOOLEAN (33)

| DOUBLE (34)

〈function〉 ::= IDENTIFIER

ARGUMENTTUPLE (35)

Listing 4.1: Complete grammar specification of the domain-specific language for cuts.

The upper part of the grammar (1-16) defines the composition and combination of logic
conditions. The non-terminal cut is the start symbol. We want to allow empty strings as
cuts, which is why rule (1) defines an empty production (denoted with the ε-character) for
the start symbol.
Otherwise, a cut is composed of something which is reduced to a boolean expression.

4.3 Parser 25

The base for logic conditions are defined in the non-terminal relational expression (12-15).
They can either consist of a singular expression or binary and ternary comparisons. Any
token can be substituted for the comparison operators, which is specified in rule (16). The
comparisons yield boolean results, and singular expressions are cast to boolean values.
Logic conditions should be able to be combined with boolean operators. This is repre-
sented by the non-terminal conjunction and disjunction. The negation for logic conditions
is represented by rule (9).
Logic conditions can be grouped using square brackets to override operator precedences.
This is achieved by rule (12). There, a boolean expression enclosed in square brackets is
reduced to the non-terminal bracket expression. This is a deliberate wraparound in gram-
mar. boolean expression can be a reduced form of conjunctions, disjunctions, negations,
and bracket expressions. This allows arbitrary nested combinations of conditions in square
brackets.
Rules (17-35) form the formula part of the grammar and are reduced to the non-terminal
expression used in the comparisons.
The basic building blocks that can occur in formulas as a unit are defined by the non-
terminal primary (29-35). They can consist of the tokens IDENTIFIER, INTEGER, BOOLEAN,
DOUBLE, and of the compound non-terminal function. In addition, a wraparound is used
again to integrate expressions enclosed in parentheses.
The remaining grammar rules allow the parsing of arithmetic. Again, the grammar hier-
archy corresponds to the operators’ precedence starting with lowest to highest.

SLY implementation Listing 2 in the appendix shows a part of the parser implemen-
tation using the SLY package. The token set must be specified. Operator associativity
and precedence are set via the precedence class attribute. The grammar rules are bound
to the parsing functions with a decorator. The parsing functions create a syntax tree as
a nested Python tuple. The sly.Parser class exposes the method parse. This method
accepts the Generator object produced by the scanner’s tokenize function and returns
the syntax tree representation.

4.3.2 Syntax tree

The grammar-based parser replaces the cut processing routine described in section 2.3.5.
The structures in the language can be represented by a set of node classes which will be
introduced in the following section. In the syntax tree representation, arithmetic operators,
node types, and comparison operators are encoded as numbers. Each tuple represents a
node, where the first argument encodes the node type. In Figure 4.1, the encoding schemes
for the node types and operators are shown. Moreover, Equation 4.1 gives an example of
the conversion to the syntax tree.

”E > 2.3” → (0, (3, (8, ”E”), (9, 2.3), 3),False,False) (4.1)

26 4. Domain-specific language

<<enum class>>
NodeType

UnaryBooleanNode = 0
BinaryBooleanNode = 1
UnaryRelationalNode = 2
BinaryRelationalNode = 3
TernaryRelationalNode = 4
UnaryExpressionNode = 5
BinaryExpressionNode = 6
FunctionNode = 7
IdentifierNode = 8
DoubleNode = 9
IntegerNode = 10
BooleanNode = 11

<<enum class>>
ComparisonOperator

EQUALEQUAL = 0
GREATEREQUAL = 1
LESSEQUAL = 2
GREATER = 3
LESS = 4
NOTEQUAL = 5

<<enum class>>
BooleanOperator

AND = 0
OR = 1

<<enum class>>
ArithmeticOperator

PLUS = 0
MINUS = 1
PRODUCT = 2
DIVISION = 3
POWER = 4

Figure 4.1: In the syntax tree, operators and node types are encoded as numbers.

