

# Recent results on hadronic B decays at Belle and Belle II

## Niharika Rout On behalf of Belle and Belle II collaboration



58th Rencontres de Moriond 2024

La Thuile, 27th March, 2024





## Outline and motivation

Goal: probe indirectly the SM via weak interactions of quarks Exploit our available dataset, 387 M (Belle II) + 772 M (Belle)  $B\overline{B}$  pairs, to accomplish competitive and world-best results

Today's focus is on improvement of our knowledge on *B* decays and measurement of CPV parameters via CKM angles  $\phi_1$  and  $\phi_3$ :

- $B^+ \to D^0 \rho^+$
- $B \to D^{(*)} K^- K^{(*)0}_{(s)}$
- First Belle + Belle II combination of all  $\phi_3$  measurements
- Measurement of  $\sin 2\phi_1: B^0 \to \eta' K_S^0$
- CPV in  $B^0 \to K_S^0 \pi^0 \gamma$  decays

All results are new since last Moriond







### SuperKEKB collides 7 GeV-e<sup>-</sup> on 4 GeV-e<sup>+</sup> in a submillimeter region: smaller beamspot

- *B* production threshold from point-like colliding particles,  $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ : kinematics well constrained
- Hermetic detector: full event reconstruction
- Asymmetric collider  $\implies$  boost of centre-of-mass: measurement of decay time for time-dependent CPV, arising from interference between decays of mixed and unmixed neutral *B* mesons
- Good vertexing performance ( $\sigma = 15 \ \mu m$ )
- Good flavour tagging performance ( $\epsilon = 37\%$ ): see YSF talk by Petros Stavroulakis

# **B-factory basics**







# Improved B and D decay knowledge





# Branching fraction of $B^+ \rightarrow D^0 \rho(770)^+$

- $B^+ \rightarrow D^0 \rho^+$ : test heavy-quark limit and factorisation models [*Nucl. Phys. B* 591, 313 (2000)]
- WA BF:  $(1.35 \pm 0.18)$ %; driven by old CLEO measurement [*CLEO, PRD 50, 43 (1994)*]

- Very large (14%) uncertainty

- Signal extracted from fit to  $\Delta E$
- Challenge: separate  $B \to D^0 \rho (\to \pi^+ \pi^0)$  and non-resonant  $B \to D^0 \pi^+ \pi^0$  component

- Fit performed in bins of helicity angle ( $\cos \theta_{\rho}$ )





Candidates per 10 MeV







- Template fit to  $\cos \theta_{\rho}$  distribution
  - Non-uniform binning: flat  $\cos \theta_{\rho}$  distribution for  $B \rightarrow D\rho$
  - < 2 % contribution of  $B \rightarrow D^0 \pi^+ \pi^0$  s-wave component

## $\mathscr{B}(B^+ \to D^0 \rho^+) = (0.939 \pm 0.021 \pm 0.050)\%$

World best result with more than  $2 \times improvement$  in precision

Factorisation test has been performed: in agreement with the prediction and improves the precision (backup)

Systematically limited by  $\pi^0$ -efficiency knowledge







 $B \rightarrow D^{(*)}K^-K^{(*)0}_{(S)}$  and  $B \rightarrow D^{(*)}D^-_S$  decays

- $B \rightarrow DKK$ : largely unexplored sector
  - few % of *B* branching fraction expected
  - only 0.28 % measured [PLB 542, 171-182 (2002)]
- Signal extracted from fit to  $\Delta E$
- Challenge: bkg from non-resonant  $B \rightarrow DK^-K^+\pi$  in  $K^*$  modes
- Efficiency correction applied in the plane  $[m(D^{(*)}K^{0(*)}_{(S)}), m(K^{-})K^{0(*)}_{(S)}]$
- Extraction of bkg-subtracted and efficiencycorrected invariant mass and helicity **angles:** dominant  $J^P = 1^{-/+}$  transitions







 $B \rightarrow D^{(*)}K^-K^{(*)0}_{(s)}$  and  $B \rightarrow D^{(*)}D^-_s$  decays

