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Abstract

The flavour changing neutral current b → s`+`− is considered to be one

of the most promising particle transitions to search for new physics at the

current point of time. It cannot occur directly in the Standard Model, but

only through higher order processes, and is therefore highly suppressed. This

suppression of the Standard Model amplitude makes the influences on angular

distribution and branching ratio predicted by various new physics models easier

to measure. Previous experiments, most notably Belle I in 2016 and LHCb

with its most recent update in 2020, have reported hints of lepton flavour

universality violation at a level of 2.6σ and 2.5σ respectively for the angular

observable P
′
5 in the decay B → K∗`+`−. The thesis at hand is part of Belle

II’s undertaking of improving these results and thereby either verifying or

excluding these tensions.

As the full angular analysis necessary for a P
′
5 measurement is out of scope

for achieving within a single Master thesis, the present work’s aim is to lay

the necessary foundation towards doing so in future projects. Since the over-

arching analysis is not complete, no real data has been used in order to avoid

the introduction of biases, thereby relying entirely on simulated Monte Carlo

data. Nevertheless, the analysis is entirely compatible with real data as well.

After the selection and reconstruction of signal candidates from raw data, an

extensive analysis of higher order correlations was conducted to avoid biases in

later parts of the angular analysis. Background was suppressed using gradient

boosted decision trees, and the branching ratios were calculated using signal

yields extracted from 1D fits on the beam constrained mass. Last but not

least, the stability of the fitter against statistical fluctuations was tested using

10 000 poisson distributed toys.

Unfortunately, major delays in data taking have made it very difficult to

improve the precision achieved by previous experiments within the foreseeable

future, with only ∼ 350 fb−1 being available for now in comparison to the

711 fb−1 available to Belle I. While the predicted signal yields and purity for the

B+ decays are competitive with the Belle I results, this is nowhere near the case

for the B0. As a result, it seems unlikely that an improvement in P
′
5 precision

can be achieved with the current amount of data available. An interesting

option to circumvent the current statistical limits might be to use both Belle

I and Belle II data sets simultaneously for a combined measurement.
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1. Introduction

1. Introduction

The Standard Model (SM) of elementary particle physics describes the world at the

smallest known scale and is, together with the theory of gravity, the foundation of

the modern understanding of nature. Today’s formulation of the SM was finalized

in the 1970s, and merges the theories of the the electroweak force (the unification of

weak and electromagnetic force) and the strong force, into one common framework.

It continues to be the best available model for elementary particle physics to date,

supported by the great successes of its experimental predictions. Nevertheless, it

is well agreed in science that the Standard Model cannot be the end of the story.

It does not capture gravity at all, and cannot be made compatible with General

Relativity, which is the corresponding accepted theory at the largest scales. Neither

theory is able to explain dark matter, nor can they explain the big mismatch of

matter and anti-matter in the universe. Furthermore, the SM predicts neutrinos to

be mass-less, in contrast to experimental evidence. Many alternative theories exist

and attempt to fix these shortcomings, but no convincing proof for any of these

theories was found as of yet. In addition to the shortcomings just mentioned, which

science has been aware of for decades, some more recent high-precision experiments

reported new tensions with the Standard Model, such as in the muon g-factor or in

flavour changing neutral currents. Confirmation that one of these tensions is indeed

new physics rather than the result of statistical fluctuation or errors in the respective

analysis would be a huge step towards finding new physics. Flavour changing neutral

currents, the type of decay this thesis is concerned with, are particularly well suited to

the search for new physics. In the SM they do not occur directly, but only through

higher order processes, leading to a strong suppression of the decay. Exactly this

strong suppression of the SM amplitude makes contributions of hypothetical new

physics, be it due to new particles or any other effect, easier to detect and measure

in high-precision experiments, should they exist in the first place.

The thesis at hand is dedicated to laying the groundwork for an angular measure-

ment of the so-called P
′
5 anomaly in the B → s`+`− transition in the B → K∗`+`−

channel, where hints of possible Lepton Flavour Universality (LFU) violation be-

tween electrons and muons were reported in multiple previous analysis. For example

Wehle et al. at Belle I in 2016 or LHCb in 2020 measured discrepancies to the Stan-

dard Model in said P
′
5 observable with a statistical significance of 2.6σ and 2.5σ
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1. Introduction

respectively (see chapter 2.4 for more information) [1][2]. While these tensions might

be promising, their statistical significance is not good enough to be sure that they

are not the result of simple fluctuations. The current analysis pursued at the Belle

II experiment, which this thesis is part of, takes most of its inspiration from Wehle

et al.’s work at the predecessor experiment Belle I. Using more advanced technology

with respect to Belle I, both on hardware and software side, the goal is to achieve a

higher accuracy than past results and thereby either verify or exclude the P
′
5 anomaly,

despite having less data currently available at this point of time than Belle I had for

their study. While the full angular analysis necessary to measure P
′
5 is out of scope

for a master thesis, it shall pave the way towards doing so. The current stage of the

analysis presented in this thesis deals with Monte Carlo (MC) simulation data only,

not only because not sufficient data has been produced by Belle II as of yet, but

also because unblinding real data before the analysis frame has been fully developed

and finished could lead to unwanted information and therefore biases leaking in. Of

course, the analysis is developed in such a way that it can be applied on real data as

well.

The thesis itself will start with the theoretical background of the physics involved,

beginning with a brief overview of the Standard Model, followed by a detailed de-

scription of b → s`+`− and observables relevant for the angular analysis. In the

next part, the Belle II experiment will be described, with details on all subdetec-

tors. The section after that gives an introduction to machine learning, presenting

selected topics leading up to gradient boosted decision trees for binary classification,

which is what is used in this thesis. The last chapter before the analysis itself deals

with dependencies in data sets and both linear and non-linear correlations. The

practical part starts off with the MC data sets used, followed by a description of

how the decays chains are reconstructed and individual particle candidates are cho-

sen. Then, all variables of relevance are shown, including an analysis of non-linear

correlations, before the preselection cuts applied are motivated. The next section

deals with background suppression using machine learning to filter the very rare de-

cays of interest out of the large background, doing so in such a way that unwanted

higher-order correlations that could interfere with the angular analysis are kept at

bay. After background suppression, the shape of signal and background components

are modeled using a 1D fit on the beam constrained mass, thereby also preparing

the higher dimensional fits that will be part of the angular analysis. Signal yields are

2



1. Introduction

then extracted from the 1D models and used to further further calculate the BRs.

Last but not least, toy data samples are generated to test the stability of the fitter

against statistical fluctuations.

Unless noted otherwise, the following conventions will be used in this work:

• Natural units (~ = c = 1).

• The charge conjugated case is always implied for all particles and decays.

3



2. Theoretical background

2. Theoretical background

2.1. The Standard Model of particle physics

The Standard Model is a relativistic Quantum Field Theory (QFT), where all ele-

mentary particles are described as excitations of the corresponding quantum field.

Not only quarks and leptons, characterized as Spin-1/2 fermions, are viewed as par-

ticles in this framework, but also the interactions between particles are mediated by

particles themselves. Interaction particles, also called gauge bosons, are described

as Spin-1 vector bosons. The massless photon is the interaction particle of the elec-

tromagnetic force, the eight massless gluons the interaction particles of the strong

force and the massive W± and Z0 the interaction particles of the weak force. The

elementary fermions of the SM consist of six quarks and six leptons, which are both

split up into three generations of pairs. These generations differ by mass only and

share identical physical properties otherwise. Within the pairs, the partners differ by

mass well, and exactly one unit of charge. The final particle of the Standard Model

is the Higgs boson, a spin-0 scalar. It is the particle mediating interactions with the

Higgs field, leading to a mechanism that gives other particles mass. In fig. 2.1, an

overview of all Standard Model particles can be found.

Mathematically, the Standard Model can be described as a quantum gauge theory

with three gauge groups

SU(3)C × SU(2)L × U(1)Y. (2.1)

SU(3)C is the gauge symmetry group corresponding to quantum chromodynamics

(QCD), the theory of the strong force, where the subscript C indicates its color charge.

As the name strong force already suggests, it is by many orders of magnitude the

strongest of the three fundamental interactions known in nature (four when including

gravity, which is technically not a force, but the curvature of space-time). The only

particles carrying color charge are quarks and the interaction’s mediator particles,

the gluons. Since the gluons carry color charge too, they interact with each other

as well, rather than just mediating between quarks. As a result, the field of the

strong force does not diminish when separating colored particles like an electric field

between electrically charged particles would, and instead elongates to a narrow flux

tube and stays constant. At some point of separation, enough energy has been
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2. Theoretical background

Figure 2.1: The 17 elementary particles in the SM.

put in for a new quark-antiquark pair to spontaneously appear, thereby forming

two new composite colorless particles. Composite quarks are called hadrons, with

the most important ones being mesons, consisting of quark-antiquark combinations

(integer spin), and baryons/anti-baryons consisting of three quarks/anti-quarks (half

numbered spin). Observations of tetraquarks (two quarks and two anti-quarks) and

pentaquarks (three quarks and two anti-quarks) have confirmed as well in recent

years.

SU(2)L × U(1)Y is the unified electroweak interaction described by the Glashow-

Weinberg-Salam model. This interaction consists of SU(2)L, the gauge symme-

try group of the left-handed isospin, where L indicates the group’s left chirality,

and U(1)Y, the gauge symmetry group of the weak hypercharge Y. The Glashow-

Weinberg-Salam model predicts four massless gauge bosons, namely the B0 boson

5



2. Theoretical background

(not to be confused with the non-elementary B mesons), and three W bosons W0,

W1 and W2. Those four bosons are not observed in nature though, since the symme-

try in the corresponding mass matrix breaks spontaneously at temperatures below

the order of 246 GeV (∼ 1015 K) and off-diagonal terms appear. Diagonalizing this

matrix leads to the four particles observed in nature, namely three massive gauge

bosons W+, W− and Z0, and the massless photon, which are all mixed states of

the four original bosons. This spontaneous symmetry breaking is called the Higgs

mechanism. Without this mechanism, the Standard Model would break, because

its intrinsic gauge symmetry demands all gauge bosons to be massless. Note that

the Higgs mechanism just described is not identical to the Yukawa interaction of

fermions with the Higgs field. It is the coupling strength of this Yukawa interaction

that determines the fermions masses. All leptons interact with the weak force part

of the electroweak interaction. Only electrons, muons and taus carry electric charge

though, and are therefore only those leptons interact with the electromagnetic force,

in contrast to the neutral neutrinos.

The symmetry broken model then contains 25 free parameters that need to be cho-

sen to match experimental observations and cannot be derived from within the theory.

They correspond to the masses, or rather Yukawa couplings, of the 12 fermions, one

coupling constant each for the three gauge interactions, the vacuum expectation value

of the Higgs field, the mass of the Higgs boson, and, last but not least, four mix-

ing angles each of the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) and Cabibbo-

Kobayashi-Maskawa (CKM) matrices describing the mismatch between mass eigen-

states and weak interaction eigenstates of neutrinos and quarks respectively. The

arbitrariness of choosing that many parameters to match observations rather than

deriving them from a higher theoretical principle, plus various patterns emerging

within the groups of parameters, make it seem likely that there are new symmetry

principles to be found [3].

2.2. Flavour changing neutral currents

As was already mentioned, the transition of b→ s`+`− is mediated by flavour chang-

ing neutral currents. Those are forbidden at tree level in the standard model, since

the mediators of those currents, Z0 and γ, are not able to change quark flavours

(e.g. b → s or s → d) themselves, making the inclusion of higher order diagrams

6



2. Theoretical background

Figure 2.2: Feynman diagrams of the decay B → K∗`+`−. (a) to (c) show the three lowest order

feynman diagrams, with (a) and (b) being so-called penguin diagrams and (c) being a

gluonic box diagram. (d) is an example of a hypothetical new physics diagram, where a

non-SM supersymmetric charged Higgs boson is exchanged, taken from Ref. [1].

necessary. As a result, the decay is strongly suppressed, leading to decay rates of

the order ∼ 10−6 [4]. The total decay rate of the decay B → K∗`+`− discussed in

this thesis is dominated by the three lowest-order Feynman diagrams given in sub-

figures 2.2 (a) to (c). a) and b) are electroweak penguin diagrams, where a photon

or a Z0 is exchanged, while c) shows a gluonic box diagram. (d) is an example for

a hypothetical new physics diagram that might also contribute to the decay rate via

exchange of a non-SM supersymmetric charged Higgs boson. To connect the decay

rate, comparatively easily accessible by experiment, to theory, one can use Fermi’s

golden rule in first order perturbation theory, which is given by

7



2. Theoretical background

Γi→f =
2π|Mi→f |2ρ

~
, (2.2)

with ρ being the density of states and M the matrix element

M = 〈f |Heff |i〉 . (2.3)

〈f | denotes the energy eigenstates of the particles on the left side of the Feynman

diagram, |i〉 the energy eigenstates of the particles on the right side, while Heff is the

effective Hamiltonian. An effective Hamiltonian can used in this context because the

flavour changing neutral processes in this thesis takes place at energies much lower

than mW , the mass of the mediator W± boson. An operator product expansion can

then be used to simplify and integrate out long distance processes. The resulting

Hamiltonian for the 10 lowest-level processes is then given by

Heff = −4GF√
2
VtbV

∗
ts

10∑
n=1

Ci(µ)Oi(µ), (2.4)

where Vqq′ are the matrix elements of the CKM matrix, Ci(µ) coupling constants

called Wilson coefficients and Oi(µ) local non-perturbative operators. While the

Oi(µ) represent the long-distance physics, the Wilson coefficients contain the short-

distance physics and are calculated theoretically via a perturbative expansion at

the scale µ = mW. Wilson coefficients can also be used to introduce new physics

contributions.

Figure 2.3: Feynman diagrams corresponding to the processes of the operators O7 (left) and O9 and

O10 (right), taken from Ref. [1].

8



2. Theoretical background

Out of the 10 operators Oi(µ), only the electromagnetic operator O7(µ) (left side

of fig. 2.3) and the vector component O9(µ) and axial vector component O10(µ)

(right side of fig. 2.3) of the electroweak penguin operator contribute on one-loop

level order. Those operators are

O7 =
e

16π2
s̄α[γµ, γν ](msL+mbR)bαF

µν , (2.5)

O9 =
e2

16π2
s̄αγ

µLbα ¯̀γµ`, (2.6)

O10 =
e2

16π2
s̄αγ

µLbα ¯̀γµγ5`, (2.7)

where `, s and b refer to lepton, strange and bottom field, Fµν to the EM field

tensor, e to the electromagnetic constant and α to the color index. L and R are

the left-handed and right-handed projection operators. Other operators for current-

current, QCD penguin and chromomagnetic processes can be neglected [1][5].

2.3. Decay topology and differential decay rate

Hypothetical new physics could not only contribute to the total decay rate, but also

to angular distributions via short distance interactions, which are contained in the

above-mentioned Wilson coefficients. Since such hypothetical new short distance

interactions are suspected in B → K∗`+`−, this section is now going to introduce

the decay’s topology and the differential decay rate. It is important to note that the

K∗ is too short-lived to be measured directly and needs to be reconstructed from

its decay products K and π. Therefore, four independent kinematic parameters are

necessary to fully describe the decay that is actually being measured in this thesis,

namely B → (K∗ → Kπ)`+`−. The parametrization chosen in this thesis is the

invariant mass of the dileptic system q2 = M``, and the three angles θ`, θK and φ,

all defined in the BB̄ rest frame (see fig. 2.4). θ` is the angle between the flight

direction of the dileptic system and the flight direction of the `+(`−), θK is the angle

between the K∗ flight direction and the K flight direction and φ the angle between

the decay planes of the K∗ and the dileptic system.

While the theory discussed so far would be enough for an overview of the physics

actually used in this thesis, one needs to go further and derive certain angular ob-

servables to describe the motivation of the analysis as a whole and certain decisions

9



2. Theoretical background

Figure 2.4: The three angles φ, θ` and θK in the BB̄ rest frame, taken from Ref. [1].

taken. The derivation of the angular observables follows Ref. [6] for the most part,

but also uses Ref. [1].

The first step is the definition of the differential decay rate. It can be calculated

by squaring the matrix element of the four-body decay, summing over all spins of

the final state particles and constraining the kinematics. The full derivation can be

found in Ref. [5] and results in the differential decay rate

10



2. Theoretical background

1

dΓ/dq2

d4Γ

d cos θKd cos θ` dφ dq2
=

9

32π

9∑
i=1

Iifi(cos θ`, cos θK , φ)

=
9

32π
(I

(s)
1 sin2 θK + I

(c)
1 cos2 θK

+ (I
(s)
2 sin2 θK + I

(c)
2 cos2 θK) cos 2θ`

+ I3 sin2 θK sin2 θ` cos 2φ

+ I4 sin 2θK sin 2θ` cosφ

+ I5 sin 2θK sin θ` cosφ

+ I6 sin2 θK cos θ`

+ I7 sin 2θK sin θ` sinφ

+ I8 sin 2θK sin 2θ` sinφ

+ I9 sin2 θK sin2 θ` sin 2φ),

(2.8)

where the eleven angular coefficients I
(a)
i are bilinear combinations of six complex

decay amplitudes Aj=L,Ri=0,||,⊥. The suffixes s and c on some of the Ii are a convention

indicating the fraction of the Ii corresponding to the harmonics sin2 θK and sin2 θK

respectively. The Ii are functions of q2 only and correspond to the transversity states

of the K∗0 and the chiralities of the dimuon system.