4.4 CutNodes

In the previous implementation, all nodes are represented by the GeneralCut template
class in which the enum m operation controls the node type. The enum would need more
values to represent the nodes for capturing formulas. This would also lead to more case
handling in the member functions of GeneralCut and bloat the implementation.
In order to achieve better encapsulation, new node classes are introduced. Every class only
captures one language construct. Thus, the print, decompile and check implementations
become simple since they are defined for each class separately.
The various language elements can be divided into a few concepts and functionalities. They
are classified into boolean and expression nodes. Boolean nodes take on the task of map-
ping logic conditions and are used for structures that combine statements with operators.
Expression nodes are there to map the constituents of expressions. They contain nodes for
formulas, constants, and variables.
The outsourcing of functionality to the node classes simplifies the implementation of Gen-
eralCut. The class has only one pointer member to the root of the tree. Therefore, the call
to check, print, and decompile is passed on recursively to the tree’s root.
All classes are templates analogous to GeneralCut and accept a variable manager as a
template argument. This is necessary because the functions check and evaluate imple-
mented by the nodes must access variable manager dependent type definitions. Abstract
base classes AbstractBooleanNode and AbstractExpressionNode are defined to achieve poly-
morphism. We can define pointers to abstract classes, which can accept pointers to any
derived class.

4.4 CutNodes 27

4.4.1 Boolean nodes

In the following, the boolean nodes are explained. Figure 4.2 shows the class diagrams.

AbstractBooleanNode {Abstract}

+ virtual check(Object const*): bool
+ virtual print(): void
+ virtual decompile(): std::string

AVariableManager

UnaryBooleanNode

- m_bnode: std::unique_ptr<const
AbstractBooleanNode<AVariableManager>>
- m_negation: bool const
- m_bracketized: bool const

- UnaryBooleanNode(const boost::python::tuple&)
+ check(Object const*): bool
+ print(): void
+ decompile(): std::string

AVariableManager

BinaryBooleanNode

- m_left_bnode: std::unique_ptr<const
AbstractBooleanNode<AVariableManager>>
- m_right_bnode: std::unique_ptr<const
AbstractBooleanNode<AVariableManager>>
- m_boperator: BooleanOperator const

- BinaryBooleanNode(const boost::python::tuple&,
const boost::python::tuple&, BooleanOperator)
+ check(Object const*): bool
+ print(): void
+ decompile(): std::string

AVariableManager

<<enum class>>
BooleanOperator

AND = 0
OR = 1

UnaryRelationalNode

- m_enode: std::unique_ptr<const
AbstractExpressionNode<AVariableManager>>

- UnaryRelationalNode(const boost::python::tuple&)
+ check(Object const*): bool
+ print(): void
+ decompile(): std::string

AVariableManager

BinaryRelationalNode

- m_left_enode :std::unique_ptr<const
AbstractExpressionNode<AVariableManager>>
- m_right_enode: std::unique_ptr<const
AbstractExpressionNode<AVariableManager>>
- m_coperator: ComparisonOperator const

- BinaryRelationalNode(const boost::python::tuple&,
const boost::python::tuple&, ComparisonOperator)
+ check(Object const*): bool
+ print(): void
+ decompile(): std::string

AVariableManager

TernaryRelationalNode

- m_left_enode: std::unique_ptr<const
AbstractExpressionNode<AVariableManager>>
- m_center_enode: std::unique_ptr<const
AbstractExpressionNode<AVariableManager>>
- m_right_enode: std::unique_ptr<const
AbstractExpressionNode<AVariableManager>>
- m_lc_coperator: ComparisonOperator const
- m_cr_coperator: ComparisonOperator const

- TernaryRelationalNode(const boost::python::tuple&,
const boost::python::tuple&, const boost::python::tuple&,
ComparisonOperator, ComparisonOperator)
+ check(Object const*): bool
+ print(): void
+ decompile(): std::string

AVariableManager

<<enum class>>
ComparisonOperator

EQUALEQUAL = 0
GREATEREQUAL = 1
LESSEQUAL = 2
GREATER = 3
LESS = 4
NOTEQUAL = 5

Figure 4.2: Node classes which inherit from AbstractBooleanNode. Each derived class
implements the member functions check, print, and decompile.