### Run 1 Belle II dataset

| Channel                                               | Yield $(K_S^0 / K^{*0})$    | Average $\varepsilon$ $(K_S^0 / K^{*0})$ | ${\cal B} [10^{-4}]$        |              |
|-------------------------------------------------------|-----------------------------|------------------------------------------|-----------------------------|--------------|
| $B^-  ightarrow D^0 K^- K^0_S$                        | $209\pm17$                  | 0.098                                    | $1.82 \pm 0.16 \pm 0.08$ 3> | < higher pre |
| $\overline{B}{}^0 \rightarrow D^+ K^- K^0_S$          | $105 \pm 14$                | 0.048                                    | $0.82 \pm 0.12 \pm 0.05$    |              |
| $B^-  ightarrow D^{*0} K^- 	ilde{K^0_S}$              | $51\pm9$                    | 0.044                                    | $1.47 \pm 0.27 \pm 0.10$    | rst observat |
| $\overline{B}{}^0 \to D^{*+} K^- K^{\widetilde{0}}_S$ | $36\pm7$                    | 0.046                                    | $0.91 \pm 0.19 \pm 0.05$    |              |
| $B^- \rightarrow D^0 K^- K^{* \widecheck{0}}$         | $325\pm19$                  | 0.043                                    | $7.19 \pm 0.45 \pm 0.33$    |              |
| $\bar{B}^0 \rightarrow D^+ K^- K^{*0}$                | $385\pm22$                  | 0.021                                    | $7.56 \pm 0.45 \pm 0.38$ 3  | v higher pr  |
| $B^- \to D^{*0} K^- K^{*0}$                           | $160 \pm 15$                | 0.019                                    | $11.93 \pm 1.14 \pm 0.93$   | × mgnei pi   |
| $\bar{B}^0 \rightarrow D^{*+} K^- K^{*0}$             | $193\pm14$                  | 0.020                                    | $13.12 \pm 1.21 \pm 0.71$ J |              |
| $B^- \rightarrow D^0 D_s^-$                           | $144 \pm 12$ / $153 \pm 13$ | 0.04 / 0.09                              | $95\pm 6\pm 5$              |              |
| $\overline{B}{}^0 \to D^+ D^s$                        | $145\pm12$ / $159\pm13$     | 0.02 / 0.05                              | $89\pm5\pm5$                | Vorld's hest |
| $B^- \rightarrow D^{*0} D_s^-$                        | $30\pm 6~/~29\pm 7$         | 0.02 / 0.04                              | $65\pm10\pm6$               | vonu s best  |
| $\overline{B}{}^0 \to D^{*+} D_s^{-}$                 | $43\pm7$ / $37\pm7$         | 0.02 / 0.04                              | $83\pm10\pm6$               |              |

|  | • |  |
|--|---|--|
|  |   |  |
|  |   |  |

### First observation of 3 new channels with improved precision for many









- $B_s^0$  production fraction in  $\Upsilon(5S)$  decays ( $f_s$ ) important for accuracy in absolute  $B_{c}^{0}$  BF
  - Dominated by the uncertainty of inclusive  $B_s^0 \rightarrow D_s^{\pm} X BF$
- $B_s^0$  candidates are selected in events where the other  $B_s^0$ candidate is reconstructed from fully hadronic final state
- Signal extraction: fit to  $M(B_s)$  and M(D)

- Compatible with previous Belle results
- $B_s^0 \to D^{\pm}X$  measured for the first time

Uncertainty on  $B_S^0$  production fraction improved compared to Belle [JHEP 08, 131 (2023)]







# CPV via CKM







- SM benchmark very reliably predicted ( $10^{-7}$  relative)
- Tree level decays no (large) BSM
- First combination of all Belle and Belle II  $\phi_3$ -measurements
- Total 60 input observables and 16 auxiliary D-decay inputs