This formula by itself is not valid for the CP conjugated decay B̄ → K̄∗`+`−

though, which is why one defines a CP averaged differential decay rate for the com-

bined measurement of B and B̄

d4(Γ + Γ̄)

d cos θKd cos θ` dφ dq2
=

9

32π

9∑
i=1

(Ii + Īi)fi(cos θ`, cos θK , φ), (2.9)

where Ī
(a)
i is identical to I

(a)
i , but with all weak phases conjugated and the sign

flipped for i = 5, 6, 8, 9. While in principle all information is already contained and

accessible in the I
(a)
i and Ī

(a)
i , it is desirable to reduce the number of free parameters,

since the expected signal yields are too little to accomplish a high-precision eleven

dimensional fit. To do so, one assumes the massless limit m` → 0, which holds with

very high precision for q2 & 1 GeV2/c4, but still works reasonably well at lower q2

values, resulting in a simplification of the I
(a)
i , Ī

(a)
i and fi (see table 2.1). Using the

new symmetries thereby arising, we define new CP symmetric observables

11



2. Theoretical background

Si =
Ii + Īi

dΓ

dq2
+

dΓ̄

dq2

(2.10)

and CP asymmetric observables

Ai =
Ii − Īi

dΓ

dq2

. (2.11)

Those variables are not fully independent and the following relationships can be

found

S1s = 3S2s (2.12)

S1c = −S2c (2.13)

1 =
3

4
(2Ss1 + Sc1)− 1

4
(2Ss2 + Sc2), (2.14)

reducing the number of independent observables from eleven to eight. The observ-

able Sc1, more commonly referred to as FL, is the longitudinal polarization of the K∗0

and can be written as

Sc1 = FL =
|AL0 |2 + |AR0 |2

|AL0 |2 + |AR0 |2 + |AL|| |2 + |AR|| |2 + |AL⊥|2 + |AR⊥|2
. (2.15)

Using these CP symmetric and asymmetric variables, various optimized observ-

ables can be built where most major form-factor uncertainties cancel. The ones

relevant in this analysis are the so-called P
′
i , with

P
′

i=4,5,7,8 =
Si√

FL(1− FL)
. (2.16)

To test for LFU violation, one can naturally define

Qi = P
′

i,e − P
′

i,µ, (2.17)

where any deviation from zero would be a strong hint for new physics. This exact

test is the final goal of the overarching analysis. Theoretical calculations for these

observable are quite involved and available for certain bins of q2 only. For ease of

comparison, this analysis uses the same bins as the Belle I analysis, q2
1 = [0.1, 4], q2

2 =

12



2. Theoretical background

i Ii fi

1s 3
4
[|AL|| |2 + |AL⊥|2 + |AR|| |2 + |AR⊥|2 ] sin2 θK

1c |AL0 |2 + |AR0 |2 cos2 θK

2s 1
4
[|AL|| |2 + |AL⊥|2 + |AR|| |2 + |AR⊥|2 ] sin2 θK cos 2θ`

2c −|AL0 |2 − |AR0 |2 cos2 θK cos 2θ`

3 1
2
[−|AL|| |2 + |AL⊥|2 − |AR|| |2 + |AR⊥|2] sin2 θK sin2 θ` cos 2φ

4
√

1
2
[AL0AL∗|| +AR0AR∗|| ] sin 2θK sin 2θ` cosφ

5
√

2Re(AL0AL∗⊥ −AR0AR∗⊥ ) sin 2θK sin θ` cosφ

6s 2Re(AL||AL∗⊥ −AR||AR∗⊥ ) sin2 θK cos θ`

7
√

2Im(AL0AL∗|| −AR0AR∗|| ) sin 2θK sin θ` sinφ

8
√

1
2
Im[AL0AL∗⊥ +AR0AR∗⊥ ] sin 2θK sin 2θ` sinφ

9 Im(AL||AL∗⊥ +AR||AR∗⊥ ) sin2 θK sin2 θ` sin 2φ

Table 2.1: Angular observables Ii in the limit m` → 0 and the corresponding harmonics.

[4.0, 8.0], q2
3 = [10.09, 12.9] and q2

4 = [14.8, 19.0] [1]. The bins do not cover the full q2

range due to Dalitz decays, J/Ψ and Ψ(2S) decays polluting the signal, as will be

explained in more detail in chapter 6.7.

2.4. Previous angular analysis of B → K∗`+`−

The first full angular analysis of B0 → K∗0µ+µ− was presented by the LHCb ex-

periment in 2013, using 1.0 fb−1 of data from p+p− collisions, where the observables

AFB, FL, S3, S9, A9, A
(2)
T , ART where probed in multiple bins of q2. Another LHCb

analysis on the same data set tested S4, S5, S7, S8, P
′
4, P

′
5, P

′
6 and P

′
8 in six bins of

q2 and found agreement with the SM in 23 out of 24 measurements. In the interval

4.30 < q2 < 8.68 GeV2, a SM deviation in P
′
5, was found at a level of 2.5σ, which is

known as the P
′
5 anomaly [7]. The measurement was repeated in 2020 using 4.70 fb−1

of LHCb p+p− collision data, showing 2.5σ deviation in the 4.0 < q2 < 6.0 bin and

2.9σ in 6.0 < q2 < 8.0 [2]. The latest B+ → K∗+µ+µ− LHCb measurement on

9.0 fb−1 p+p− collision data showed similar results [8]. P
′
5 was also measured in 2016

by Belle II’s predecessor Belle I, using 711 fb−1 of e+e− collision data, confirming

the anomaly with a local significance of 2.6σ. This analysis also serves as the main

inspiration and threshold for the thesis at hand, since the Belle II experiment is much
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2. Theoretical background

more similar to Belle I than LHCb .
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3. Experimental setup

The Belle II experiment is a detector at the e+e− collider SuperKEKB, located in

Tsukuba, Japan. Both detector and collider are direct upgrades over their prede-

cessors, the Belle detector (henceforth referred to as Belle I to avoid confusion) and

the KEKB collider. KEKB and SuperKEKB are so-called B-factories, as they are

specialized on the production of B mesons. The particle beams are set to a center of

mass (COM) energy of
√
s = 10.58 GeV, which corresponds to the rest mass of Υ(4S)

(see table 3.1 for a list of relevant cross sections). The Υ(4S) is an excited bb̄ meson

that decays with a probability of 48.6% to a neutral B0B̄0 pair, and with a probabil-

ity of 51.4% to a charged B+B− pair, hence explaining the term B-factory. Belle I

operated from 1999 to 2010, collecting around 1 ab−1 of data, of which 711 fb−1 were

collisions at Υ(4S) resonance. Work on Belle II started in 2010, with beam commis-

sioning of SuperKEKB starting in 2016. Its design luminosity is 8 × 1035 cm−2s−2,

topping KEKB’s design luminosity by a factor of 40. The goal is to produce data

corresponding to an integrated luminosity of 50 ab−1 at Υ(4S) resonance by the end

of its lifetime [9].

process cross section [nb]

e+e− → Υ(4S) 1.11

e+e− → uū(γ) 1.61

e+e− → dd̄(γ) 0.40

e+e− → ss̄(γ) 0.38

e+e− → cc̄(γ) 1.30

e+e− → τ+τ−(γ) 0.919

Table 3.1: Cross sections of e+e− interactions at Belle II. All other processes can be neglected, as

they do not produce four charged tracks and are therefore filtered out during reconstruc-

tion.

3.1. SuperKEKB

SuperKEKB is an asymmetric particle accelerator colliding e+ and e− at energies of

7 GeV and 4 GeV respectively. Due to their difference in energy, the CMS frame is

boosted by a Lorentz factor of 0.28 at the point of collision. Both e+ and e− are
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produced in a 600 m linear accelerator before continuing into the high energy storage

ring (HER) and the low energy storage ring (LER) respectively (see left side of fig.

3.1). The rings have a circumference of 3 km and a maximum capacity of about 1 500

particle bunches, with each bunch containing about 3×1010 particles within a length

of about 0.5 cm.

Main reasons for the vastly improved luminosity with respect to KEKB are the

roughly doubled beam currents in both storage rings (3.6 A for LER and 2.6 A for

HER), a larger crossing angle of 4.8° and more strongly squeezed particle bunches,

which can be achieved due to the application of superconducting magnets in the

interaction region. The thereby resulting collision area has a width of about 0.3 mm

and a height of about 100 nm [10][11].

Figure 3.1: The image on the left side shows an overview of the e+e− accelerator SuperKEKB, with

the detector Belle II being positioned in the blueish box on the top right of the image.

The right side figure gives a closer look at Belle II. [12].

3.2. Belle II

The Belle II detector is positioned around the collision area of the e+ and e− bunches.

The old shell of Belle I, a superconducting solenoid magnet with an iron yoke, is

reused, but all other components are either fully new or at least received an upgrade.

Major upgrades were necessary to accommodate for the increase in luminosity by

a factor of 40 with respect to Belle I, which results in an increase of event rates
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by the same amount the detector needs to handle. Belle II consists of several sub-

detectors (see fig. 3.2), each dedicated to specialized tasks such as charged track

reconstruction, vertex detection or particle identification. The next chapters shall

give an introduction to the individual components of Belle II. For more detailed

information on the experiment, refer to the Belle II physics book [9] and the Belle II

technical design report [13].

Figure 3.2: An overview showing the various components of the Belle II detector in cross section

[9].

3.3. Vertex Detector

The innermost subdetector, positioned right around the beryllium beam pipe of ra-

dius r = 10 mm, is the vertex detector (VXD) (see fig. 3.3), and consists of six

concentric layers. Its purpose is to reconstruct decay vertices at a high resolution,

aided by extrapolated particle tracks measured in the central drift chamber (CDC,
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see below). The two innermost layers (r = 14 mm and r = 22 mm) of the VXD are

equipped with roughly 8× 106 DEPFET (Depleted p-Channel Field Effect Transis-

tor) sensors and are called silicon pixel detector (PXD). The remaining four layers

at r = 39, 80, 104 and 135 mm respectively are referred to as silicon vertex detector

(SVD) and utilize double-sided silicon strip sensors [14].

Figure 3.3: The Belle II VXD subdetector, image taken from [15].

3.4. Central Drift Chamber

The second subdetector is the CDC, a large-volume drift chamber between r =

160 mm and r = 1130 mm consisting of small drift cells. Its main purpose is the recon-

struction of tracks, momenta ~p and energy losses
dE

dx
of charged particles. Charged

particles passing through ionize the gas in the chamber, which is a 50/50 mixture

of He and C2H6. The electromagnetic field of the drifting ions is then picked up by

sense wires of 30µm diameter. The in total 14 336 wires are arranged in 56 layers,

which in turn are arranged to superlayers consisting of either six or eight adjacent

layers. The superlayers’ orientation alternates between aligned with the solenoidal

magnetic field and skewed to it, see top and bottom of fig. 3.4 respectively. This

variation in orientation allows a three-dimensional reconstruction of the particle’s

track. Further, the measurement of energy losses can be used to assign a particle
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identity to the individual tracks. This feature is primarily used for particles that

do not have enough energy to reach the Particle Identification Detector (PID), the

subject of the next section.

Figure 3.4: The two wire orientations of layers in the CDC. The upper plot shows wires aligned with

the solenoidal magnetic field, the bottom plot wires skewed to it. Image taken from [15].

3.5. Particle Identification

3.5.1. Time-Of-Propagation detector

Following the CDC is the PID, which itself consists of two subdetectors. The first

one, the Time-Of-Propagation counter (TOP), is built of sixteen modules that are

located in the barrel region around the outer wall of the CDC. Each module is assem-

bled from two quartz bars, a mirror and photomultiplier tubes. Charged particles

passing through the quartz bars produce Cherenkov photons, which are internally re-

flected until they are detected by the photomultiplier tubes. The thereby measured

position and detection time of photons can be used to calculate particle hypothesis

probabilities via a comparison with the expected distributions for e, µ, π, K, p and

d. The left side of fig. 3.5 schematically shows the difference in path of a Cherenkov
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Photon in one of the modules, depending on whether the passing particle is a K or

a π.

Figure 3.5: The left figure shows a schematic view of one of the quartz bars used in TOP. The

Cherenkov photons are internally reflected until they reach the photomultiplier tube.

Their path depends on the type of the original particle, here indicated for a K and a

π. The right side shows a scheme of ARICH, which measures Cherenkov photons of

charged particles passing through an aerogel. Images taken from [13].

3.5.2. Aerogel Ring Imaging Cherenkov detector

The second part of the PID is the Aerogel Ring Imaging Cherenkov detector (ARICH),

which is located in the forward endcap region. Its purpose is the differentiation of

K and π mesons in the momentum region between 0.4 GeV/c and 4 GeV/c. It is

built of aerogel radiators consisting of two 2 cm thick layers with refractive indices

of n1 = 1.045 and n2 = 1.055 respectively, and a plane of photon detectors. The

Cherenkov photons of a single charged particle passing through the aerogel produce

a ring on the photon detector, whose radius can be used to calculate the incidence

angle, which in turn allows the differentiation of kaons and pions. The choice of

refractive indices results in an increased focus of the Cherenkov photons compared

to a single layer. A schematic side view of ARICH is shown on the right side of figure

3.5.
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3.6. Electromagnetic Calorimeter

Positioned around the PID is the Electromagnetic Calorimeter (ECL). It is respon-

sible for the detection of photons and measuring their energy and position, as well

as separating electrons from hadrons, most importantly pions. The detector is built

of a total of 8 736 thallium-doped caesium iodide CsI(Tl) crystals, and covers about

90% of the solid angle in the COM system. Two photo diodes are glued to the rear

end of each crystals. Crystals, preamplifiers and support structures are recycled from

Belle I, but there are considerations of upgrading them in the future.

3.7. K0
L and Muon detector

The last and outermost subdetector is the K0
L and Muon detector (KLM). It consists

of alternating 4.7 cm thick iron plates and active detector elements surrounding the

superconducting solenoid shell of the detector in both barrel, forward endcap and

backward endcap region. The iron plates serve both as material for hadronic showers

of K0
L (3.9 interaction lengths) and also as the magnetic flux return of the solenoid.

The detector elements are built of glass-electrode resistive plate chambers (RPC).

The high-voltage glass electrodes are separated by gas, which gets ionized by charged

particles passing through it, leading to a current that can be measured. The KLM

is used in combination with the ECL to detect the K0
L hadron showers. Muons are

identified by combining extrapolated CDC particle tracks with KLM measurements.

Only muons with an energy between ∼ 0.7 GeV and ∼ 1.5 GeV can be measured, as

they are not able to reach the KLM if their energy is too low, or tend to pass through

undetected when their energy is too high.
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4. Machine learning

The practical part of this thesis makes heavy use of applied machine learning (ML)

and statistics, which is why the next two sections shall give an introduction to some

key concepts of relevance. The current section will deal with selected topics in ML,

while the section after discusses dependencies in data sets, before finally heading on

to the analysis itself.

ML, a relatively modern field, is concerned with algorithms that use input data

to improve its performance on some kind of task. A generic data set consists of n

multidimensional samples. Each dimension of the individual samples is referred to

as feature or variable of the data set. This could be any kind of information about

the sample, such as its mass, height or color.

There are two basic categories of learning problems that ML deals with. The first

category is called supervised learning, where the goal is to predict the value of certain

features on new data the algorithm has not seen before. To achieve this, a dedicated

training data set, where the true value of these features are known, needs to be fed

to the algorithm beforehand, such that it can ‘learn’ how to make the predictions.

When the features the algorithm is supposed to predict are discrete, one speaks of

classification. An example for such a discrete feature (or class) could be the color of

an object, such as green, blue and red. If there are only two classes to choose from,

it is called a binary classification problem. A typical example in high energy physics

(HEP), and also the use case in this thesis, is the discrimination between a decay of

interest, henceforth referred to as signal, and all other non-signal decays, commonly

called background. When the predicted features are continuous rather than discrete,

it is a regression problem. This could for example be the prediction of human height

as a function of gender, age and weight.

The second overarching category of learning problems is called unsupervised learn-

ing. Here, the goal is not to predict the value of certain features, as it is in the case

of supervised learning, but rather to find patterns in the data set. Examples for use

cases are clustering, where the algorithm attempts to find subgroups within the data

that are similar to each other, the compression of data, or density estimation, where

distributions are modeled.

The type of problem this thesis deals with, as already mentioned, is of the binary

classification type. In HEP, the most popular classification methods nowadays are
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so-called deep learning methods and decision tree based methods. As this thesis

makes use of the algorithm XGBoost (eXtreme Gradient Boosting) [16], which is

based on an ensemble of decision trees, the rest of this section shall deal with the

fundamentals of decision trees and subsequent topics of relevance for XGBoost itself.

But before heading on to decision trees, an introduction to the concept of cuts, the

foundation of every decision tree, needs to be given first.

4.1. Cut based methods

Using cuts on real variables is the most rudimentary and basic form of classification

possible. Applying a cut refers to the introduction of a restriction on a specific input

variable xaj of the data set Q = {xij, yj}
i=(1,l)
j=(1,n), where the xij ∈ Rl

n represent the n

samples with l training features, and yj ∈ Rn the label feature of the n samples that

the algorithm shall learn to predict, which could in principle itself be a vector of

dimension m. In the case of binary classification, such a condition takes the form

xab > c ∀ b ∈ (1, n), c ∈ R. Depending on whether a sample b fulfills the condition,

yb, predicted is then assigned to either the one class or the other. The overall goal of

such cuts is the improvement of the overlap between yj, predicted and yj, true. In the

case of this thesis, the individual data samples are candidates for a B → K∗`+`−

decay, following an e+e− collision event. If the condition is fulfilled, the candidate is

labeled as a signal decay, otherwise it is rejected as background. Whilst very simple,

it is also this intrinsic simplicity that makes cuts very useful even on their own.

For example, in this analysis cuts are applied by ‘hand’ before the machine learning

section in order to reduce the vast data size to a manageable amount, by cutting such

that only the physical regions of interest remain. Furthermore, they are also used

to clean up the data set from various problematic candidate decays, e.g. in physical

regions where the detector does not perform very well (more information in chapter

6.6). The effect of individual or groups of cuts can also be quantified, for example

with a metric such as the figure of merit

FOM =
Nsignal√

Nsignal +Nbackground

, (4.1)

which also plays an important role in general in this analysis. The subscript ‘signal’

refers to true signal that is correctly labeled, and the subscript ‘background’ refers
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to background that is mislabeled as signal. Naturally, information regarding the true

identity of an event is available for simulation data only, and unknown for real data.

Whilst the effect of the same sequence of cuts on the same data must always be the

same independent of the order of application due to their inherent linearity, the order

becomes nevertheless important when evaluating the effect of individual cuts. For

example, a situation could arise where both cut 1 on variable A and cut 2 on variable

B appear to significantly improve the FOM, but when swapping their order it turns

out that cut 1 has no effect after all, since the same result could also be achieved

with cut 2 alone. As every cut applied in this analysis needs to be justified and also

accounted for in the systematic uncertainties later on, one needs to take this into

account when developing the preselection process.