1. UnaryBooleanNode has a unique pointer of type AbstractBooleanNode and thus
can hold a pointer to a nested logic condition. Conditions can be negated and enclosed
in square brackets. UnaryBooleanNode implements this functionality and represents
the grammar rules (9) and (11). We need to save the positioning of square brackets
because decompile must output an exact reproduction of the original input. The flag
m bracketized controls whether square brackets are added during decompile and
print. If m negation is true, the recursive evaluation using check negates the return
value.

28 4. Domain-specific language

2. BinaryBooleanNode has two pointers of type AbstractBooleanNode and an enum
member referring to a boolean operator. This class evaluates two conditions and
combines their return values with the respective boolean operator. This corresponds
to grammar rules (5) and (7).

3. UnaryRelationalNode, BinaryRelationalNode and TernaryRelationalNode
implement grammar rule (12-14). They have unique pointer members to AbstractEx-
pressionNode and a matching number of comparison operator enum members. Their
respective check functions call the evaluate function of the expression nodes and
perform the comparisons.

4.4.2 Expression nodes

The class diagram of all expression nodes is shown in Figure 4.3. The following explains
the purpose of each class:

1. UnaryExpressionNode has one unique pointer to an AbstractExpressionNode and
two boolean flags for remembering parenthesis and information concerning a unary
minus. In the evaluate function, the sign of the result is flipped if m unary minus

is set to true. We need to be able to reproduce parenthesis in cuts identically with
decompile and print. Parenthesized expressions are wrapped into a UnaryExpres-
sionNode with m parenthesized set to true. The member m enode points to the
expression contained inside of the parentheses.

2. BinaryExpressionNode takes on the task of evaluating arithmetic. It has two
pointers to AbstractExpressionNode and an ArithmeticOperator enum value. In the
evaluate function, the operation is performed with the evaluation results.

3. IdentifierNode is used to retrieve, store and evaluate normal variables.

4. FunctionNode is used to retrieve, store and evaluate metavariables/parametervari-
ables.

5. Nodes for integer, double and boolean constants are needed. Instead of defining three
separate classes, we define DataNode, which has an additional template parameter.
This allows the compiler to automatically generate these three specializations. Their
evaluate method returns the constant values.

4.5 NodeFactory class

The NodeFactory class provides a convenient way to convert the parser result into cut
nodes. In this step, the boost::python::tuple must be processed iteratively and re-
cursively to build the required tree structure. Figure 4.4 shows the process of parser
invocation and processing of the syntax tree. The numeric constants, operators, brace

4.5 NodeFactory class 29

AbstractExpressionNode {Abstract}

+ virtual evaluate(Object const*): std::variant<double,int,bool>
+ virtual print(): void
+ virtual decompile(): std::string

AVariableManager

DataNode

- m_value: T const

- DataNode(T)
+ evaluate(Object const*): std::variant<double,int,bool>
+ print():void
+ decompile():std::string

AVariableManager, T

UnaryExpressionNode

- m_enode: std::unique_ptr<const
AbstractExpressionNode<AVariableManager>>
- m_unary_minus: bool const
- m_parenthesized: bool const

- UnaryExpressionNode(const boost::python::tuple&,
 bool, bool)
+ evaluate(Object const*): std::variant<double,int,bool>
+ print(): void
+ decompile(): std::string

AVariableManager

IdentifierNode

- m_name: std::string const
- m_var: Var const*

- IdentifierNode(const std::string&)
+ processVariable(): void
+ evaluate(Object const*): std::variant<double,int,bool>
+ print(): void
+ decompile(): std::string