| B decay                   | D decay                                                              | Method               | Data set                                           |
|---------------------------|----------------------------------------------------------------------|----------------------|----------------------------------------------------|
|                           |                                                                      |                      | $(\text{Belle} + \text{Belle II})[\text{fb}^{-1}]$ |
| $B^+ \to Dh^+$            | $D  ightarrow K_{ m s}^0 h^- h^+$                                    | BPGGSZ               | 711 + 128 [JHEP                                    |
| $B^+ \to Dh^+$            | $D  ightarrow K_{ m s}^0 \pi^- \pi^+ \pi^0$                          | BPGGSZ               | 711 + 0 [JHEP                                      |
| $B^+ \to Dh^+$            | $D  ightarrow K_{ m S}^0 \pi^0, K^- K^+$                             | GLW                  | 711 + 189 [arxiv:                                  |
| $B^+ \to Dh^+$            | $D \rightarrow K^+\pi^-, K^+\pi^-\pi^0$                              | ADS                  | 711 + 0                                            |
| $B^+ \to Dh^+$            | $D  ightarrow K_{ m S}^0 K^- \pi^+$                                  | $\operatorname{GLS}$ | 711 + 362                                          |
| $B^+ \to D^* K^+$         | $D \to K^0_{ m S} \pi^- \pi^+$                                       | BPGGSZ               | 605 + 0                                            |
| $D^+ \rightarrow D^* V^+$ | $D  ightarrow K^0_{ m S} \pi^0, K^0_{ m S} \phi, K^0_{ m S} \omega,$ | <b>OIW</b>           | PRD (PRD )                                         |
| $D' \rightarrow D'K'$     | $K^-K^+, \pi^-\pi^+$                                                 | GLW                  | 210+0<br>[PRD 7                                    |
|                           |                                                                      |                      |                                                    |

## $\phi_3/\gamma$ : Belle + Belle II combination















# $\phi_1^{\text{eff}} / \beta^{\text{eff}}$ from suppressed penguins

- Gluonic penguin modes suppressed in SM, BR:  $10^{-5} 10^{-6}$
- BSM sensitive if any deviation from reference channel observed
- Reliable theory prediction ( < 1%) [PLB 620, 143 (2005)]

$$\mathscr{A}_{CP}(\Delta t) = \frac{\Gamma(\bar{B}^0 \to f_{CP}) - \Gamma(B^0 \to f_{CP})}{\Gamma(\bar{B}^0 \to f_{CP}) + \Gamma(B^0 \to f_{CP})} (\Delta t) = S \sin(\Delta m \Delta t) - C \cos(\Delta m \Delta t)$$

- Experimentally challenging:
  - Fully hadronic final state with neutrals: unique to Belle II
  - Large background from continuum production: exploit event-topology to boost classification via machine learning





 $C \simeq 0, S \simeq \sin 2\phi_1$  in SM











**13**<sup>-8</sup>

-6

 $^{-4}$ 

-2

∆*t* [ps]

Signal extraction via fit to  $\Delta E$ , M<sub>bc</sub> and continuum suppression output

- Bkg  $\Delta t$  shape from sideband
- Bkg asymmetry included in the fit
- Validation on control sample  $B^+ \to \eta' K^{+ \stackrel{solution}{\amalg}_{10}}$

$$S = 0.67 \pm 0.10 \pm 0.04$$
$$C = -0.19 \pm 0.08 \pm 0.03$$

HFLAV:  $S = 0.63 \pm 0.06$ ,  $C = -0.05 \pm 0.04$ 

Precision comparable with Belle/BaBar in spite of smaller sample

**Gluonic penguin**:  $B^0 \rightarrow \eta' K_c^0$ [arXiv:2402:03713] Run 1 Belle II dataset **Belle II** Preliminary **Belle II** Preliminary  $\int \mathcal{L}dt = 362 \text{ fb}^{-1}$ Signa MeV Entries per 3.0 MeV 120 ---- Continuum ---- Continuum Data 3.0  $\not\models \eta' \to \eta(\gamma\gamma)\pi^+\pi^ \eta' \rightarrow \rho(\pi^+\pi)$ per 30 60 Pulls Pulls 0.00 0.02 -0.040.02 -0.02 -0.020.00 0.04 -0.04-0.06-0.06 $\Delta E$  [GeV]  $\Delta E$  [GeV] Belle II Preliminary  $\int \mathcal{L} dt = 362 \text{ fb}^{-1}$ **Belle II** Preliminary  $\int \mathcal{L} dt = 362 \text{ fb}^{-1}$  $B^0 \rightarrow \eta' (\rightarrow \rho \gamma) K_S$  $B^0 \rightarrow \eta' (\rightarrow \eta_{\gamma\gamma} \pi \pi) K_S$ Background Background **SO** 300 sd <sub>50</sub> B<sup>0</sup> tag  $B^0$  tag 0.64 0.64  $\overline{B}^0$  tag 250  $\overline{B}^0$  tag Candidates andidate 100  $\odot$ Asymmetry Asymmetry -0.5-0.5