4.2. Decision Trees

Tree-based machine learning algorithms by definition always utilize one or more de-

cision trees. A decision tree can be visualized as a flowchart-like structure, with

a single node at its very top. This node, numbered as node 0, represents the full

data set Q0 = {xij, yj}
i=(1,l)
j=(1,n0) with n0 samples. At each internal node k, the set

Qk = {xij,k, yj,k} with its nk samples is split into two subsets (or branches)

Qleft
k (θ) = {xij,k, yj,k|θ} (4.2)

and

Qright
k (θ) = Qk\Qleft

k (θ), (4.3)

depending on the outcome of the condition θ = xab,k > ck ∀ b ∈ (1, nk). The external

nodes (or leaves), where the tree terminates, are the outputs or prediction vectors

yj, pred. In its most basic form, with only a single root node with two branches and

two corresponding leaves, the structure simplifies to a simple basic cut. Such a tree

is also referred to as a tree of depth one. Trees can in principle reach an arbitrary

depth, recursively splitting up the data set into smaller and smaller derived subsets

at every step. One can not only associate an output value or class to an individual

leaf, but also a probability of the association being correct, depending on the chosen

algorithm. In order to build a decision tree, it needs to be assessed at every node k

whether a candidate split improves the quality of the tree using the impurity

24



4. Machine learning

G(Qk, θ) =
nleft
k

nk
H(Qleft

k (θ)) +
nright
k

nk
H(Qright

k (θ)), (4.4)

with H(Q) being an arbitrary loss function. Common loss functions for classifica-

tion are for example the Gini impurity

H(Q)Gini =
R−1∑
r=0

pk(1− pr) (4.5)

and the logloss (also called entropy)

H(Q)logloss = −
R−1∑
r=0

pr log pr, (4.6)

where R is the number of different classes, and pr is the probability of all samples

in the set Q belonging to the class r. To find the best candidate split θ∗, the impurity

is minimized such that

θ∗ = arg min
θ

(G(Qk, θ)), (4.7)

and if the thereby achieved impurity G(Qk, θ
∗) does not satisfy a certain thresh-

old, the node k terminates and no new branches are built. The same procedure is

recursively applied on the resulting subsets Qright
k (θ∗) ≡ Qk+1 and Qleft

k (θ∗) ≡ Qk+2,

until the the predefined maximum depth mmax or minimum number of samples nmin

for every remaining node is reached and all nodes are terminated.

4.3. Random Forests

While it comes at no surprise that a decision tree is a direct improvement over simple

cuts, a single decision tree on its own would need to grow very deep in order to achieve

a high accuracy in its predictions for a generic use case. Unfortunately, too deep and

complex trees usually tend to fit the the data it was trained on too well, as it starts

to include stochastic fluctuations in the model as well. While this might lead to very

impressive results on the training set, the model performs worse on data it has not

seen before than it would otherwise, a phenomenon that occurs very often in ML and

is referred to as overfitting.

25



4. Machine learning

This problem can be tackled by using an ensemble of shallow trees instead of a

single deep one. Thereby, many weak learners (low correlation of the output with true

classes) are combined into a single strong one (high correlation of the output with true

classes). Another method to reduce variance is the introduction of various elements

of randomness to the trees. In the case of an algorithm called Random Forests, a

new subsample of the original data set for new tree is created by repeatedly selecting

random samples with replacement (a method called bagging), and by also choosing a

random subset of the feature space at each node. After a predefined number of trees

has been built, the output for a single data sample is either the average over all tree

outputs in the case of regression, or the majority label in the case of classification.

More information on the topic of overfitting will be presented in chapter 4.5). While

Random Forests’ approach can improve the overfitting problem a single decision tree

has, it comes at the cost of interpretability (due to the generally large number of

trees), and can also lead to a minor increase in bias. Additionally, it is outperformed

by a newer class of algorithms that apply the concept of gradient boosting.

4.4. Gradient boosting

The subsequent introduction to gradient boosting directly follows the approach by

[17]. Just like Random Forests, gradient boosting algorithms combine many weak

learners h, usually decision trees, into a single strong one, the summed model F . In

contrast to Random Forests though, where the individual weak learners were built

independent of each other, each new learner hm+1 in a gradient boosting algorithm is

built in such a way that it compensates for the shortcomings of the combined existing

model Fm ≡ yi, prediction m, such that

Fm(Q) + hm+1(Q)
!

= yi, true. (4.8)

This directly yields the residual yi, true − Fm(Q), which is the function the new

learner hm+1 attempts to fit. The way the gradient boosting learners are built ex-

pands on the idea of Gradient Descent, where gradients are used to find the local

minimum of a differentiable multi-variable function G(ai), with ai being an arbitrary

vector. Since the direction of fastest descent is ai − ∇iG(aj), one can iteratively

search for a local minimum using
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am+1,i = am,i −∆∇iG(am,j), (4.9)

where m ∈ N0 indicates the mth iteration step and ∆ ∈ R+ the step size. For

our case, the vector am,i translates to the summed model Fm(Q) ≡ yi,prediction m at

iteration step m, and G to a differentiable loss function H(Q,Fm−1(Q)), resulting in

the iterative formula

Fm(Q) = Fm−1(Q)−∆∇Fm−1H(Q,Fm−1(Q)). (4.10)

The iterative procedure can be further optimized by adjusting the step size at

each iteration step ∆→ ∆m such that the loss function is minimized, leading to the

minimization problem

∆m = arg min
∆

n∑
i=1

H(yi, Fm(Q)) (4.11)

= arg min
∆

n∑
i=1

H(yi, Fm−1(Q)−∆∇Fm−1H(yi, Fm−1(Q)) (4.12)

In pseudocode, a generic gradient boosting algorithm for regression could look like

the following:

Algorithm 1 Generic example for regression in gradient boosting

Input: training data Q = {xji , yi}
j=(1,l)
i=(1,n)

Input: maximum number of iterations M

Input: initial values F0(Q), e.g. a constant ci

1: for m = 1,M do

2: for i = 1, n do

3: gi,m = −dH(Q,Fm−1(Q))

dFm−1(Q)

4: fit learner hm to data set {xji , gi,m}
j=(1,l)
i=(1,n)

5: ∆m = arg min
∆

∑n
i=1 H(Q,Fm−1(Q)−∆∇Fm−1H(Q,Fm−1(Q)))

6: Fm(Q) = Fm−1(Q) + ∆mhm

7: end for

8: end for

Output: FM(Q)
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For a classification algorithm, this needs to be expanded. Every class r is assigned

a separate model Fr(Q), r = 1, 2, 3, ...R. To achieve a minimal summed loss of all

classes, all R models are adapted in parallel, following the procedure described above.

The output of the models is then used to calculate identification probabilities

Pr(Q) =
eFr(Q)∑R
j=1 e

Fj(Q)
(4.13)

at every data point. The class of the model with the highest probability is predicted.

Example of a pseudocode for a generic classification gradient boost algorithm.:

Algorithm 2 Generic example for classification in gradient boosting

Input: training data Q = {xji , yi}
j=(1,l)
i=(1,n)

Input: maximum number of iterations M

Input: initial values Fr,0(Q), e.g. a constant ci

1: for m = 1,M do

2: for i = 1, n do

3: for r = 1, R do

4: gi,r,m = −dH(Q,Fr,m−1(Q))

dFr,m−1(Q)

5: fit learner hr,m to data set {xji , gi,r,m}
j=(1,n)
i=(1,l)

6: ∆m = arg min
∆

∑n
i=1 H(Q,Fr,m−1(Q)−∆∇Fr,m−1H(Q,Fr,m−1(Q)))

7: Fr,m(Q) = Fr,m−1(Q) + ∆mhr,m

8: end for

9: end for

10: end for

Output: Fr,M(Q)

XGBoost, the ML-library used in this thesis, is based on gradient boosting as it was

presented in this chapter. Unlike the gradient descent in regular gradient boosting

though, which includes first derivatives (gradients) of the loss function only, XG-

Boost applies the Newton-Raphson method and therefore employs second derivates

(hessians) of the loss function as well. Furthermore, XGBoost also makes heavy use

of various forms of regularization, which shall be explained in the next chapter.
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4.5. Regularization

A common problem in gradient boosting and machine learning in general is the phe-

nomenon of overfitting, which occurs when the model starts to fit statistical fluctua-

tions in the training set. While the accuracy on the training data might still increase

while the overfitting advances, the model loses its generalizability and performs worse

and worse on independent test data. Many methods of regularization are available

in order to avoid this problem, and can also be used in conjunction, depending on

the specific needs. The following gives a short overview for the parameters that were

especially relevant while working for this thesis.

The possibly most important parameter is the learning rate λ, defined in the range

0 < λ ≤ 1, which can be introduced to the iterative formula from equ. 4.10 in the

following way:

Fm(Q) = Fm−1(Q)− λ∆∇Fm−1H(Q,Fm−1(Q)). (4.14)

When λ ≡ 1, this of course reduces again to the original equ. 4.10. The lower

λ is chosen, the more conservative the algorithm becomes. Generally speaking, the

overall accuracy of the algorithm tends to increase with smaller λ, with computation

costs increasing due to the higher demand of iterations.

Random subsampling of data and/or features can be used to bring introduce more

randomness to the algorithm on the hand, thereby reducing overfitting, and to reduce

computational cost, which needs to be balanced with losses in performance. In

the case of decision tree ensembles one can define these parameters on the level of

trees, level of tree and also for each node. γ defines the minimum loss reduction

required to make a new a split, and therefore also influences how conservative the

algorithm is. Further particularly useful is the concept of early stopping, where the

model is evaluated on a test set after every new learner, and the iteration is stopped

when the model does not improve for a predefined number of iterations in a row.

This completely eliminates any danger of overfitting, but might come at significant

computational costs since the model needs to be applied to the test set after every

iteration [18].
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5. Dependencies in data sets

5.1. Linear correlations

A very common occurrence in data is the interdependence or correlation of two fea-

tures. In ML, this is in most cases not just good, but a sheer necessity, since such

correlations between label feature and training features are what enables the algo-

rithms to ‘learn’ in the first place. There are other cases though, where correlations

can be a problem. Lets consider the following HEP example that is also highly rel-

evant in this thesis: We want to find a model for a particles beam-constrained mass

Mbc by fitting two different curves on the distribution, one for the signal decays and

one for background decays. The signal decays have a sharp gaussian-like peak, while

the background is more or less flat. In order to model the background distribution as

accurately as possible, we want to fit the model on a Mbc range much larger than the

actual signal range. When the two distributions are very different from each other,

this works perfectly well. Now, if we were to feed the variable we want to fit into

our machine learning algorithm, we would run into a problem. In a nutshell, the

algorithm would first cut away everything outside of the signal range. Further, it

would turn the remaining background distribution into a gaussian-like peak as well,

as it learns that decays at the center of the peak are more likely to be signal, resulting

in the two sub-distributions becoming fairly similar. While the performance of the

algorithm might appear to have increased significantly when just looking at post-

algorithm numbers such as the FOM, signal to background ratio etc., the following

fit on Mbc becomes highly inaccurate, thereby impeding with the actual goal of a

high-precision fit and worsening the overall performance.

Simply getting rid of Mbc for training might not be enough to solve this problem

though. If there are variables in the data set significantly correlated with Mbc, the

algorithm might ‘learn’ the distribution of Mbc by itself, resulting in the same problem

we started with. Therefore, one needs to conduct a correlation study and eliminate

all variables that would otherwise interfere.

Often, such correlations can be clearly seen when plotting features against each

other, but this is not always the case. Furthermore, the more features a data set

contains, the more time consuming it becomes to inspect all plots by hand, resulting

in the need of quantitative (and automated) alternatives.
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The most common metric used to quantify correlations is Pearson’s product-

moment coefficient, also known as (linear) correlation coefficient. It can be derived

from the covariance

cov(X, Y ) = E[(X − µX)(Y − µY )] (5.1)

of two random variables X and Y , with E being the expectation operator and

µX = E[X] (5.2)

and

µY = E[Y ] (5.3)

the averages. Since cov(X, Y ) depends on the magnitude of the random variables,

it is hard to interpret it without further modification. By normalizing cov(X, Y )

using the variances

var(X) ≡ cov(X,X) = E[(X − E[X])2] = E[X2]− (E[X])2 (5.4)

and

var(Y ) ≡ cov(Y, Y ) = E[(Y − E[Y ])2] = E[Y 2]− (E[Y ])2, (5.5)

one can define the correlation coefficient

ρX,Y ≡ corr(X, Y ) =
cov(X, Y )√
var(X)var(Y)

(5.6)

=
E[(X − E[X])(Y − E[Y ])]√

E[X2]− (E[X])2
√

E[Y 2]− (E[Y ])2
, (5.7)

whose magnitude can now be directly interpreted as a measure of correlation. It

satisfies the relation 0 ≤ ρX,Y ≤ 1, with 1 implying maximum linear correlation and

0 no linear correlation.

When X and Y are independent, it directly follows that ρX,Y = 0. The opposite

does not hold though, since the Pearson operator does not take into account non-

linear relationships. This can nicely be seen in fig. 5.1, where all distributions in the

bottom row have a correlation coefficient of exactly 0, even though one can clearly

observe strong non-linear dependencies. Therefore, with the considerations at the

start of the chapter and the goal of a high-precision measurement in mind, a better

measure of dependencies is needed.
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Figure 5.1: Various distributions and the corresponding values for ρX,Y . Note the bottom row,

where ρX,Y = 0 for all distributions, despite the strong dependencies that can be clearly

observed. Image taken from Ref. [19].

5.2. Distance Correlation

A solution is provided by the relatively recent (2007) concept of distance correlation

dcor(X, Y ) [20]. Just as corr(X, Y ), dcor(X, Y ) satisfies 0 ≤ dcor(X, Y ) ≤ 1, but in

contrast to Pearson’s correlation, dcor is 0 if and only if the two random variables X

and Y are completely independent of each other.

In order to define dcor(X, Y ), one needs to start with the distance covariance

dcov(X, Y ). Let the primed variables X ′ and X ′′ be independently and identically

distributed (iid) copies of X, and Y ′ and Y ′′ iid copies of Y , then dcov is defined as

the square root of

dcov2(X, Y ) := E[|X−X ′||Y −Y ′|]+E[|X−X ′|]E[|Y −Y ′|]−2E[|X−X ′′||Y −Y ′′|].
(5.8)

With that, one can define dcor analogously to ρX,Y , such that

dcor(X, Y ) =
dcov(X, Y )√

dcov(X,X)dcov(Y, Y )
(5.9)

≡ dcov(X, Y )√
dvar(X)dvar(Y )

, (5.10)
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thereby gaining the metric used for the correlation analysis in this thesis. Examples

of various distributions and their distance correlation value can be found in fig. 5.2,

completely analogous to the linear correlations shown last chapter in fig. 5.1. For

more information, consult Ref. [20] and [21].

Figure 5.2: Various distributions and the corresponding values for dcor(X,Y ), taken from Ref. [22].
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6. Analysis of B → K∗`+`−

6.1. Overview

In this chapter and the ones following, the current state and preliminary results of

the still ongoing B → K∗`+`− analysis will be presented. The results shown are from

simulated data only, as the full angular analysis needs to be finished first before using

real data in order to avoid the introduction of biases. While the thesis at hand does

not include the angular analysis itself and ends with a measurement of the branching

ratios of B → K∗`+`− and a corresponding statistical validation on toy data sets, all

steps have been performed with the overarching goal of the angular analysis and its

demands in mind.

6.2. Monte Carlo data samples

The simulated data samples used in this study were generated with the Monte Carlo

(MC) method. Not only particle-particle and particle-detector interactions are sim-

ulated, but also the response of the detector to those interactions. Thereby, the

simulation aims to mimic real data as well as possible, including misidentified par-

ticles, misreconstructed events in the later stages, and other biases. Of course, as

the intention of this study is to apply it to real data at its very end, it needs to be

developed using information that will be available on real data as well only. Never-

theless, having access to the true values of every detail in a generated event comes

in very handy, as it allows to track the performance during the study by calculating

signal efficiencies and purities at various steps, or as starting values for the fitting

procedure.

Background data samples are centrally provided by the Belle II collaboration for

all e+e− → X processes of relevance. For this analysis, only processes producing four

tracks in the detector need to be considered, namely e+e− → Υ(4S), uū, dd̄, ss̄, cc̄, τ τ̄

(see table 3.1 in chapter 3.2 for the corresponding cross sections). Since handling the

full data sets is not only unfeasible due their sheer size, but also unnecessary, trimmed

down versions, so-called skims, are available, which are reduced to the physical re-

gions of interest for each individual analysis (see chapter 6.4 for the corresponding

list of cuts in the skim). The Belle II internal name of the skim used in this analysis
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is BtoXll.

The background data samples used were generated in Belle II data production

campaign MC13a. While not being the most up-to-date version anymore at the

time of writing, MC13a has more MC data available than newer versions, namely

5 ab−1 for the Υ(4S) subdecays B+B− and B0B̄0 and 4 ab−1 for uū, dd̄, ss̄, cc̄ and τ τ̄

versus 2 ab−1 each for the newest one, MC14a. The motivation for this decision is

the very low BR (∼ 10−7) and therefore scarcity of the decays of interest, making

more statistics highly desirable. With more simulated data available, there is more

information available for the BDT to learn from, thereby improving its predictions.

For all samples, 1 ab−1 is reserved for the final validation and fitting procedure, and

the rest used for training and testing.

Three signal data samples each are generated for the six decays of interest

B0 → (K∗0 → K+π−)e+e− (6.1)

B0 → (K∗0 → K+π−)µ+µ− (6.2)

B+ → (K∗+ → K+π0)e+e− (6.3)

B+ → (K∗+ → K+π0)µ+µ− (6.4)

B+ → (K∗+ → K0
sπ

+)e+e− (6.5)

B+ → (K∗+ → K0
sπ

+)µ+µ−. (6.6)

The first file contains 15 million events for the decays with e+e− in the final state,

and 10 million events for the ones with µ+µ− and is used for training and testing.