AVariableManager

FunctionNode

- m_name: std::string const
- m_arguments: std::vector<std::string> const
- m_var: Var const*

- FunctionNode(const std::string&,
 const std::vector<std::string>&)
+ processMetaVariable(): void
+ evaluate(Object const*): std::variant<double,int,bool>
+ print(): void
+ decompile(): std::string

AVariableManager

BinaryExpressionNode

- m_left_enode: std::unique_ptr<const
AbstractExpressionNode<AVariableManager>>
- m_right_enode: std::unique_ptr<const
AbstractExpressionNode<AVariableManager>>
- m_aoperation: ArithmeticOperation const

- BinaryExpressionNode(const boost::python::tuple&,
const boost::python::tuple&, ArithmeticOperation)
+ evaluate(Object const*): std::variant<double,int,bool>
+ print(): void
+ decompile(): std::string

AVariableManager

<<enum class>>
ArithmeticOperation

PLUS
MINUS
PRODUCT
DIVISION
POWER

AVariableManager<<requests variables>>

Figure 4.3: Node classes which are derived from AbstractExpressionNode. They override the
evaluate method and perform arithmetic operations, variable lookups, and host constants.

30 4. Domain-specific language

GeneralCut::compile

compile
cut: std::string

Python
b2parser.parse

parse(cut)

return
Python tuple

NodeFactoyGeneralCut::
GeneralCut

new
GeneralCut(const boost::python::tuple&)

compile
m_root

invoke
compile_boolean_node /
compile_expression_node

return
std::unique_ptr<AbstractBooleanNode

<AVariableManager>>
return

std::unique_ptr<GeneralCut<AVariableManager>>

return

Figure 4.4: Sequence diagram of cut object generation. b2parser.parse is invoked by
compile to generate the syntax tree. Then, the m root member is compiled from the
tuple using the NodeFactory functions.

information, and variable names must be extracted from the individual tuple entries and
cast into C++ types. The NodeFactory class provides two templated static functions,
compile boolean node and compile expression node, for creating boolean and ex-
pression nodes. Both accept a boost::python::tuple and return a std::unique ptr of
the created node.
Each node in the syntax tree is encoded as a Python tuple, where the first entry is guaran-
teed to be an integer and indicates the node type. Therefore this value can be extracted and
decoded safely. Depending on the decoded node type, the number and types of arguments
are known. The functions extract all arguments and construct the associated class. Since
the cut node constructors are private to only allow creation via GeneralCut::compile,
NodeFactory is defined as a friend class to all node classes in order to access their con-
structors.

Chapter 5

Summary and Conclusion

A domain-specific language for cuts was presented in this work. Backward compatibility,
which could be achieved, was an essential criterion in the design. The grammar of the
domain-specific language includes the existing syntax and extends the functionality by
allowing arithmetic directly in the cut.
The SLY Python package is used to generate a parser directly from the grammar. The
Python parser was integrated into the GeneralCut C++ utility class using the boost python
library, replacing the manually written processing functions.
New node classes were introduced instead of packing the entire functionality into the
GeneralCut class. These take over one responsibility each and are created from the Python
parser output using the NodeFactory.
It is a sensible advancement, as only the grammar must be adapted for extensions of
the cut syntax. The general architecture would not be affected. Adapting the individual
processing functions is much more difficult.
If compatibility issues with the SLY package arise in the future, e.g., due to Python
versions, the definitions of the domain-specific language can be used to generate the parser
with any other LALR(1) parser generator framework.

32 5. Summary and Conclusion

Appendix

34 5. Appendix

from sly import Lexer

class B2Lexer(Lexer):

"""

Class responsible for scanning the cut

and generating a stream of tokens.