6

-8

∆t [ps]







- In SM, photons from  $B^0$  ( $\overline{B}^0$ ) decays are predominantly righthanded (left-handed) as weak interaction is chiral in nature - Limited interference between mixed and unmixed *B* 
  - decays:  $S \simeq 0$  in SM
  - Flipping of photon polarisation suppressed by  $m_s/m_b$
  - Large CPV suggests right-handed non-SM contribution
- Main challenge: B<sup>0</sup> vertex without prompt tracks
  - Use  $K_S^0 \rightarrow \pi^+ \pi^-$  information + beamspot constraint
- Channels:  $K^{*0}(892)\gamma$  (resonant), and  $K_S^0\pi^0\gamma$  (non-resonant)  $m(K\pi) \in [0.8,1]$  $[0.6, 0.8] \cup [1.0, 1.8]$
- Signal extraction: fit to  $(\Delta E, M_{\rm bc})$  followed by fit to  $\Delta t$

# **Radiative penguin:** $B^0 \to K^0_S \pi^0 \gamma$ paper in progress

0.02

nts













HFLAV:  $S = -0.16 \pm 0.22$ ,  $C = -0.07 \pm 0.12$ 





- Improve *B* decay knowledge ( $B^+ \rightarrow D^0 \rho^+$  and  $B_s^0$  production fraction) and observe new decay channels  $(B \to D^{(*)}K^-K^{(*)0}_{(s)}, B^0_s \to D^{\pm}X$  and more in backup)
- Refine our  $\phi_3$ -measurement strategies by combining Belle and Belle II measurements
- CPV parameters from gluonic ( $B^0 \rightarrow \eta' K_S^0$ ) and radiative penguins ( $B^0 \rightarrow K_S^0 \pi^0 \gamma$ ) produces unique and competitive results



Fully exploiting Run 1 Belle II dataset with its unique capabilities along with Belle dataset

Unique and competitive and results with smaller dataset. Run 2 started, more luminosity is coming!



# Thank you!





# Questions?





- Rare and never observed decay
- Polarisation ( $f_L$ ) and direct-CPV parameter  $A_{CP}$ useful for  $B \rightarrow VV$  decays
- BF,  $f_L$  and  $A_{CP}$  extraction in full Belle dataset
- Bkg suppressed using event-topology information
- Signal extraction from fit to:  $\Delta E$ ,  $M_{bc}$ , continuum suppression output,  $\omega$  invariant masses and cosine of helicity angles of both the  $\omega$ 's

First observation of the decay (7.9 $\sigma$ ), no significant  $A_{CP}$ 



### Isospin symmetry relates amplitudes of $B^{(+,0)} \rightarrow D^{(+,0)} \rho^{(+,0)}$

$$R = \left(\frac{3}{2}\frac{\tau_{+}}{\tau_{0}}\frac{\mathscr{B}(D^{0}\rho^{0}) + \mathscr{B}(D^{4}\rho^{0})}{\mathscr{B}(D^{0}\rho^{-})}\right)$$
$$\cos \delta = \frac{1}{2R} \left(\frac{3}{2}\frac{\tau_{+}}{\tau_{0}}\frac{\mathscr{B}(D^{0}\rho^{0}) - 2\mathscr{B}(D^{0}\rho^{-})}{\mathscr{B}(D^{0}\rho^{-})}\right)$$

LHCb measured BF( $D^{0}\rho^{0}$ ) [arxiv:1505.01710] and reported R and  $\delta$  in agreement with HQL and factorization models ( $R \sim 1$ ,  $\delta \sim 0$ )

### Improve significantly with our measurement

|                                                   | R                      |
|---------------------------------------------------|------------------------|
| LHCb                                              | 0.69 ± 0.15            |
| W/ new BF( <i>D</i> <sup>0</sup> ρ <sup>+</sup> ) | <b>0.93</b> +0.11-0.12 |