The other two files per decay contain 1 ab−1 and 200 000 events respectively and

are used in the final fit procedure and the following simulated measurement of the

branching ratios.

6.3. Reconstruction

Since only certain particles can be measured by the detector directly, the full decay

chains need to be reconstructed to properly identify signal candidates and further

calculate all variables that are needed for this analysis. All particles of the signal

candidate’s decay chain up to the Υ(4S) are reconstructed, including the second B

meson and its decays, with the latter also being called Rest Of Event (ROE ). The
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reconstruction procedure uses the software package basf2 (belle analysis framework

2), release 06− 00− 03.

A full decay chain, including the ROE, is referred to as an event. Notably, also

all combinatorial permutations of particles assigned to an event are allowed. This

means that a single event might have multiple event candidates, for example once

correctly reconstructed and once with the correct K misidentified as π and the other

way round, or a lepton from the ROE side of the event might be swapped with a

signal-side lepton, or any other possible combination. Therefore, the reconstructed

data contains more event candidates than actual events. Excess candidates will be

eliminated only after the BDT selection, see chapter 6.8. Events are reconstructed

by placing cuts upon numerous features of the data set, and only events satisfying all

conditions are allowed. In the following, all cuts applied and variables used will be

given and explained where necessary. Most of these cuts are motivated by the physical

constraints of the decay, thereby cutting regions only where no signal is expected in

the first place. Further cuts are necessary to accommodate for limitations of the

detector. Starting point for the set of cuts was another established Belle 2 analysis

with similar decay topology (see Ref. [23]), with some modifications taken due to

the different demands of the analyses.

6.4. Skim

The first stage of cuts corresponds to the ones included in the skim. In some cases,

the cuts are redundant, as stronger demands will be set at a later stage, but they

shall be given for completeness’ sake anyway.

The first cut uses so-called Fox Wolfram moments Hk [24]. They are defined as

Hk =
N∑
i,j

|~pi||~pj|Pk(θij)
E2

vis

, (6.7)

with N being the number of charged particles in the event, |pi| the momentum of

charged particle i, Pk the kth Legendre polynomial, θi,j the angle between particle i

and particle j and Evis is the total visible energy of the event.

The cut is then applied at event level on

R2 = H2/H0 < 0.5, (6.8)
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and has the purpose of separating BB̄ from continuum (uū, dd̄, ss̄, cc̄, background)

events.

For the lepton candidates |p`| > 0.395 GeV/c is demanded due to detector lim-

itations. They also need to satisfy leptonIDglobal ≡ LID > 0.1, where lepton is a

placeholder for either electron or muon, depending on the channel. LID is defined as

LID =
L`

L` + L̃`
, (6.9)

where L` denotes the likelihood of the particle’s identity corresponding to ` and

L̃` the likelihood of the particle not being the corresponding to `. These likelihoods

are calculated using information from the various detectors. Further, the energy of

the dileptic system E`` in COM frame needs to be larger than 1.5 GeV, and Ecluster

larger than 0.1 GeV. The last set of cuts is applied on all charged tracks (e±, µ±, K±

and π± candidates). The differentiation between charged tracks and neutral tracks

is necessary since charged tracks are far easier to measure due to their magnetic field

(which will also reflect on the results in later sections). Note that in all six channels,

either three charged tracks are directly measured, namely two leptons and either a

charged K or π due to B+ → (K∗+ → π0K+)`+`− or B+ → (K∗+ → π+K0
s )`+`−,

or four charged tracks due to B0 → (K∗0 → π+K−)`+`−. For all charged tracks, the

transverse momentum pt is demanded to be larger than 0.1 GeV/c, |dr| needs to be

smaller than 0.5 cm, and |dz| smaller than 2.0 cm. dr is defined as the distance of

closest approach to the interaction point (IP) in the r−φ plane, and dz on the z axis.

This restriction makes sure that it is reasonably likely that the particles corresponds

to said IP. Finally, the sample only includes events with at least 3 charged tracks, a

requirement of course also induced by the intrinsic demands of the analysis.

6.5. Correlation analysis

In order to be able to extract P5
′ in the final angular fit, it is important that the

variables θk, θl and φ (see chapter 2.3 and fig. 2.4) remain as unbiased as possible.

The same is true for the beam-constrained mass Mbc, defined as

Mbc =
√
E2

beam − ~p2
B, (6.10)

with ~pB being the 3-momentum of the B meson candidate, and is used to model
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background and signal yields and calculate the BR. Therefore it is demanded that all

variables used in training and preselection are below a predefined dcor (see chapter

5.2) threshold with Mbc, θk, θ` and φ on all combined background samples for ev-

ery channel individually. For this analysis, only unavoidable cuts (skims, vetoes on

irreducible J/Ψ, Ψ(2S) and Dalitz decays on q2, see below) are included. The proce-

dure is deemed successful when the outputs of the BDTs satisfy the same condition,

thereby proofing that the BDTs did not learn any undesired correlations. dcor < 0.1

was chosen as threshold, as it turned out to be a reasonable middle ground between

performance and accuracy at the current stage of the analysis. A list of correlations

for all variables considered can be found in tables A.1 to A.6 in the appendix.

6.6. Particle selection

This part will present how the individual particle candidates are selected. The only

particles that are directly reconstructed by the detector are the charged particles e±,

µ±, π±, K±, and the neutral particles K0
s , π0 and γ. All other particles in the decay

chain are traced back from those. The charged particles directly reconstructed in the

detector all have a particleID (PID) associated to them, which is calculated by com-

bining the likelihoods given by the various subdetectors for each individual particle

hypothesis. Hypothetical electrons and muons are selected using a global PIDglobal as

introduced in chapter 6.4, while charged kaons and charged pions are selected using a

binary PIDbinary. While PIDglobal uses the likelihood of a specific particle hypothesis

and the likelihood of that hypothesis being wrong following equation 6.9, therefore

taking into account all six possible particles, PIDbinary only considers the likelihoods

of two specific particle hypothesis, which can be advantageous when only two types

need to be considered.

For kaons, this binary PID is defined as

R(K/π) ≡ kaonIDbinary =
LK

LK + Lπ
(6.11)

and for pions as

R(π/K) ≡ pionIDbinary =
Lπ

LK + Lπ
. (6.12)
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PIDs can only be used at specific thresholds, as provided by the responsible work-

ing group. For these thresholds, particle weights correcting for known discrepancies

between MC and real data depending on momentum and energy are available. Fur-

thermore, information of systematic uncertainties are available as well. Since the

main limitation of this study is the low amount of statistics, higher efficiencies, de-

fined as

ε =
Nsignal, reconstructed

Nsignal, generated

, (6.13)

are desirable, which is why it was attempted to leave the thresholds as low as

possible. For both electrons and muons, global electronID > 0.5 and global muonID

> 0.5 respectively was chosen, which are the smallest available thresholds. While this

leads to an increase in fake rate of up to 40% with respect the next lowest available

threshold value of 0.9, the gain in signal yield was considered worth it. A commonly

used trick is to apply leptonID only on one of the two hypothetical leptons and

assuming that the second particle must be a lepton as well due to all of the other

constraints set. Tests using that trick did not improve the results though, and would

complicate the evaluation of systematic errors, which is why this idea was given up

for the time being. For the kaon and pion, binary kaonID > 0.6 and binary pionID

> 0.6 was used respectively. This is only the second lowest threshold provided by

Belle II, but using 0.1 did not result in significant improvements with respect to

signal yield and would have negatively impacted the amount of background before

the BDT, while about doubling the fake rate.

Furthermore, all four of those particles are required to have at least 20 registered

hits in the CDC subdetector, which is the recommended value by the responsible

Belle II working group. Also, muon momentum must be bigger than 0.8 GeV/c such

that it is physically possible for them to reach the KLM. For electron momentum,

the recommended threshold is 0.4 GeV/c, and their cluster energy is required to be

> 0.075 in forward endcap, > 0.05 in the barrell, and > 0.1 GeV in backward endcap.

Neutral particles do not have a PID associated to them. For K0
s , the requirement

is a successful vertex fit of its decay products and an invariant mass in the range

of [0.4867, 0.5076] GeV/c2, which is about 3σ of its nominal invariant mass. π0

are reconstructed from two photons (decay ratio of ∼ 0.98 [4]). The recommended

requirements by the responsible working group are a minimum cluster energy in the
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ECL of 0.08 for forward endcap, 0.03 in barrell and 0.06 GeV in backward endcap,

and a cluster polar angle within [0.2967, 2.6180] rad. Furthermore, the sum of weights

of all crystals in an ECL cluster needs to be larger than 1.5. This value can be non-

integer if the energy is split between nearby clusters. The absolute angle between

the two photons must be smaller than 1.4 rad, and in the φ plane smaller than

1.5. Finally, the invariant mass of the reconstructed π0 is demanded to be within

[0.1215, 0.1415] Gev/c2.

For K∗, all candidates are required to have an invariant mass between 0.796 and

0.996 GeV/c2 , which is roughly 4σ of its nominal invariant mass. K∗ are recon-

structed either as K∗0 in B0 → K∗`+`− decays, or as K∗+ in B+ → K∗+`+`−

decays. Candidates for K∗0 are reconstructed as K∗0 → K+π−, which occurs with

a probability of 2/3, as can be calculated using Clebsch-Gordan coefficients. The

second possible decay channel K∗0 → π0K0 has a decay probability of 1/3 and is not

taken into account due to the problems associated with detecting neutral particles

and the corresponding low signal yield at high background levels.

Candidates for K∗+ are reconstructed from K∗+ → K0π+, (probability of 2/3),

and K∗+ → K+π0 (probability of 1/3). Those channels are not neglected, as there

is only one neutral particle per channel, which makes the measurement easier in

comparison to the case with two neutral particles. Unfortunately, the signal yield for

the π0 channel is still very low, as will be shown in chapter 6.9. Of the two K0 CP

eigenstates, only the short-lived K0
s (decay modes with > 5% of decays K0

s → π+π−

and K0
s → π0π0) are reconstructed. The reconstruction of K0

l is not possible as it

is too long-lived to decay within the detector and leaves no track in the detector

due to its neutral charge. Therefore, only 1/2 of neutral kaons are reconstructed,

resulting in a total of 1/3 of events for B+ → K∗+`+`− that are neglected. To select

K∗+ → K+π0, two additional cuts are applied on the helicity angles in order to

suppress combinatorial background. In the K∗+ rest frame, the absolute value of the

cosine of the angle between the hypothetical B+ and the K+ must be smaller than

0.8. In the π0 rest frame, the absolute value of the cosine of the angle between the

hypothetical K∗+ and γ (first daughter of π0) must also be smaller than 0.8. Last but

not least, the B meson is reconstructed via a vertex fit of a K∗ and two oppositely

charged leptons of the same flavour.
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Figure 6.1: Plots of ∆E, Mbc and q2 for the channels B0 → (K∗0 → K+π−)e+e− (left side) and

B0 → (K∗0 → K+π−)µ+µ− (right side) directly after reconstruction with no further

preselection cuts applied.
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Figure 6.2: Plots of ∆E, Mbc and q2 for the channels B+ → (K∗+ → K0
sπ

+)e+e− (left side) and

B+ → (K∗+ → K0
sπ

+)µ+µ− (right side) directly after reconstruction with no further

preselection cuts applied.
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Figure 6.3: Plots of ∆E, Mbc and q2 for the channels B+ → (K∗+ → K+π0)e+e− (left side) and

B+ → (K∗+ → K+π0)µ+µ− (right side) directly after reconstruction with no further

preselection cuts applied.
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6.7. Event selection

Two very useful kinematic variables for discriminating background and signal are

∆E and Mbc. ∆E is defined as

∆E = EB − Ebeam, (6.14)

where EB is the energy of the reconstructed B meson and Ebeam the beams energy,

both given in the COM mass frame. Since collisions are produced at resonance of

Υ(4S), which in turn decays into BB̄, the B mesons are produced almost at rest,

leading to signal events peaking around ∆E = 0. As a result, many background

B channels peak at ∆E
!

= 0, making them easy to veto. Another reason making

∆E useful is that misreconstructed and continuum background components are of

a roughly exponential shape, in stark contrast to the gaussian-like peak with an

asymmetric tail of signal decays. The plots in the top rows of figures 6.1 to 6.3 show

the ∆E distributions of 1 ab−1 of MC data for the six reconstructed decay channels,

where one can observe the aforementioned shapes. The left side plots show the e+e−

channels, and the right side plots the corresponding µ+µ− channels. One can observe

that the B-mesons (B+ in violet, B0 in pink) backgrounds exhibit both a gaussian

peak similarly distributed to the signal decays in red, and also an exponential part

due to misreconstructed decays, while all other mother particles produce exponential

shapes only. The plots in the middle rows of the aforementioned figures show Mbc.

Correctly reconstructed B decays, both signal and background, produce a gaussian-

like peak around a value of 5.28 GeV/c2, while the combinatorial background again

exhibits a mostly flat shape.

Both Mbc’s and ∆E’s signal and background shapes can be very well modeled due

to the very distinct shapes of signal and most parts of the background, making them

popular candidates to extract the signal yields from using a curve fitting procedure.

A common strategy is to use both variables at once for a simultaneous 2D-fit, with

the advantage of a higher precision in comparison to a fit with just a single variable,

but two major drawbacks. The first problem is that one would like to retain an as

wide as possible range of the variables part of the fit in order to be able to gain

as accurate estimates of the curve parameters as possible. This might lead to a

drastic increase in data without any gain in signal, as it is the case in this study.

Secondly, a variable used in the fitting procedure cannot be used for training, and
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neither can any variables strongly correlated with it. Otherwise the BDT skews the

background towards a signal-like shape, making it much harder if not impossible

to find accurate parameters in the fitting procedure (see chapter 6.9. Ultimately,

one trades systematic accuracy with statistical accuracy. Since we were not able

to match Wehle et al.’s Belle I post-BDT results scaled to the same luminosity (see

section 6.8) while sacrificing both Mbc and ∆E in training, which are both very strong

variables, it was decided to use Mbc only for fitting, following the approach used in

the Belle I analysis. For Mbc, the chosen upper boundary of 5.29 GeV/c2 is mostly

cosmetic, because Mbc drops off sharply after the peak at 5.28 and no physical events

are expected past 5.29 GeV/c2 anyway. The exact value of the lower bound is not

critical either, as long as the range is large enough. Therefore it makes sense to just

use the same use the same range as Belle I for ease of comparison, with a lower limit

of 5.2 GeV/c2. The ∆E values follow Belle I as well, with

− 0.1 GeV < ∆E < 0.05 GeV (6.15)

for electrons and

− 0.05 GeV < ∆E < 0.05 GeV (6.16)

for muons. Just like before, the exact values are not critical either, as long as the

bounds are not too tight, since the variable is fed into the BDT anyway. A summary

of all cuts applied so far can be found in table 6.1.

The bottom row plots of figures 6.1 to 6.3 show the invariant mass of the dileptic

system M`` squared, a variable also commonly called q2. One large peak and two

smaller ones can be observed. Part of the middle peak and the right side peak

result from the decays B → (J/ψ(2S) → `+`−)K∗ and B → (Ψ(2S) → `+`−)K∗

respectively, which have the same final state particles as the signal decays. Both of

these decays are also referred to as irreducible decays, as they have a very similar

shape as the signal decay, and also very similar properties in general. Both peak

around 0 GeV in ∆E and 5.28 GeV/c2 in Mbc, and the BDT has no way to distinguish

them. As there is no other way to get rid of them, they are vetoed using the cuts

2.8462 GeV2/c4 < q2 < 3.1762 GeV2/c4 (6.17)

3.4392 GeV2/c4 < q2 < 3.7192 GeV2/c4 (6.18)
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for electrons and

2.9462 GeV2/c4 < q2 < 3.1762 GeV2/c4 (6.19)

3.5392 GeV2/c4 < q2 < 3.7192 GeV2/c4 (6.20)

for muons.

The same is true for a fraction of left hand peak in the e+e− final state decays, which

is solved by demanding q2 > 0.142 GeV2/c4. Two different decays are responsible for

this background component, namely Dalitz decays B → K∗(π0 → e+e−γ) and photon

conversion decays B → K∗(γ → e+e−).

When vetoing these three peaks in q2, the signal-like peaks in ∆E and Mbc dis-

appear as well as a direct result, as can be nicely seen in figures 6.4 to 6.6. Again

the top rows show ∆ E, the middle rows Mbc and the bottom rows q2, with the left

hand sides showing the e+e− decays and the right hand sides the corresponding µ+µ−

decays. A summary of all cuts applied is given in table 6.1.