"""

#: Declaration of all lexer tokens as a set

tokens = {

RBRACK, LBRACK, LPAREN, RPAREN, AND, OR, NOT,

EQUALEQUAL, GREATEREQUAL, LESSEQUAL, GREATER, LESS,

NOTEQUAL, DOUBLE, INTEGER, IDENTIFIER, BOOLEAN,

POWER, TIMES, DIVIDE, PLUS, MINUS

}

Scanning Rules

ignore = " \t\n" # ignore spaces tabs and newlines

literals = {r","} # literal definitions

Regular expressions as token definitions

EQUALEQUAL = r"=="

...

POWER = r"**|\^"

@_(r"(0(x|X)[0-9A-Fa-f]+)|\d+")

def INTEGER(self, t):

"""Scanning function for integer values"""

try:

t.value = int(t.value)

except ValueError:

cast hex value

t.value = int(t.value, base=16)

return t

Listing 1: Lexer class implementation using the SLY package. The regular expressions can
be assigned to tokens either via class attributes or via function definitions named after the
token. A decorator is used to bind the regular expression to the function.

35

from sly import Parser

...

class B2Parser(Parser):

"""

Class responsible for producing the syntax tree

from the token sequence.

"""

Token declaration

tokens = B2Lexer.tokens

precedence definition

precedence = (("left", "OR"), ("left", "AND"), ("nonassoc", "NOT"),

("left", "EQUALEQUAL", "GREATER", ..., "NOTEQUAL"),

("left", "PLUS", "MINUS"),

("left", "TIMES", "DIVIDE"),

("right", "POWER"),

)

@_(r"", r"boolean_expression",)

def cut(self, p):

"""

Parsing function for <cut> nonterminal

"""

try:

pass on the hitherto constructed syntax tree tuple

return p.boolean_expression

except AttributeError:

Return a new tuple

return (

self.get_node_type("UnaryRelationalNode"),

(self.get_node_type("BooleanNode"),True)

)

...

Listing 2: Parser class definition with the SLY package. The token set must be specified.
Operator associativity and precedence are set via the precedence class attribute. The
grammar rules are bound to the parsing functions with the @ decorator. The parsing
functions create a syntax tree as a nested Python tuple.

36 5. Appendix

Bibliography

1. Earnshaw, R., Dill, J. & Kasik, D. Data Science and Visual Computing isbn: 9783030243678
(Springer International Publishing, 2019).

2. Super KEKB and Belle II https://www.belle2.org/project/super_kekb_and_

belle_ii/. Accessed: 26.02.2022.

3. Barrett, M. et al. The Belle II Online–Offline Data Operations System. Computing
and Software for Big Science 5, 1–12 (2021).

4. Moll, A. The software framework of the Belle II experiment in Journal of Physics:
Conference Series 331 (2011), 032024.

5. The Collaboration — Belle II Experiment https://belle2.jp/the-collaboration/.
Accessed: 03.03.2022.

6. Abe, T. et al. Belle II technical design report. arXiv preprint arXiv:1011.0352 (2010).

7. Collaboration, B. I. et al. The Belle II physics book. Progress of Theoretical and
Experimental Physics 2019, ARTN–123C01 (2019).

8. Moll, A. Comprehensive study of the background for the Pixel Vertex Detector at Belle
II PhD thesis (lmu, 2015).

9. Kuhr, T., Pulvermacher, C, Ritter, M, Hauth, T & Braun, N. The Belle II core
software. Computing and Software for Big Science 3, 1–12 (2019).

10. Boost C++ libraries https://www.boost.org/. Accessed: 26.02.2022.

11. Antcheva, I. et al. ROOT — A C++ framework for petabyte data storage, statisti-
cal analysis and visualization. Computer Physics Communications 180. 40 YEARS
OF CPC: A celebratory issue focused on quality software for high performance,
grid and novel computing architectures, 2499–2512. issn: 0010-4655. https://www.
sciencedirect.com/science/article/pii/S0010465509002550 (2009).

12. Agostinelli, S. et al. Geant4—a simulation toolkit. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 506, 250–303. issn: 0168-9002. https://www.sciencedirect.com/

science/article/pii/S0168900203013688 (2003).

13. Tamponi, U., Ritter, M., Hartbrich, O., Eliachevitch, M. & Cunliffe, S. Fundamentals
— basf2 release-06-00-03 documentation https://software.belle2.org/sphinx/

release-06-00-03/online_book/fundamentals.html. Accessed: 07.03.2022.

https://www.belle2.org/project/super_kekb_and_belle_ii/
https://www.belle2.org/project/super_kekb_and_belle_ii/
https://belle2.jp/the-collaboration/
https://www.boost.org/
https://www.sciencedirect.com/science/article/pii/S0010465509002550
https://www.sciencedirect.com/science/article/pii/S0010465509002550
https://www.sciencedirect.com/science/article/pii/S0168900203013688
https://www.sciencedirect.com/science/article/pii/S0168900203013688
https://software.belle2.org/sphinx/release-06-00-03/online_book/fundamentals.html
https://software.belle2.org/sphinx/release-06-00-03/online_book/fundamentals.html

38 BIBLIOGRAPHY

14. pandas - Python Data Analysis Library https://pandas.pydata.org. Accessed:
07.03.2022.

15. NumPy https://numpy.org. Accessed: 07.03.2022.

16. SciPy https://scipy.org. Accessed: 07.03.2022.

17. Schneeweiß, R. Moderne C++ Programmierung: Klassen, Templates, Design Patterns
isbn: 9783642214295 (Springer Berlin Heidelberg, 2012).

18. Aho, A., Lam, M., Sethi, R. & Ullman, J. Compilers: Principles, Techniques, & Tools
isbn: 9780321486813 (Pearson/Addison Wesley, 2007).

19. Wagenknecht, C. & Hielscher, M. Formale Sprachen, abstrakte Automaten und Com-
piler: Lehr- und Arbeitsbuch für Grundstudium und Fortbildung isbn: 9783658026929
(Springer Fachmedien Wiesbaden, 2015).

20. Mogensen, T. Introduction to Compiler Design isbn: 9783319669663 (Springer Inter-
national Publishing, 2017).

21. Lesk, M. E. & Schmidt, E. Lex: A lexical analyzer generator (Bell Laboratories Murray
Hill, NJ, 1975).

22. Beazley, D. SLY (Sly Lex Yacc) — sly 0.0 documentation en. https://sly.readthedocs.
io/en/latest/sly.html. Accessed: 26.02.2022.

https://pandas.pydata.org
https://numpy.org
https://scipy.org
https://sly.readthedocs.io/en/latest/sly.html
https://sly.readthedocs.io/en/latest/sly.html

Danksagung

Ich bedanke mich herzlich bei Prof. Dr. Thomas Kuhr für die Betreuung und für die
Übernahme des Referats.
Ein großes Dankeschön geht an die Arbeitsgruppe für die Unterstützung bei technischen
Problemen und den hilfreichen Anmerkungen in den Gruppensitzungen.

40

Erklärung/Declaration

Hiermit erkläre ich, die vorliegende Arbeit selbständig verfasst

zu haben und keine anderen als die in der Arbeit angegebenen

Quellen und Hilfsmittel benutzt zu haben.

I hereby declare that this thesis is my own work, and that I

have not used any sources and aids other than those stated in

the thesis.

München, 08.03.2022

David Christian Katheder

	Introduction
	The Belle II Experiment
	SuperKEKB Accelerator
	Detector
	Belle II Analysis Software Framework
	Architecture
	Analysis Variablemanager
	Cuts in basf2
	GeneralCut implementation
	Cut processing algorithm

	Compiler Structure
	Overview
	Compiler Frontend
	Lexical Analyzer
	Syntax Analyzer

	Domain-specific language
	Choice of lexer and parser generators
	Scanner
	Parser
	Grammar Definition
	Syntax tree

	CutNodes
	Boolean nodes
	Expression nodes

	NodeFactory class

	Summary and Conclusion
	Appendix
	Danksagung
	Declaration