Table 6.1: List of all cuts applied to the data set before the BDT.

skim cuts

all events: R2 x < 0.5

p` x > 0.395 GeV

E``, in CMS frame x > 1.5 GeV

e± in final state: electronIDglobal x > 0.1

µ± in final state: muonIDglobal x > 0.5

charged tracks: nCDC Hits x > 20

dr |x| < 0.5 cm

dz |x| < 2.0 cm

preselections

all events: Mbc 5.2 GeV/c2 < x < 5.29 GeV/c2

MK∗ 0.796 GeV/c2 < x < 0.996 GeV/c2

e± in final state: electronIDglobal x > 0.5

p` x > 0.4 GeV

q2 x > 0.142 GeV2/c4

∆E −0.1 GeV < ∆E < 0.05 GeV

continued on next page
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Table 6.1 – continued from previous page

E`, forward endcap x > 0.075 GeV

E`, barrell x > 0.05 GeV

E`, backward endcap x > 0.1 GeV

q2 2.8462 GeV2/c4 < x < 3.1762 GeV2/c4

q2 3.4392 GeV2/c4 < x < 3.7192 GeV2/c4

µ± in final state: q2 2.9462 GeV2/c4 < x < 3.1762 GeV2/c4

q2 3.5392 GeV2/c4 < x < 3.7192 GeV2/c4

p` x > 0.8 GeV

K± in final state: kaonIDbinary x > 0.6

nK,CDC hits x > 20

π± in final state: pionIDbinary x > 0.6

nπ,CDC hits x > 20

K0
s in final state: MK 0.4876 GeV/c2 < x < 0.5076 GeV/c2

π0 in final state: nγ,ECL hits x > 1.5

θγ,γ 0.2967 rad< x < 2.618 rad

φγ,γ x < 1.5 rad

AbsoluteAngleγ,γ x < 1.4 rad

Mπ 0.1215 GeV/c2x < 0.1415 GeV/c2

Eγ, forward endcap x > 0.08 GeV

Eγ, barrell x > 0.03 GeV

Eγ, backward endcap x > 0.06 GeV

K∗+ → K+π0 HelicityAngleB+,K+ | cosx| < 0.8

HelicityAngleK∗+,γ | cosx| < 0.8
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Figure 6.4: Plots of ∆E, Mbc and q2 for the channels B0 → (K∗0 → K+π−)e+e− (left side) and

B0 → (K∗0 → K+π−)µ+µ− (right side) after all preselection cuts before the BDT.
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Figure 6.5: Plots of ∆E, Mbc and q2 for the channels B+ → (K∗+ → K0
sπ

+)e+e− (left side) and

B+ → (K∗+ → K0
sπ

+)µ+µ− (right side) after all preselection cuts before the BDT.
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Figure 6.6: Plots of ∆E, Mbc and q2 for the channels B+ → (K∗+ → K+π0)e+e− (left side) and

B+ → (K∗+ → K+π0)µ+µ− (right side) after all preselection cuts before the BDT.
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6.8. Background suppression

After the preselection cuts presented in the last chapters, background levels are still

very high. One could easily tighten the cuts further and introduce new ones to

improve the purity

P =
Nsignal

Nsignal +Nbackground

(6.21)

of the sample, but this would be nowhere near as effective as using a multivariate

method and lose much more efficiency in the process. This is why the preselection

cuts are intentionally left lose, leaving the hard work to the BDT, whose setup will

be described in this chapter (see section 4 for a general introduction).

The variables used for training the BDT where determined with the correlation

analysis procedure described in section 6.5. This leaves the following variables that

satisfy the condition dcor < 0.1 for Mbc and the three angular variables θ`, θk and φ

on the combined background for all six decay channels separately.

• MK∗

• ∆E

• dr and dz of B

• cos θ of K and π, where θ is the polar angle

• momentum components px, py, pz of K∗ and both leptons

• dr, dx, dy, dz and θ of both leptons, where θ is the polar angle

• χ2
Prob, the probability of the B vertex fit having been successful

• CLEO Cone Thrusts (CCT ): Variables that are based on the sum of the ab-

solute values of the momenta of all particles within angular sectors around the

thrust axis in intervals of 10 degrees, resulting in 9 concentric cones. The thrust

axis ~T is defined as the unit vector along the thrust T for a set of N particles

with momenta pi, with

T =

∑N
i=1 |~T ∗ ~pi|∑N
i=1 |~pi|

(6.22)
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• B3,thrust, also called third harmonic moment along the thrust axis, is the third

coefficient of the expansion of the event in spherical harmonics around the

thrust axis ~T . The coefficients are defined as

Bl =
N∑
i=1

piPl cosαi√
s

, (6.23)

where Pl is the Legendre polynomial of order l, αi is the angle between mo-

mentum of particle i and the chosen axis, and s the respective Mandelstam

variable.

• δx``, δy``, δz``: separation between the two leptons along direction i

• Evis(ROE): total sum of energy of trucks and clusters of ROE

• Eextra(ROE): energy from clusters in the ECL that is not associated with the

candidate event

• p(ROE): total momentum of unused tracks in CMS frame.

As input to the BDT, the background samples for training described in chapter 6.2

were used, after application of the preselection cuts. Further, the full signal samples

with 10 million events for electrons and 5 million events for muons were used, as well

after the application of the preselection cuts. The signal samples were not sampled

down, but rather weighted such that the effective ratio is 50/50 using XGBoost ’s

parameter scale pos weight. Of the combined signal and background sample, 70%

was used for the actual training, and 30% as a test set for early stopping with the

metric aucPR (area under curve Precision Recall). Furthermore, the data set is split

up at q2 = 10 GeV2/c4 into two regions of low q2 and high q2 respectively, which

produced much better results than just a single bin. Increasing the number to four

to match the q2 bins used in the angular analysis did not result in any improvement.

Additionally, the following three multi-step BDTs were tested:

• Individual training of continuum background + signal, and BB̄ background +

signal, then combining the results

• First BDT with continuum + signal only, then apply the output of the first

BDT on the whole data set and train again
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• Just a single BDT for the whole data set

The second method consistently produced the best results. A comparison of the

results for four different combinations of the options described (including different

sized q2 bins) that were still in consideration after the latest update of the data

samples is given at the end of the chapter in table 6.6.

For XGBoost, a histogram-based approach was used, approximating the data set

as histograms to accommodate for the large amount of data. The exact approach

increased training times by more than an order of magnitude, and did not yield any

gain in performance. Training stops when the aucPR evaluation did not improve

for 100 new trees in a row on the test set, while dropping the last 100 trees. A lot

of experimenting was done with respect to hyperparameter tuning. The algorithm

Bayesian Optimize from the scikit-optimize package produced good results, but was

dropped again, since optimizing 24 BDTs (6 channels × 2 steps × 2 q2 bins) proved

way too computationally expensive for the slight improvements gained, considering

the very regular updates of the data demanded by a still in-progress analysis. In the

end, the parameters were optimized by hand, such that the BDT parameters produce

consistently good results for all channels. The learning rate was chosen to be 0.05, at

a maximum tree depth of 8 for the first BDT and a maximum tree depth of 10 for the

second BDT. It might become worthwhile to re-investigate scikit-optimize when the

full angular analysis is finished and it is certain that no re-training will be necessary

in order to squeeze out the very last drops of performance.

The trained models are then applied on 1 ab−1 of independently generated valida-

tion data. The model’s output is a probability-like number between 0 and 1 for every

data point, where 0 indicates a background candidate and 1 a signal candidate (see

fig 6.7). The working point is chosen such that the figure of merit

FOM =
Nsignal√

Nsignal +Nbackground

(6.24)

is maximized. The FOM is the metric of choice in this study to evaluate the perfor-

mance, and will also be used to compare the results to Belle I. All FOMs given in this

thesis, also including the Belle I results, refer to the interval Mbc = [5.27, 5.29] Gev/c2

only, which is the region where signal is expected. The maximization is done for

each individual channel and q2 bin, resulting in 2D problems that are solved using
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the Basin-Hopping algorithm (scipy.optimize.basinhopping), which combines a global

stepping algorithm with a local minimization (or maximization as in this case) at each

step [25]. 100 iterations at a step-size of 0.05 proved to be a reasonable middle-way

between accuracy and computational expense.

Figure 6.7: Example plot for the selection of BDT working points. The x and y axis show the

two BDT probability-like outputs, while the z axis shows the FOM. The algorithm

Basin-Hopping is used to search for the global FOM maximum. The color indicates the

efficiency.

The final step is to eliminate the excess candidates, such that only one candidate

per event remains. Best candidate is considered to be the one with the highest

OutputBDT1 ×OutputBDT2.

Figures 6.8 to 6.10 show the resulting ∆E distributions in the top rows, Mbc in

the middle rows and q2 in the bottom rows for the six channels. Again the left sides

show the e+e− channels and the right sides the corresponding µ+µ− channels. By

comparing with the corresponding plots in figures 6.4 to 6.6, one can see that the

overall distribution in Mbc stay roughly similar, which indicates little to no unwanted

correlation. This is confirmed with the distance correlation dcor, following chapter

5.2. The only variable showing some correlation with the BDT output is θ`, with

dcor of up to 0.15 (see table A.7 in the appendix). Whether this turns out to be
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problematic will have to be evaluated after developing the angular analysis.

While the difference in BDT working points between the two q2 regions might be

very drastic for some channels such as B+ → (K∗+ → K+π0)e+e−, it does not matter

as P
′
5 will be calculated for the q2 bins individually anyway. Tables 6.2 to 6.5 show

the corresponding key figures, such as Nsignal, Nbackground, ε, FOM and P . The error

of the efficiency is calculated as

εerror =
Nsignal, reconstructed(Nsignal, generated −Nsignal, reconstructed)

N3
signal, generated

. (6.25)

For this evaluation, the K∗ subdecays K∗+ → K+π0 and K∗+ → K0
sπ

+ are added

together, since the signal yields of the individual channels are too low to be useful,

and to further allow for a comparison to the Belle I results by Wehle et al., given in

the same tables where available.

The key figures are evaluated for the full q2 range and the four q2 bins q2
1 =

[0.1, 4.0], q2
2 = [4.0, 8.0], q2

3 = [x, x], q2
4 = [x, 19.0], where P

′
5 will be calculated on.

Note that q2
2 is of particular importance, as it is this region where the strongest

discrepancies to the Standard Model where found in previous studies (see chapter

2.4).

In addition to the original 1 ab−1, the results were also scaled down to 711 fb−1 and

350 fb−1. 711 fb−1 is the amount of data used in the Belle I analysis, which allows

for a direct comparison of the performance, at least as far as MC data is concerned.

350 fb−1 is roughly the amount of Belle II data expected before the next shutdown

and therefore demonstrates what is actually feasible within the foreseeable future.

The scaled down results need to be taken with a grain of salt though, as the BDT

working points were optimized for 1 ab−1, and might be slightly inaccurate when

scaled down to lower integrated luminosities. When comparing the FOMs to Belle

1, there are significant differences to be observed between the individual channels.

While the B+ channels perform very well, being roughly equivalent or even better

than Belle I even at 350 fb−1, B0 does not perform as well. At 711 fb−1, the FOM can

just keep up with Belle I, but this is nowhere near the case when scaled to 350 fb−1.

For channel B0 → (K∗0 → K+π−)e+e−, additional comparison for different BDT

setups have been made. 2 q2 bin 2 steps, which was eventually used, performed best

at a FOM of 4.99, followed by 1 q2 bin 2 steps with a FOM of 4.91, 2 bins 1 step

at 4.86 and 1 bin 1 step at 4.4. The corresponding data can be found in table 6.6.
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Figure 6.8: Plots of ∆E, Mbc and q2 for the channels B0 → (K∗0 → K+π−)e+e− (left side) and

B0 → (K∗0 → K+π−)µ+µ− (right side) after the BDTs and the removal of excess

events.
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Figure 6.9: Plots of ∆E, Mbc and q2 for the channels B+ → (K∗+ → K0
sπ

+)e+e− (left side) and

B+ → (K∗+ → K0
sπ

+)µ+µ− (right side) after the BDTs and the removal of excess

events.
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Figure 6.10: Plots of ∆E, Mbc and q2 for the channels B+ → (K∗+ → K+π0)e+e− (left side) and

B+ → (K∗+ → K+π0)µ+µ− (right side) after the BDTs and the removal of excess

events.

58



6. Analysis

q2
1 q2

2 q2
3 q2

4 q2
full

Nsig, 1 ab−1 13.44 13.48 9.84 16.6 60.2

Nsig, 711 fb−1 9.56 9.58 7.00 11.80 42.80

Nsig, 350 fb−1 4.71 4.72 3.44 5.81 21.07

Nsig, Belle I - - - - 42

Nbkg, 1 ab−1 11.65 2.92 50.53 100.83 179.38

Nbkg, 711 fb−1 8.29 2.07 35.93 71.69 127.54

Nbkg, 350 fb−1 4.08 1.02 17.69 35.29 62.78

Nbkg, Belle I - - - - 47

ε[%] 8.77± 2.08 4.31± 1.62 9.77± 2.52 10.23± 2.33 4.67± 0.62%

εBelle I[%] 4.712 5.08 2.823 2.37 2.94

P [%] 29.02 30.39 44.87 48.48 38.68

PBelle I[%] - - - - 47.19

FOM1 ab−1 1.98 2.02 2.10 2.84 4.83

FOM711 fb−1 1.67 1.71 1.77 2.39 4.07

FOM350 fb−1 1.17 1.20 1.24 1.68 2.85

FOMBelle I - - - - 4.45

Table 6.2: Overview of the performance of the channel B0 → K∗0e+e− after the BDT. The data is

shown for the original 1 ab−1, and also scaled down for ease of comparison with Belle I’s

results by Wehle et al., which are included where available.

More q2 bins where not tested for the same data set with the same features, but it

did not result in any significant improvement in previous tests.
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q2
1 q2

2 q2
3 q2

4 q2
full

Nsig, 1 ab−1 16.32 17.82 10.35 23.19 75.21

Nsig, 711 fb−1 11.60 12.67 7.36 16.49 53.48

Nsig, 350 fb−1 5.71 6.24 3.62 8.12 26.32

Nsig, Belle I - - - - 46

Nbkg, 1 ab−1 9.16 13.15 1.98 10.96 39.0

Nbkg, 711 fb−1 6.51 9.35 1.41 7.80 27.73

Nbkg, 350 fb−1 3.21 4.60 0.69 3.84 13.65

Nbkg, Belle I - - - - 21

ε[%] 10.95± 2.56 14.37± 3.15 9.95± 2.93 16.92± 3.2 11.33± 1.23

εBelle I[%] 2.56 3.15 2.93 3.20 1.23

P [%] 64.04 57.54 83.93 67.69 65.85

PBelle I[%] - - - - 68.66

FOM1 ab−1 3.23 3.20 2.95 3.97 7.04

FOM711 fb−1 2.73 2.70 2.48 3.35 5.93

FOM350 fb−1 1.91 1.89 1.74 2.35 4.16

FOMBelle I - - - - 5.62

Table 6.3: Overview of the performance of the channel B0 → K∗0µ+µ− after the BDT. The data

is shown for the original 1 ab−1, and also scaled down for ease of comparison with Belle

I’s results by Wehle et al., which are included where available.
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q2
1 q2

2 q2
3 q2

4 q2
full

Nsig, 1 ab−1 16.22 6.76 13.59 17.29 53.86

Nsig, 711 fb−1 11.53 4.81 9.66 12.29 38.30

Nsig, 350 fb−1 5.68 2.37 4.76 6.05 18.85

Nsig, Belle I - - - - 35

Nbkg, 1 ab−1 11.65 2.92 50.53 100.83 179.38

Nbkg, 711 fb−1 8.29 2.07 35.93 71.69 127.54

Nbkg, 350 fb−1 4.08 1.02 17.69 35.29 62.78

Nbkg, Belle I - - - - 176

ε[%] 8.77± 2.08 4.31± 1.62 9.77± 2.52 10.23± 2.33 4.67± 0.62

εBelle I[%] 4.712 5.08 2.823 2.437 2.94

P [%] 58.19 69.87 21.19 14.64 23.09

PBelle I[%] - - - - 16.59

FOM1 ab−1 3.07 2.17 1.70 1.59 3.53

FOM711 fb−1 2.59 1.83 1.43 1.34 2.97

FOM350 fb−1 1.82 1.29 1.00 0.94 2.09

FOMBelle I - - - - 2.41

Table 6.4: Overview of the performance of the channel B+ → K∗+e+e− after the BDT. The data

is shown for the original 1 ab−1, and also scaled down for ease of comparison with Belle

I’s results by Wehle et al., which are included where available.
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q2
1 q2

2 q2
3 q2

4 q2
full

Nsig, 1 ab−1 16.01 12.57 15.07 16.49 69.14

Nsig, 711 fb−1 11.38 8.94 10.71 11.73 49.16

Nsig, 350 fb−1 5.60 4.40 5.27 5.77 24.20

Nsig, Belle I - - - - 26

Nbkg, 1 ab−1 70.58 53.85 35.22 20.13 203.91

Nbkg, 711 fb−1 50.19 38.29 25.04 14.31 144.98

Nbkg, 350 fb−1 24.70 18.85 12.33 7.5 71.37

Nbkg, Belle I - - - - 199

ε[%] 9.47± 2.25 8.61± 2.32 10.69± 2.6 10.24± 2.39 7.84± 0.91

εBelle I[%] 3.658 5.16 5.78 3.52 2.94

P [%] 18.49 18.93 29.96 45.03 25.32

PBelle I[%] - - - - 38.01

FOM1 ab−1 1.72 1.54 2.12 2.73 4.18

FOM711 fb−1 1.45 1.30 1.79 2.30 3.53

FOM350 fb−1 1.02 0.91 1.26 1.61 2.48

FOMBelle I - - - - 2.14

Table 6.5: Overview of the performance of the channel B+ → K∗+µ+µ− after the BDT. The data

is shown for the original 1 ab−1, and also scaled down for ease of comparison with Belle

I’s results by Wehle et al., which are included where available.

2 bins, 2 steps 1 bin, 2 steps 2 bins, 1 step 1 bin, 1 step

Nsignal 58.32 45.66 56.60 58.27

Nbackground 77.96 40.64 78.88 114.62

ε 4.37% 6.39% 7.92% 8.15%

P 47.19% 52.91% 41.77% 33.70%

FOM 5.0 4.91 4.86 4.43

Table 6.6: Comparisons between different BDT training setups, in order of performance from best

to worst, for the channel B0 → (K∗0 → K+π−)e+e−. When optimizing for maximum

FOM, 2 bins 2 steps performs best. Attempts with more bins did not result in any further

improvement.
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6.9. Signal yields

In this chapter, a fitting procedure is developed in order to model signal and back-

ground shapes on Mbc and extract the BR’s for the four B → K∗`+`− channels

from the area below the signal curve. In principle, one could of course also calculate

the BR’s with the information gained in the last chapter, assuming that the ratio

between Nsignal and Nbackground stays the same on real data. This is a fairly strong

assumption though, especially due to the low statistics available in this study, and

other systematic errors might come into play as well. Modeling the shapes on the

other hand allows for floating curve parameters, which can to some extent accom-

modate for these problems, as will be shown below. Furthermore, the models can be

used for statistical checks (see section 6.10).

The fitting procedure is conducted using the packages iMinuit and probfit [26].

Signal is modeled using a crystalball (CB) function, whose central part around the

mean x̄ is of a gaussian form, with the standard deviation σ. On the left side, the

gaussian transitions into a power law with the free parameter n. The transition

point is determined by the parameter α. Signal-like background is also modeled with

the help of a CB function, while the continuum and combinatorial backgrounds are

modeled with an argus function. The free parameters of the argus function are the

kinematic limit of the invariant mass distribution c, the power p and the curvature

χ.

The first step is to find the parameters of the signal function by fitting the CB

to a pure signal sample containing 200 000 generated events. This sample is also

independent of the training data, just like the validation set. Using such a large

file instead of the regular 1 ab−1 set allows to model the signal shape much more

accurately. In this fit, all four parameters µ, σ, n and α are left floating. The

second step is the determination of the parameters for the two background curves.

Here, MC truth is used to eliminate all signal from the post-BDT data sets gained

last chapter, resulting in a pure background sample. The signal-like CB is fixed to

the parameters gained in the true signal fit, apart from σ and the normalization

factor Npeaking background. For the argus, c is another well known parameter and set

to 5.29, while p is set to 0.5 using trial and error such that the fit converges. This

leaves only χ and Nargus floating, resulting in a fit with four free parameters in total.

The normalization factors Npeaking background and Nargus correspond to the number of
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particles below the respective curve. The final fit is then performed on the full data

sample, using the parameters determined in the last two fits. An identical fit with the

same parameters will eventually also be applied on real data. The free parameters

are the total background Nbackground = Nargus +Npeaking background, χ,Nsignal and σsignal.

These floating parameters accommodate for possible differences between MC and

real data. The resulting plots can be seen in figures 6.11 to 6.14. As a cross-check,

linear pearson correlations were calculated for the parameters of each individual fit

to ensure that no parameter is redundant and everything is working properly. No

serious correlations (>∼ 0.8) were found. For the correlation tables, refer to the

appendix in section B.

The BR’s of the four B → K∗`+`− decays can then be calculated using

BR =
Nsignal

2
2

3
ε200 000IσB

, (6.26)

where Nsignal is retrieved from the final fit, ε200 000 is the efficiency calculated from

the 200 000 events file, I is the integrated luminosity and σ the cross section of either

B0 or B+. The factor 1/2 results from the 2 B mesons in Υ(4S) → BB̄, and the

factor
1

2/3
takes the not reconstructed subdecays of K∗ into account (see chapter

6.3). The error is calculated using

BRerror =
Nsignal, error

2
2

3
ε200 000IσB

, (6.27)

where Nsignal, error is the statistical error from the fitting procedure. Further sys-

tematic errors are not taken into account at this point of the study. Table 6.7 shows

the thereby gained BR’s compared with the reference values given by PDG, which are

also the values that were used to generate the MC data in the first place. Therefore,

the good agreement comes as no surprise, but it is a good cross-check nevertheless.

While it would be possible to apply the machinery presented to real data as-is, this

is not wanted before the whole angular analysis is finished. Doing so might lead

to information from real data subconsciously leaking into the analysis, introducing

biases, as already mentioned.
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Figure 6.11: Fit plots of B0 → K∗0e+e−. The yellow box in each plot shows the floating parameters

and corresponding values of each fit. The first two fits are applied on pure signal and

background respectively to find the parameters of the curves, while the last fit is applied

on the full data.
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Figure 6.12: Fit plots of B0 → K∗0µ+µ−. The yellow box in each plot shows the floating parameters

and corresponding values of each fit. The first two fits are applied on pure signal and

background respectively to find the parameters of the curves, while the last fit is applied

on the full data.
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Figure 6.13: Fit plots of B+ → K∗+e+e−. The yellow box in each plot shows the floating parameters

and corresponding values of each fit. The first two fits are applied on pure signal and

background respectively to find the parameters of the curves, while the last fit is applied

on the full data.
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Figure 6.14: Fit plots of B+ → K∗+µ+µ−. The yellow box in each plot shows the floating parame-

ters and corresponding values of each fit. The first two fits are applied on pure signal

and background respectively to find the parameters of the curves, while the last fit is

applied on the full data.
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B0 → K∗0e+e− B0 → K∗0µ+µ− B+ → K∗+e+e− B+ → K∗+µ+µ−

BR[10−6] 1.03±0.23 1.0±0.15 1.4±0.47 0.91±0.23

BRPDG[10−6] 1.03+0.19
−0.17 0.94±0.5 1.55+0.40

−0.31 0.96±1.0

Nsig 58.3±12.8 76.6±11.4 50.9±17.1 67.7±17.3

Nsig, true 60.2 75.2 53.9 69.1

Nbkg, full 423.9±23.1 185.7±15.6 799.7±32.3 892.6±33.6

Nbkg, sig region 93.9±5.9 37.6±4.3 186.4±8.9 206.1±8.4

ε[%] 8.2±1.8 11.5±1.7 4.4±1.5 7.7± 2.0

P [%] 38.3 67.0 21.5 24.7

FOM 4.73 7.17 3.31 4.09

Table 6.7: An overview of the results from the fitting procedure for the four B → K`+`− channels

and a comparison to the true generated signal values and the PDG BR’s that were used

to generate the data. The results are in good agreement.
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6.10. Toy study

As briefly mentioned last chapter, it is to be expected that MC and real data will

not correspond to each other perfectly, be it due to statistical fluctuations or other

biases. Therefore it is important to ensure that the fitting procedure can deal with

such differences at least to some degree. The stability of the fitter with respect to

statistical fluctuations can best be checked by conducting a so-called toy study, which

is the content of this chapter and concludes the current state of the analysis.

10 000 toy data samples per B → K∗`+`− channel are generated from the models

gained in the fitting procedure, using the same parameters. The values for Nsignal,

Nargus and Npeaking background are fluctuated around their original value following a

poisson distribution. The final fit with the floating parameters Nsignal, Nbackground,

σsignal and χargus, is then applied on every single toy data sample and the BR is

calculated for every single fit. To check whether the fitter is stable and not biased,

pull distributions are calculated for all parameters floating in the fit and the BR,

with the pull of a variable x being defined as

Pull(x) =
xfit − xtrue

xfit, error

, (6.28)

where xfit is the value gained in the fit of an individual toy sample, xfit, error the

statistical uncertainty of the fit, and xtrue the value of the model the sample was

generated from. Assuming that the fluctuations lead to no biases in the fitter and

that the uncertainty is estimated correctly, the pull distribution will have a perfect

gaussian shape in the limit of infinite data points, with a mean of 0 and a width of 1.

Deviations in the mean indicate biases, whilst deviations in the standard deviation

result from an either overestimated or underestimated statistical error. In figures

6.15 to 6.18, all pull plots for all channels are shown. Nsignal, Nbackground, χ and BR

show very good agreement with the expected values for all channels. A discrepancy

of ∼ 0.1 in the mean can be observed for σsignal though, as well for all channels. This

systematic uncertainty can be attributed to the fact that Nargus and Npeaking background

are fluctuated independently, but the only free parameters in the fit are Nbackground

and χ. Allowing more background parameters such as Npeaking background to float would

not work though because then the fitter could not distinguish peaking background

from signal anymore. The mean of the BR plots agree very well with the BR’s

calculated in section 6.9, as they should.
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Figure 6.15: Pulls plots for the decay B0 → K∗0e+e−. The first four plots show the pulls of all four

floating variables in the fit. Bottom left shows the BR distribution, and bottom right

the corresponding pull distribution.

71



6. Analysis

Figure 6.16: Pulls plots for the decay B0 → K∗0µ+µ−. The first four plots show the pulls of all

four floating variables in the fit. Bottom left shows the BR distribution, and bottom

right the corresponding pull distribution.
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Figure 6.17: Pulls plots for the decay B+ → K∗+e+e−. The first four plots show the pulls of all

four floating variables in the fit. Bottom left shows the BR distribution, and bottom

right the corresponding pull distribution.
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Figure 6.18: Pulls plots for the decay B+ → K∗+µ+µ−. The first four plots show the pulls of all

four floating variables in the fit. Bottom left shows the BR distribution, and bottom

right the corresponding pull distribution.
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6.11. Discussion and outlook

With the toy study, all major steps performed in the analysis so far have been

presented. Should it be decided to continue the analysis as planned, the next steps

are further cross checks using the vetoed J/Ψ and Ψ(2S) decays. These channels

have orders of magnitude more events than the signal of interest while having very

similar properties, allowing the conduction of further statistical tests and sanity

checks. For example, one could test the accuracy of the efficiency estimation, since

the BR’s of these decays are known at a much higher precision due to their statistical

abundance than the BR’s of the channels that are the prime subject of this analysis.

Furthermore, one can use J/Ψ and Ψ(2S) to achieve a first comparison between MC

and real data and see if everything works out as expected, without needing to unblind

the regions of data that will be used to extract P
′
5. After that, a 3D fitting procedure

needs to be developed for the angular variables θ`, θk and φ, similarly to the 1D Mbc

fit in this thesis, which is why correlations with those three variables have already

been dealt with. This 3D fit will then be used to extract the angular observables of

interest using the formulas presented in section 2.3. Last but not least, a thorough

study of the systematic errors needs to be done, including further toy studies for the

3D fit such as the one in this thesis.

To evaluate the current performance of the analysis, it is best to compare the

results to the Belle I analysis by Wehle et al. Unfortunately, for the signal yields

gained by the Mbc fit no suitable Belle I data (peaking backgrounds were not taken

into account on their part, thereby skewing the yields and rendering comparisons

useless) is available, but the MC information post-BDT gives a clear enough picture

already. As shown in chapter 6.8 and tables 6.2 to 6.5, the FOM of this analysis

for the B0 channels is quite similar to Belle I when scaling to the same integrated

luminosity, and much better for B+. Unfortunately, COVID-related problems lead

to major delays in data taking, resulting in only about 350 fb−1 available right now,

with a maintenance shutdown of the collider lasting more than half a year starting

at the time of writing. This is not even half the data Belle I had available for their

analysis, which necessitated a bigger improvement than was possible over Belle I

with respect to reconstruction and BDT performance in order to produce competitive

results without waiting for many years. Therefore, when scaling the sample down

to 350 fb−1, the FOM for B+ can only just compete with Belle I’s results, which is,
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while still a very promising result long-term, not what would have been needed for a

successful short- to mid-term P
′
5 measurement with the current situation being what

it is. The B0 is even farther away from that.

The possibly last option remaining to improve on Belle I’s result within the next

∼ 2 years would be to combine the currently available ∼ 350 fb−1 Belle II data with

the 711 fb−1 Belle I data, resulting in 1061 fb−1 in total. Such an endeavor would be

quite complex though, both with respect to technical details and properly assessing

systematic errors at the end of the study.
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Appendices

A. Distance correlation tables

The following tables A.1 to A.6 show the distance correlations dcor for the six decay

channels of interest after the skim cuts plus the unavoidable PID, J/Ψ, and Ψ(2S)

cuts (see chapter 6.1 for more details). dcor is evaluated on pure background samples

for all variables that are considered for training. Only those with dcor < 0.1 for

Mbc, θ`, θk and φB in all channels are used in the BDT. Table A.7 shows dcor of the

BDT outputs with the same four variables.

Table A.1: Distance correlations for the channel B0 → (K∗0 → K+π−)e+e−.

Mbc θ` θk φB

EB 0.15 0.02 0.02 0.02

EK∗ 0.03 0.06 0.05 0.02

EK 0.02 0.04 0.56 0.02

MK 0.00 0.00 0.00 0.00

cos θK 0.02 0.02 0.07 0.02

drK 0.03 0.05 0.13 0.02

dzK 0.02 0.05 0.06 0.02

|~pK | 0.02 0.04 0.56 0.02

pt,K 0.02 0.05 0.54 0.02

px,K 0.02 0.03 0.20 0.02

py,K 0.01 0.02 0.20 0.01

pz,K 0.02 0.03 0.21 0.02

|~pK, cms frame| 0.02 0.05 0.59 0.02

MK∗ 0.02 0.02 0.03 0.02

|~pK∗ | 0.03 0.06 0.05 0.02

Eπ 0.03 0.03 0.79 0.01

Mπ 0.00 0.00 0.00 0.00

cos θπ 0.03 0.02 0.04 0.01

drπ 0.01 0.03 0.22 0.02

dzπ 0.02 0.04 0.11 0.02

|~pπ| 0.03 0.03 0.79 0.01

pt,π 0.03 0.04 0.77 0.02

px,π 0.02 0.02 0.34 0.02

py,π 0.02 0.03 0.34 0.02
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Table A.1 – continued from previous page

Mbc θ` θk φB

pz,π 0.02 0.02 0.36 0.01

|~pπ, cms frame| 0.04 0.04 0.81 0.01

pt,K∗ 0.04 0.07 0.06 0.02

px,K∗ 0.02 0.03 0.02 0.02

py,K∗ 0.02 0.03 0.03 0.02

pz,K∗ 0.01 0.03 0.04 0.02

Mbc 1.00 0.02 0.03 0.01

aplanarity 0.08 0.10 0.09 0.05

χ2
prob 0.02 0.04 0.02 0.01

CCT 0 0.08 0.13 0.05 0.01

CCT 1 0.02 0.07 0.03 0.01

CCT 2 0.04 0.03 0.05 0.02

CCT 3 0.03 0.05 0.02 0.01

CCT 4 0.01 0.05 0.03 0.02

CCT 5 0.01 0.07 0.03 0.01

CCT 6 0.02 0.07 0.02 0.01

CCT 7 0.02 0.05 0.02 0.01

CCT 8 0.03 0.03 0.02 0.01

cos θB 0.51 0.02 0.02 0.01

∆E 0.02 0.01 0.02 0.01

δx`+`− 0.02 0.05 0.02 0.02

δy`+`− 0.02 0.04 0.02 0.02

δz`+`− 0.02 0.04 0.02 0.02

dr 0.02 0.07 0.02 0.02

dr 0.02 0.07 0.02 0.02

dz 0.02 0.05 0.02 0.02

dz 0.02 0.05 0.02 0.02

R1 0.07 0.06 0.03 0.02

R2 0.03 0.18 0.03 0.01

R3 0.08 0.20 0.02 0.01

R4 0.07 0.13 0.06 0.02

B0,thrust 0.06 0.08 0.02 0.02

B1,thrust 0.02 0.02 0.02 0.02

B2,thrust 0.04 0.19 0.02 0.02

B3,thrust 0.02 0.06 0.03 0.01

B4,thrust 0.07 0.20 0.03 0.02

E`− 0.02 0.14 0.02 0.02

dr`− 0.02 0.03 0.02 0.01
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Table A.1 – continued from previous page

Mbc θ` θk φB

dx`− 0.02 0.03 0.02 0.02

dy`− 0.02 0.03 0.02 0.02

dz`− 0.03 0.06 0.02 0.02

p`− 0.02 0.14 0.02 0.02

pValue`− 0.02 0.02 0.02 0.02

pt,`− 0.03 0.14 0.02 0.02

px,`− 0.02 0.04 0.02 0.02

py,`− 0.02 0.05 0.01 0.02

pz,`− 0.02 0.04 0.02 0.01

θ`− 0.02 0.03 0.02 0.01

|~p`−,CMS frame| 0.04 0.17 0.02 0.02

E`+ 0.03 0.14 0.03 0.03

dr`+ 0.02 0.05 0.02 0.01

dx`+ 0.02 0.04 0.02 0.02

dy`+ 0.02 0.04 0.02 0.02

dz`+ 0.02 0.05 0.02 0.02

p`+ 0.03 0.14 0.03 0.03

pValue`+ 0.02 0.02 0.02 0.02

pt,`+ 0.03 0.13 0.02 0.02

px,`+ 0.02 0.04 0.02 0.01

py,`+ 0.02 0.04 0.02 0.02

pz,`+ 0.02 0.05 0.03 0.02

θ`+ 0.02 0.02 0.02 0.02

|~p`+,CMS frame| 0.04 0.17 0.03 0.03

MRecoil 0.34 0.02 0.02 0.01

Mevent, missing 0.05 0.08 0.02 0.02

| ~pB | 0.25 0.02 0.02 0.01

|~pRecoil| 0.23 0.02 0.01 0.01

θmissing p 0.52 0.02 0.02 0.01

φB 0.01 0.02 0.01 1.00

pt,B 0.54 0.02 0.03 0.01

px,B 0.22 0.01 0.02 0.01

py,B 0.21 0.02 0.02 0.02

pz,B 0.20 0.02 0.02 0.01

E(ROE) 0.06 0.08 0.02 0.02

Eextra(ROE) 0.05 0.08 0.02 0.01

M(ROE) 0.07 0.09 0.02 0.02

|~p(ROE)| 0.04 0.02 0.02 0.01
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Table A.1 – continued from previous page

Mbc θ` θk φB

pt(ROE) 0.13 0.04 0.04 0.02

sphericity 0.08 0.26 0.06 0.02

θk 0.03 0.04 1.00 0.01

θ` 0.02 1.00 0.04 0.02

thrustevent 0.02 0.18 0.03 0.01

thrustB 0.05 0.28 0.06 0.02

E`+`− 0.03 0.02 0.02 0.01

Table A.2: Distance correlations for the channel B0 → (K∗0 → K+π−)µ+µ−.

Mbc θ` θk φB

EB 0.18 0.01 0.03 0.02

EK∗ 0.04 0.11 0.04 0.01

EK 0.02 0.06 0.67 0.02

MK 0.00 0.00 0.00 0.00

cos θK 0.01 0.03 0.06 0.01

drK 0.02 0.05 0.13 0.03

dzK 0.02 0.05 0.05 0.02

|~pK | 0.02 0.06 0.67 0.02

pt,K 0.02 0.05 0.65 0.02

px,K 0.02 0.02 0.22 0.01

py,K 0.01 0.02 0.22 0.01

pz,K 0.01 0.04 0.24 0.02

|~pK, cms frame| 0.02 0.06 0.73 0.02

MK∗ 0.01 0.02 0.03 0.01

|~pK∗ | 0.04 0.11 0.04 0.01

Eπ 0.03 0.06 0.84 0.01

Mπ 0.00 0.00 0.00 0.00

cos θπ 0.01 0.02 0.03 0.02

drπ 0.02 0.03 0.19 0.01

dzπ 0.03 0.04 0.10 0.02

|~pπ| 0.03 0.06 0.84 0.01

pt,π 0.03 0.06 0.83 0.01

px,π 0.02 0.03 0.35 0.02

py,π 0.01 0.03 0.35 0.02

pz,π 0.01 0.03 0.38 0.02

|~pπ, cms frame| 0.03 0.06 0.87 0.01

pt,K∗ 0.03 0.10 0.04 0.02
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Mbc θ` θk φB

px,K∗ 0.02 0.03 0.02 0.01

py,K∗ 0.01 0.03 0.02 0.01

pz,K∗ 0.01 0.04 0.04 0.02

Mbc 1.00 0.02 0.02 0.02

aplanarity 0.06 0.09 0.11 0.05

χ2
prob 0.02 0.09 0.02 0.02

CCT 0 0.06 0.10 0.07 0.02

CCT 1 0.04 0.05 0.04 0.02

CCT 2 0.03 0.05 0.06 0.03

CCT 3 0.02 0.05 0.04 0.02

CCT 4 0.02 0.04 0.04 0.01

CCT 5 0.01 0.04 0.03 0.01

CCT 6 0.03 0.04 0.02 0.02

CCT 7 0.03 0.03 0.02 0.02

CCT 8 0.04 0.03 0.02 0.01

cos θB 0.51 0.02 0.02 0.02

∆E 0.01 0.01 0.03 0.02

δx`+`− 0.02 0.04 0.03 0.02

δy`+`− 0.02 0.03 0.02 0.02

δz`+`− 0.02 0.04 0.02 0.02

dr 0.03 0.06 0.03 0.01

dr 0.03 0.06 0.03 0.01

dz 0.02 0.05 0.02 0.02

dz 0.02 0.05 0.02 0.02

R1 0.05 0.07 0.01 0.01

R2 0.02 0.12 0.04 0.01

R3 0.07 0.12 0.01 0.02

R4 0.07 0.10 0.07 0.02

B0,thrust 0.02 0.12 0.02 0.02

B1,thrust 0.02 0.03 0.01 0.01

B2,thrust 0.02 0.15 0.04 0.02

B3,thrust 0.01 0.04 0.01 0.02

B4,thrust 0.04 0.16 0.05 0.02

E`− 0.02 0.12 0.02 0.04

dr`− 0.03 0.03 0.02 0.01

dx`− 0.02 0.03 0.02 0.02

dy`− 0.02 0.02 0.02 0.02

dz`− 0.03 0.04 0.02 0.02
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Table A.2 – continued from previous page

Mbc θ` θk φB

p`− 0.02 0.12 0.02 0.04

pValue`− 0.02 0.02 0.01 0.02

pt,`− 0.02 0.11 0.02 0.03

px,`− 0.01 0.04 0.02 0.01

py,`− 0.02 0.03 0.02 0.02

pz,`− 0.01 0.05 0.02 0.03

θ`− 0.01 0.04 0.03 0.02

|~p`−,CMS frame| 0.03 0.14 0.02 0.04

E`+ 0.03 0.13 0.02 0.03

dr`+ 0.01 0.05 0.02 0.01

dx`+ 0.02 0.04 0.02 0.02

dy`+ 0.02 0.04 0.03 0.02

dz`+ 0.02 0.05 0.02 0.02

p`+ 0.03 0.13 0.02 0.03

pValue`+ 0.02 0.04 0.02 0.02

pt,`+ 0.03 0.13 0.02 0.03

px,`+ 0.03 0.04 0.01 0.02

py,`+ 0.02 0.05 0.01 0.02

pz,`+ 0.02 0.05 0.02 0.02

θ`+ 0.02 0.03 0.02 0.02

|~p`+,CMS frame| 0.04 0.14 0.02 0.03

MRecoil 0.44 0.01 0.03 0.02

Mevent, missing 0.01 0.09 0.02 0.01

| ~pB | 0.27 0.01 0.03 0.02

|~pRecoil| 0.24 0.02 0.02 0.02

θmissing p 0.52 0.02 0.03 0.02

φB 0.02 0.02 0.02 1.00

pt,B 0.55 0.02 0.01 0.02

px,B 0.22 0.02 0.02 0.01

py,B 0.22 0.01 0.01 0.02

pz,B 0.22 0.02 0.03 0.02

E(ROE) 0.04 0.11 0.02 0.02

Eextra(ROE) 0.02 0.10 0.02 0.02

M(ROE) 0.05 0.11 0.03 0.02

|~p(ROE)| 0.06 0.04 0.02 0.03

pt(ROE) 0.15 0.03 0.02 0.02

sphericity 0.04 0.20 0.10 0.02

θk 0.02 0.04 1.00 0.02
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Table A.2 – continued from previous page

Mbc θ` θk φB

θ` 0.02 1.00 0.04 0.02

thrustevent 0.04 0.12 0.03 0.02

thrustB 0.04 0.19 0.09 0.02

Table A.3: Distance correlations for the channel B+ → (K∗+ → K0
sπ

+)e+e−.

Mbc θ` θk φB

EB 0.16 0.01 0.02 0.01

EK∗ 0.03 0.05 0.04 0.03

EK 0.02 0.03 0.58 0.02

MK 0.02 0.02 0.04 0.02

drK 0.01 0.02 0.24 0.02

dzK 0.02 0.02 0.14 0.02

|~pK | 0.02 0.03 0.58 0.02

pt,K 0.01 0.03 0.56 0.02

px,K 0.01 0.02 0.20 0.02

py,K 0.01 0.02 0.20 0.01

pz,K 0.02 0.02 0.21 0.02

|~pK, cms frame| 0.02 0.03 0.62 0.02

MK∗ 0.02 0.03 0.02 0.02

|~pK∗ | 0.03 0.05 0.04 0.03

Eπ 0.03 0.04 0.79 0.03

Mπ 0.00 0.00 0.00 0.00

drπ 0.02 0.02 0.21 0.01

dzπ 0.02 0.04 0.11 0.02

|~pπ| 0.03 0.04 0.79 0.03

pt,π 0.03 0.04 0.78 0.03

px,π 0.02 0.03 0.35 0.03

py,π 0.02 0.02 0.35 0.02

pz,π 0.02 0.02 0.36 0.02

|~pπ, cms frame| 0.03 0.04 0.81 0.03

pt,K∗ 0.02 0.05 0.04 0.04

px,K∗ 0.01 0.02 0.02 0.02

py,K∗ 0.01 0.02 0.02 0.01

pz,K∗ 0.03 0.02 0.04 0.02

Mbc 1.00 0.03 0.02 0.01

aplanarity 0.05 0.10 0.05 0.04

χ2
prob 0.01 0.02 0.04 0.02
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Table A.3 – continued from previous page

Mbc θ` θk φB

CCT 0 0.06 0.11 0.05 0.01

CCT 1 0.02 0.08 0.05 0.02

CCT 2 0.03 0.03 0.05 0.03

CCT 3 0.04 0.06 0.02 0.01

CCT 4 0.02 0.06 0.01 0.02

CCT 5 0.02 0.05 0.01 0.02

CCT 6 0.02 0.05 0.02 0.01

CCT 7 0.03 0.03 0.02 0.01

CCT 8 0.04 0.03 0.01 0.01

cos θB 0.50 0.02 0.02 0.02

∆E 0.02 0.02 0.01 0.02

δx`+`− 0.02 0.03 0.02 0.02

δy`+`− 0.02 0.03 0.02 0.02

δz`+`− 0.02 0.02 0.02 0.02

dr 0.03 0.04 0.07 0.02

dr 0.03 0.04 0.07 0.02

dz 0.02 0.05 0.03 0.02

dz 0.02 0.05 0.03 0.02

R1 0.04 0.04 0.22 0.01

R2 0.02 0.15 0.05 0.01

R3 0.06 0.10 0.14 0.01

R4 0.06 0.11 0.06 0.02

B0,thrust 0.04 0.06 0.14 0.01

B1,thrust 0.01 0.02 0.08 0.01

B2,thrust 0.03 0.15 0.11 0.01

B3,thrust 0.02 0.01 0.04 0.01

B4,thrust 0.07 0.17 0.08 0.01

E`− 0.04 0.12 0.02 0.06

dr`− 0.02 0.03 0.02 0.02

dx`− 0.02 0.03 0.02 0.02

dy`− 0.03 0.03 0.02 0.02

dz`− 0.02 0.04 0.02 0.02

p`− 0.04 0.12 0.02 0.06

pValue`− 0.01 0.02 0.02 0.01

pt,`− 0.03 0.12 0.02 0.05

px,`− 0.02 0.03 0.01 0.03

py,`− 0.02 0.03 0.01 0.02

pz,`− 0.01 0.03 0.02 0.03
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Table A.3 – continued from previous page

Mbc θ` θk φB

θ`− 0.01 0.02 0.02 0.01

|~p`−,CMS frame| 0.05 0.15 0.02 0.06

E`+ 0.04 0.12 0.03 0.04

dr`+ 0.01 0.03 0.02 0.02

dx`+ 0.02 0.03 0.02 0.02

dy`+ 0.02 0.03 0.02 0.02

dz`+ 0.02 0.04 0.02 0.02

p`+ 0.04 0.12 0.03 0.04

pValue`+ 0.01 0.02 0.02 0.02

pt,`+ 0.03 0.12 0.02 0.04

px,`+ 0.02 0.03 0.02 0.02

py,`+ 0.02 0.03 0.01 0.02

pz,`+ 0.02 0.03 0.03 0.02

θ`+ 0.01 0.02 0.03 0.01

|~p`+,CMS frame| 0.04 0.14 0.02 0.04

MRecoil 0.35 0.02 0.01 0.02

Mevent, missing 0.04 0.07 0.10 0.01

| ~pB | 0.26 0.02 0.03 0.02

|~pRecoil| 0.24 0.02 0.03 0.02

θmissing p 0.52 0.02 0.02 0.01

φB 0.01 0.02 0.02 1.00

pt,B 0.53 0.02 0.01 0.01

px,B 0.22 0.01 0.02 0.01

py,B 0.22 0.01 0.01 0.02

pz,B 0.21 0.02 0.03 0.02

E(ROE) 0.06 0.08 0.02 0.02

Eextra(ROE) 0.05 0.06 0.02 0.02

M(ROE) 0.07 0.08 0.02 0.02

|~p(ROE)| 0.04 0.02 0.02 0.02

pt(ROE) 0.13 0.05 0.02 0.02

sphericity 0.08 0.24 0.04 0.01

θk 0.02 0.03 1.00 0.02

θ` 0.03 1.00 0.03 0.02

thrustEvent 0.02 0.14 0.05 0.01

thrustB 0.08 0.23 0.03 0.01
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Table A.4: Distance correlations for the channel B+ → (K∗+ → K0
sπ

+)µ+µ−.

Mbc θ` θk φB

EB 0.18 0.01 0.01 0.02

EK∗ 0.03 0.11 0.02 0.02

EK 0.02 0.06 0.66 0.01

MK 0.02 0.02 0.03 0.02

cos θK 0.03 0.04 0.07 0.02

drK 0.02 0.02 0.26 0.01

dzK 0.03 0.03 0.14 0.02

|~pK | 0.02 0.06 0.66 0.01

pt,K 0.02 0.05 0.65 0.01

px,K 0.02 0.02 0.22 0.01

py,K 0.01 0.02 0.21 0.03

pz,K 0.02 0.04 0.23 0.02

|~pK, cms frame| 0.02 0.06 0.72 0.01

MK∗ 0.01 0.03 0.03 0.01

|~pK∗ | 0.03 0.11 0.02 0.02

Eπ 0.02 0.05 0.83 0.02

Mπ 0.00 0.00 0.00 0.00

cos θπ 0.02 0.03 0.05 0.02

drπ 0.02 0.03 0.22 0.01

dzπ 0.02 0.03 0.11 0.02

|~pπ| 0.02 0.05 0.83 0.02

pt,π 0.02 0.04 0.82 0.02

px,π 0.02 0.02 0.34 0.02

py,π 0.02 0.02 0.36 0.03

pz,π 0.03 0.03 0.38 0.02

|~pπ, cms frame| 0.02 0.05 0.86 0.02

pt,K∗ 0.03 0.10 0.02 0.02

px,K∗ 0.02 0.03 0.01 0.02

py,K∗ 0.01 0.03 0.02 0.03

pz,K∗ 0.03 0.05 0.04 0.02

Mbc 1.00 0.02 0.01 0.01

aplanarity 0.04 0.11 0.05 0.04

χ2
prob 0.01 0.02 0.02 0.02

CCT 0 0.05 0.09 0.07 0.02

CCT 1 0.02 0.06 0.07 0.02

CCT 2 0.03 0.04 0.04 0.02

CCT 3 0.02 0.04 0.03 0.02
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Table A.4 – continued from previous page

Mbc θ` θk φB

CCT 4 0.02 0.03 0.02 0.02

CCT 5 0.01 0.04 0.02 0.01

CCT 6 0.02 0.04 0.01 0.01

CCT 7 0.03 0.03 0.02 0.03

CCT 8 0.01 0.03 0.02 0.01

cos θB 0.50 0.02 0.02 0.02

∆E 0.02 0.01 0.01 0.02

δx`+`− 0.01 0.03 0.02 0.02

δy`+`− 0.02 0.03 0.02 0.01

δz`+`− 0.02 0.03 0.02 0.02

dr 0.03 0.03 0.03 0.02

dr 0.03 0.03 0.03 0.02

dz 0.02 0.04 0.02 0.02

dz 0.02 0.04 0.02 0.02

R1 0.02 0.04 0.25 0.01

R2 0.02 0.10 0.10 0.02

R3 0.04 0.05 0.17 0.03

R4 0.04 0.09 0.08 0.03

B0,thrust 0.02 0.06 0.17 0.02

B1,thrust 0.02 0.01 0.10 0.02

B2,thrust 0.02 0.11 0.16 0.01

B3,thrust 0.01 0.03 0.05 0.02

B4,thrust 0.03 0.13 0.13 0.02

E`− 0.03 0.12 0.01 0.02

dr`− 0.01 0.02 0.01 0.01

dx`− 0.02 0.02 0.02 0.02

dy`− 0.02 0.02 0.02 0.02

dz`− 0.02 0.03 0.02 0.01

p`− 0.03 0.12 0.01 0.02

pValue`− 0.01 0.02 0.01 0.01

pt,`− 0.04 0.11 0.02 0.01

px,`− 0.02 0.04 0.02 0.01

py,`− 0.02 0.04 0.03 0.02

pz,`− 0.02 0.03 0.02 0.02

θ`− 0.02 0.03 0.01 0.02

|~p`−,CMS frame| 0.04 0.14 0.02 0.02

E`+ 0.02 0.12 0.02 0.02

dr`+ 0.03 0.03 0.01 0.02
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Table A.4 – continued from previous page

Mbc θ` θk φB

dx`+ 0.02 0.03 0.02 0.02

dy`+ 0.02 0.03 0.02 0.02

dz`+ 0.03 0.04 0.02 0.02

p`+ 0.02 0.12 0.02 0.02

pValue`+ 0.01 0.02 0.01 0.01

pt,`+ 0.02 0.11 0.02 0.03

px,`+ 0.02 0.04 0.03 0.02

py,`+ 0.02 0.04 0.02 0.02

pz,`+ 0.01 0.04 0.03 0.02

θ`+ 0.02 0.03 0.04 0.02

|~p`+,CMS frame| 0.03 0.13 0.02 0.02

MRecoil 0.44 0.01 0.01 0.02

Mevent, missing 0.02 0.06 0.12 0.02

| ~pB | 0.26 0.02 0.01 0.02

|~pRecoil| 0.24 0.01 0.01 0.02

θmissing p 0.53 0.01 0.01 0.02

φB 0.01 0.02 0.01 1.00

pt,B 0.53 0.02 0.02 0.01

px,B 0.22 0.02 0.02 0.02

py,B 0.21 0.01 0.01 0.01

pz,B 0.21 0.01 0.01 0.02

E(ROE) 0.04 0.06 0.03 0.03

Eextra(ROE) 0.03 0.06 0.02 0.02

M(ROE) 0.05 0.06 0.03 0.03

|~p(ROE)| 0.07 0.01 0.02 0.02

pt(ROE) 0.15 0.03 0.03 0.02

sphericity 0.04 0.21 0.06 0.01

θk 0.01 0.02 1.00 0.01

θ` 0.02 1.00 0.02 0.02

thrustevent 0.02 0.10 0.08 0.01

thrustB 0.06 0.17 0.03 0.02

Table A.5: Distance correlations for the channel B+ → (K∗+ → K+π0)e+e−.

Mbc θ` θk φB

EB 0.16 0.02 0.02 0.01

EK∗ 0.03 0.07 0.04 0.05

EK 0.02 0.07 0.49 0.04

continued on next page
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Mbc θ` θk φB

MK 0.01 0.00 0.00 0.00

cos θK 0.03 0.02 0.06 0.01

drK 0.02 0.03 0.14 0.02

dzK 0.03 0.06 0.06 0.02

|~pK | 0.02 0.07 0.49 0.04

pt,K 0.02 0.07 0.47 0.03

px,K 0.03 0.03 0.19 0.02

py,K 0.02 0.04 0.18 0.02

pz,K 0.03 0.04 0.20 0.02

|~pK, cms frame| 0.02 0.07 0.52 0.03

MK∗ 0.02 0.03 0.07 0.02

|~pK∗ | 0.03 0.07 0.05 0.05

Eπ 0.04 0.04 0.77 0.04

Mπ 0.01 0.01 0.08 0.02

cos θπ 0.02 0.03 0.10 0.02

drπ 0.00 0.00 0.00 0.00

dzπ 0.00 0.00 0.00 0.00

|~pπ| 0.04 0.04 0.77 0.04

pt,π 0.03 0.04 0.75 0.04

px,π 0.03 0.03 0.34 0.03

py,π 0.02 0.02 0.33 0.02

pz,π 0.03 0.03 0.37 0.02

|~pπ, cms frame| 0.04 0.05 0.79 0.04

pt,K∗ 0.03 0.07 0.04 0.05

px,K∗ 0.03 0.03 0.02 0.03

py,K∗ 0.02 0.03 0.02 0.03

pz,K∗ 0.03 0.03 0.03 0.02

Mbc 1.00 0.03 0.03 0.02

aplanarity 0.07 0.09 0.07 0.06

χ2
prob 0.04 0.03 0.02 0.01

CCT 0 0.07 0.13 0.05 0.02

CCT 1 0.02 0.07 0.03 0.02

CCT 2 0.08 0.04 0.04 0.02

CCT 3 0.01 0.04 0.03 0.02

CCT 4 0.02 0.06 0.02 0.01

CCT 5 0.03 0.07 0.05 0.02

CCT 6 0.03 0.09 0.03 0.01

CCT 7 0.02 0.05 0.02 0.02

continued on next page
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Mbc θ` θk φB

CCT 8 0.03 0.02 0.04 0.02

cos θB 0.51 0.02 0.02 0.01

∆E 0.02 0.02 0.01 0.01

δx`+`− 0.02 0.04 0.02 0.02

δy`+`− 0.02 0.04 0.02 0.02

δz`+`− 0.02 0.03 0.02 0.02

dr 0.02 0.07 0.03 0.01

dr 0.02 0.07 0.03 0.01

dz 0.02 0.06 0.02 0.01

dz 0.02 0.06 0.02 0.01

R1 0.07 0.07 0.02 0.02

R2 0.03 0.19 0.05 0.02

R3 0.09 0.19 0.03 0.02

R4 0.06 0.11 0.04 0.03

B0,thrust 0.05 0.09 0.06 0.02

B1,thrust 0.02 0.02 0.02 0.02

B2,thrust 0.03 0.20 0.02 0.02

B3,thrust 0.01 0.05 0.02 0.02

B4,thrust 0.05 0.20 0.04 0.02

E`− 0.03 0.11 0.02 0.03

dr`− 0.02 0.04 0.02 0.02

dx`− 0.02 0.04 0.02 0.02

dy`− 0.02 0.04 0.02 0.02

dz`− 0.02 0.06 0.02 0.01

p`− 0.03 0.11 0.02 0.03

pValue`− 0.01 0.02 0.01 0.02

pt,`− 0.03 0.12 0.02 0.04

px,`− 0.01 0.03 0.02 0.02

py,`− 0.02 0.04 0.02 0.02

pz,`− 0.01 0.03 0.01 0.02

θ`− 0.01 0.02 0.01 0.02

|~p`−,CMS frame| 0.05 0.15 0.03 0.04

E`+ 0.03 0.12 0.03 0.02

dr`+ 0.01 0.05 0.01 0.01

dx`+ 0.02 0.04 0.02 0.02

dy`+ 0.02 0.04 0.02 0.02

dz`+ 0.02 0.05 0.02 0.02

p`+ 0.03 0.12 0.03 0.02

continued on next page
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Mbc θ` θk φB

pValue`+ 0.01 0.01 0.02 0.01

pt,`+ 0.03 0.12 0.03 0.03

px,`+ 0.02 0.04 0.02 0.02

py,`+ 0.02 0.03 0.02 0.01

pz,`+ 0.03 0.03 0.01 0.02

θ`+ 0.03 0.03 0.01 0.01

|~p`+,CMS frame| 0.04 0.14 0.03 0.03

MRecoil 0.33 0.02 0.01 0.01

Mevent, missing 0.03 0.08 0.07 0.02

| ~pB | 0.26 0.02 0.02 0.01

|~pRecoil| 0.24 0.02 0.02 0.02

θmissing p 0.54 0.02 0.02 0.02

φB 0.02 0.02 0.03 1.00

pt,B 0.54 0.02 0.01 0.02

px,B 0.22 0.02 0.01 0.02

py,B 0.22 0.02 0.02 0.02

pz,B 0.22 0.02 0.02 0.01

E(ROE) 0.07 0.09 0.04 0.02

Eextra(ROE) 0.05 0.07 0.05 0.02

M(ROE) 0.08 0.10 0.04 0.01

|~p(ROE)| 0.05 0.04 0.02 0.02

pt(ROE) 0.14 0.07 0.02 0.01

sphericity 0.07 0.25 0.06 0.01

θk 0.03 0.08 1.00 0.03

θ` 0.03 1.00 0.08 0.02

thrustevent 0.02 0.19 0.04 0.01

thrustB 0.06 0.28 0.06 0.02

Table A.6: Distance correlations for the channel B+ → (K∗+ → K+π0)µ+µ−.

Mbc θ` θk φB

EB 0.18 0.02 0.02 0.02

EK∗ 0.02 0.10 0.04 0.03

EK 0.03 0.05 0.61 0.02

MK 0.00 0.00 0.00 0.00

cos θK 0.02 0.03 0.04 0.02

drK 0.02 0.06 0.09 0.02

dzK 0.02 0.05 0.04 0.02

continued on next page
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Mbc θ` θk φB

|~pK | 0.03 0.05 0.60 0.02

pt,K 0.03 0.05 0.58 0.02

px,K 0.01 0.02 0.21 0.01

py,K 0.03 0.02 0.20 0.01

pz,K 0.02 0.03 0.22 0.02

|~pK, cms frame| 0.04 0.07 0.65 0.02

MK∗ 0.03 0.01 0.06 0.01

|~pK∗ | 0.02 0.10 0.04 0.03

Eπ 0.04 0.06 0.84 0.03

Mπ 0.02 0.02 0.07 0.02

cos θπ 0.01 0.02 0.10 0.01

drπ 0.00 0.00 0.00 0.00

dzπ 0.00 0.00 0.00 0.00

|~pπ| 0.04 0.06 0.84 0.03

pt,π 0.04 0.05 0.83 0.03

px,π 0.02 0.02 0.36 0.02

py,π 0.03 0.03 0.37 0.02

pz,π 0.02 0.04 0.40 0.02

|~pπ, cms frame| 0.04 0.06 0.86 0.03

pt,K∗ 0.03 0.09 0.03 0.04

px,K∗ 0.01 0.03 0.02 0.02

py,K∗ 0.02 0.03 0.02 0.02

pz,K∗ 0.02 0.04 0.02 0.01

Mbc 1.00 0.03 0.04 0.01

aplanarity 0.07 0.08 0.11 0.04

χ2
prob 0.04 0.08 0.07 0.01

CCT 0 0.05 0.09 0.07 0.01

CCT 1 0.02 0.06 0.05 0.02

CCT 2 0.04 0.04 0.06 0.02

CCT 3 0.02 0.04 0.03 0.01

CCT 4 0.02 0.03 0.04 0.01

CCT 5 0.03 0.04 0.06 0.01

CCT 6 0.02 0.05 0.05 0.01

CCT 7 0.02 0.03 0.03 0.02

CCT 8 0.02 0.02 0.05 0.01

cos θB 0.52 0.02 0.02 0.01

∆E 0.02 0.02 0.02 0.02

δx`+`− 0.01 0.04 0.03 0.02
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Mbc θ` θk φB

δy`+`− 0.02 0.04 0.03 0.02

δz`+`− 0.02 0.03 0.03 0.03

dr 0.02 0.05 0.02 0.02

dr 0.02 0.05 0.02 0.02

dz 0.02 0.05 0.02 0.02

dz 0.02 0.05 0.02 0.02

R1 0.05 0.07 0.02 0.01

R2 0.03 0.12 0.07 0.01

R3 0.09 0.12 0.03 0.02

R4 0.08 0.09 0.07 0.02

B0,thrust 0.03 0.10 0.05 0.02

B1,thrust 0.02 0.03 0.03 0.01

B2,thrust 0.03 0.15 0.03 0.02

B3,thrust 0.02 0.03 0.02 0.01

B4,thrust 0.05 0.15 0.05 0.01

E`− 0.03 0.12 0.02 0.02

dr`− 0.01 0.04 0.02 0.02

dx`− 0.02 0.04 0.03 0.02

dy`− 0.02 0.03 0.02 0.02

dz`− 0.02 0.04 0.03 0.03

p`− 0.03 0.12 0.02 0.02

pValue`− 0.02 0.03 0.02 0.01

pt,`− 0.02 0.11 0.02 0.02

px,`− 0.02 0.04 0.02 0.01

py,`− 0.02 0.03 0.02 0.01

pz,`− 0.02 0.03 0.02 0.02

θ`− 0.02 0.03 0.01 0.02

|~p`−,CMS frame| 0.03 0.13 0.02 0.02

E`+ 0.02 0.11 0.02 0.02

dr`+ 0.02 0.04 0.04 0.01

dx`+ 0.02 0.04 0.03 0.02

dy`+ 0.02 0.03 0.03 0.02

dz`+ 0.02 0.04 0.03 0.02

p`+ 0.02 0.11 0.02 0.02

pValue`+ 0.01 0.01 0.01 0.01

pt,`+ 0.02 0.10 0.02 0.02

px,`+ 0.02 0.04 0.02 0.02

py,`+ 0.02 0.03 0.02 0.01
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Mbc θ` θk φB

pz,`+ 0.01 0.03 0.01 0.02

θ`+ 0.01 0.02 0.01 0.02

|~p`+,CMS frame| 0.04 0.13 0.02 0.02

MRecoil 0.44 0.03 0.03 0.02

Mevent, missing 0.03 0.08 0.05 0.02

| ~pB | 0.25 0.02 0.02 0.02

|~pRecoil| 0.25 0.02 0.02 0.02

θmissing p 0.52 0.02 0.03 0.01

φB 0.01 0.01 0.02 1.00

pt,B 0.54 0.02 0.02 0.01

px,B 0.22 0.02 0.02 0.01

py,B 0.22 0.01 0.01 0.01

pz,B 0.21 0.02 0.02 0.02

E(ROE) 0.04 0.08 0.05 0.02

Eextra(ROE) 0.02 0.08 0.04 0.03

M(ROE) 0.05 0.09 0.05 0.02

|~p(ROE)| 0.07 0.03 0.02 0.02

pt(ROE) 0.16 0.03 0.02 0.01

sphericity 0.06 0.20 0.12 0.02

θk 0.04 0.04 1.00 0.02

θ` 0.03 1.00 0.04 0.01

thrustevent 0.02 0.12 0.07 0.01

thrustB 0.06 0.20 0.09 0.02

E`+`− 0.04 0.02 0.02 0.01

Table A.7: Distance correlations of the BDT outputs on the background samples.

B0 → (K∗0 → K+π−)e+e−

OutputBDT 1 Mbc 0.08377708291677033

OutputBDT 1 θk 0.09251298347027148

OutputBDT 1 θ` 0.1502394009476188

OutputBDT 1 φB 0.035109399027079886

OutputBDT 2 Mbc 0.06560019626736993

OutputBDT 2 θk 0.036760002768887606

OutputBDT 2 θ` 0.04493633100888982

OutputBDT 2 φB 0.037380696213341225

B0 → (K∗0 → K+π−)µ+µ−

continued on next page

101



A. Distance correlation tables

Table A.7 – continued from previous page

OutputBDT 1 Mbc 0.07969238939821299

OutputBDT 1 θk 0.030144400961631287

OutputBDT 1 θ` 0.09552654089892161

OutputBDT 1 φB 0.02356460526322155

OutputBDT 2 Mbc 0.053189916963236744

OutputBDT 2 θk 0.018923866797893308

OutputBDT 2 θ` 0.06381261111541672

OutputBDT 2 φB 0.03488528162217495

B+ → (K∗+ → K+π0)e+e−

OutputBDT 1 Mbc 0.06583268826754061

OutputBDT 1 θk 0.06525357123543939

OutputBDT 1 θ` 0.17559421417493626

OutputBDT 1 φB 0.047183459200694326

OutputBDT 2 Mbc 0.07055699079881736

OutputBDT 2 θk 0.06765172016357826

OutputBDT 2 θ` 0.12497815836648081

OutputBDT 2 φB 0.039465787007005135

B+ → (K∗+ → K0
sπ

+)e+e−

OutputBDT 1 Mbc 0.0705029447351758

OutputBDT 1 θk 0.07747996314938511

OutputBDT 1 θ` 0.07111369641607514

OutputBDT 1 φB 0.04722075872393238

OutputBDT 2 Mbc 0.07062581051891831

OutputBDT 2 θk 0.05658220752892994

OutputBDT 2 θ` 0.05289536906936217

OutputBDT 2 φB 0.0677118293277203

OutputBDT 2 φB 0.03488528162217495

B+ → (K∗+ → K+π0)µ+µ−

OutputBDT 1 Mbc 0.043118561891196325

OutputBDT 1 θk 0.11440976382812508

OutputBDT 1 θ` 0.09013674609182583

OutputBDT 1 φB 0.040677672054097946

OutputBDT 2 Mbc 0.027627604880588786

OutputBDT 2 θk 0.09338371928876314

OutputBDT 2 θ` 0.06280938768528271

OutputBDT 2 φB 0.03240416856252249

OutputBDT 2 φB 0.03488528162217495

B+ → (K∗+ → K0
sπ

+)µ+µ−

continued on next page
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OutputBDT 1 Mbc 0.037478522760355085

OutputBDT 1 θk 0.030838433411260278

OutputBDT 1 θ` 0.09103659287380171

OutputBDT 1 φB 0.039380309768145105

OutputBDT 2 Mbc 0.038311354664147194

OutputBDT 2 θk 0.0412646979199185

OutputBDT 2 θ` 0.06722917493349598

OutputBDT 2 φB 0.03555730058708565
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B. Correlation tables from fitting procedure

αCB, sig σCB, sig 0.0

αCB, sig x̄ -0.0

αCB, sig nargus 0.0

σCB, sig αCB, sig 0.0

σCB, sig x̄ 0.003

σCB, sig nargus 0.0

x̄ αCB, sig -0.0

x̄ σCB, sig 0.003

x̄ nargus -0.0

nargus αCB, sig 0.0

nargus σCB, sig 0.0

nargus x̄ -0.0

NCB, bkg x̄ -0.296

NCB, bkg χargus -0.411

NCB, bkg NCB, bkg -0.296

NCB, bkg χargus 0.142

χargus NCB, bkg -0.411

χargus NCB, bkg 0.142

NCB, sig Ntotal, bkg -0.356

NCB, sig σCB, sig 0.349

NCB, sig χargus -0.399

Ntotal, bkg NCB, sig -0.356

Ntotal, bkg σCB, sig -0.191

Ntotal, bkg χargus 0.205

σCB, sig NCB, sig 0.349

σCB, sig Ntotal, bkg -0.191

σCB, sig χargus -0.266

χargus NCB, sig -0.399

χargus Ntotal, bkg 0.205

χargus σCB, sig -0.266

Table B.1: Correlations for all floating variables from the fitting procedure for the channel B0 →
K∗0e+e−, as described in chapter 6.9.
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αCB, sig σCB, sig 0.0

αCB, sig x̄ -0.0

αCB, sig nargus 0.0

σCB, sig αCB, sig 0.0

σCB, sig x̄ -0.002

σCB, sig nargus 0.0

x̄ αCB, sig -0.0

x̄ σCB, sig -0.002

x̄ nargus -0.0

nargus αCB, sig 0.0

nargus σCB, sig 0.0

nargus x̄ -0.0

NCB, bkg x̄ -0.318

NCB, bkg χargus -0.483

NCB, bkg NCB, bkg -0.318

NCB, bkg χargus 0.217

χargus NCB, bkg -0.483

χargus NCB, bkg 0.217

NCB, sig Ntotal, bkg -0.299

NCB, sig σCB, sig 0.282

NCB, sig χargus -0.307

Ntotal, bkg NCB, sig -0.299

Ntotal, bkg σCB, sig -0.199

Ntotal, bkg χargus 0.208

σCB, sig NCB, sig 0.282

σCB, sig Ntotal, bkg -0.199

σCB, sig χargus -0.312

χargus NCB, sig -0.307

χargus Ntotal, bkg 0.208

χargus σCB, sig -0.312

Table B.2: Correlations for all floating variables from the fitting procedure for the channel B0 →
K∗0µ+µ−, as described in chapter 6.9.

105



B. Correlation tables from fitting procedure

αCB, sig σCB, sig 0.0

αCB, sig x̄ 0.0

αCB, sig nargus 0.0

σCB, sig αCB, sig 0.0

σCB, sig x̄ -0.0

σCB, sig nargus 0.0

x̄ αCB, sig 0.0

x̄ σCB, sig -0.0

x̄ nargus 0.0

nargus αCB, sig 0.0

nargus σCB, sig 0.0

nargus x̄ 0.0

NCB, bkg x̄ -0.348

NCB, bkg χargus -0.45

NCB, bkg NCB, bkg -0.348

NCB, bkg χargus 0.189

χargus NCB, bkg -0.45

χargus NCB, bkg 0.189

NCB, sig Ntotal, bkg -0.437

NCB, sig σCB, sig 0.42

NCB, sig χargus -0.486

Ntotal, bkg NCB, sig -0.437

Ntotal, bkg σCB, sig -0.222

Ntotal, bkg χargus 0.257

σCB, sig NCB, sig 0.42

σCB, sig Ntotal, bkg -0.222

σCB, sig χargus -0.297

χargus NCB, sig -0.486

χargus Ntotal, bkg 0.257

χargus σCB, sig -0.297

Table B.3: Correlations for all floating variables from the fitting procedure for the channel B+ →
K∗+e+e−, as described in chapter 6.9.
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αCB, sig σCB, sig 0.0

αCB, sig x̄ 0.0

αCB, sig nargus -0.0

σCB, sig αCB, sig 0.0

σCB, sig x̄ -0.004

σCB, sig nargus 0.0

x̄ αCB, sig 0.0

x̄ σCB, sig -0.004

x̄ nargus 0.0

nargus αCB, sig -0.0

nargus σCB, sig 0.0

nargus x̄ 0.0

NCB, bkg x̄ -0.542

NCB, bkg χargus -0.672

NCB, bkg NCB, bkg -0.542

NCB, bkg χargus 0.421

χargus NCB, bkg -0.672

χargus NCB, bkg 0.421

NCB, sig Ntotal, bkg -0.4

NCB, sig σCB, sig 0.458

NCB, sig χargus -0.412

Ntotal, bkg NCB, sig -0.4

Ntotal, bkg σCB, sig -0.237

Ntotal, bkg χargus 0.213

σCB, sig NCB, sig 0.458

σCB, sig Ntotal, bkg -0.237

σCB, sig χargus -0.266

χargus NCB, sig -0.412

χargus Ntotal, bkg 0.213

χargus σCB, sig -0.266

Table B.4: Correlations for all floating variables from the fitting procedure for the channel B+ →
K∗+µ+µ−, as described in chapter 6.9.
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