## $B^+ \rightarrow D^0 \rho$ : HQL and factorisation test



















### $\cos \theta_{\rho}$ distribution





A large part of our physics program (Missing energy analyses) relies on *B*-tagging

Step 1: reconstruction of the partner  $B(B_{tag})$  using well-known channels Step 2: use beam constraint and infer the information on the second B  $(B_{sig})$ : flavour, charge and kinematic constraints

Improved *B* and *D* decay knowledge helps to improve the simulation, hence improve *B*-tagging







- Thanks to the dedication of people based at KEK, we could keep taking data even during the worst of the pandemic
- Record instantaneous luminosity (of any collider): 4.71 X 1034 Cm<sup>-2</sup> S <sup>-1</sup>
- Recorded in total (Run I) ~424 fb<sup>-1</sup>
- Long shutdown 1 (07/2022 01/2024) for major upgrades
  - New two-layer pixel detector
- Run 2: data taking resumed in February 2024

## Belle II & SuperKEKB status











## Performance







### bkg-subtracted and efficiency corrected $m(K^-K)$ distributions













Example of all the derived results for a single channel ( $\bar{B}^0 \rightarrow D^+ K^- K_c^0$ )

25











Table II: Summary of systematic uncertainties for  $C_{\eta' K^0_S}$  and  $S_{\eta' K_S^0}.$ 

| Source                                     | $C_{\eta'K_S^0}$ | $S_{\eta'K}$ |
|--------------------------------------------|------------------|--------------|
| Signal and continuum yields                | < 0.001          | 0.00         |
| SxF and $B\overline{B}$ yields             | < 0.001          | 0.00         |
| $C_{\rm BDT}$ mismodeling                  | 0.004            | 0.01         |
| Signal and background modeling             | 0.020            | 0.01         |
| Observable correlations                    | 0.008            | 0.00         |
| $\Delta t$ resolution fixed parameters     | 0.005            | 0.00         |
| $\Delta t$ resolution model                | 0.004            | 0.01         |
| Flavor tagging                             | 0.007            | 0.00         |
| ${	au}_{B^0}  { m and}  \Delta m_d$        | < 0.001          | 0.00         |
| Fit bias                                   | 0.003            | 0.00         |
| Tracker misalignment                       | 0.004            | 0.00         |
| Momentum scale                             | 0.001            | 0.00         |
| Beam spot                                  | 0.002            | 0.00         |
| B-meson motion in the $\Upsilon(4S)$ frame | < 0.001          | 0.01         |
| Tag-side interference                      | 0.005            | 0.01         |
| $B\overline{B}$ background asymmetry       | 0.008            | 0.00         |
| Candidate selection                        | 0.007            | 0.00         |
| Total                                      | 0.027            | 0.03         |
|                                            |                  |              |







Top plots:  $B^0 \rightarrow K^{*0}\gamma$ , 0.8 GeV <  $m(K_S^0\pi^0)$  < 1 GeV Bottom plots:  $B^0 \rightarrow \text{non-}K^{*0}\gamma$ , excluding above mass region



### Table II: Summary of systematic uncertainties.

|                                 | $K^{*0}\gamma$       |                      | $K_S^0$              | $\pi^0\gamma$        |
|---------------------------------|----------------------|----------------------|----------------------|----------------------|
| Source                          | S                    | C                    | S                    | C                    |
| E and $p$ scales                | $\pm 0.017$          | $\pm 0.015$          | $\pm 0.083$          | $\pm 0.047$          |
| Vertex measurement              | $\pm 0.021$          | $\pm 0.009$          | $\pm 0.023$          | $\pm 0.036$          |
| Flavor tagging                  | $\pm 0.005$          | $^{+0.012}_{-0.009}$ | $\pm 0.008$          | $^{+0.013}_{-0.009}$ |
| <b>Event-by-event fractions</b> | $\pm 0.003$          | $^{+0.004}_{-0.003}$ | $\pm 0.032$          | $\pm 0.013$          |
| Resolution functions            | $\pm 0.014$          | $\pm 0.009$          | $\pm 0.032$          | $\pm 0.013$          |
| Physics parameters              | < 0.001              | < 0.001              | $\pm 0.003$          | < 0.001              |
| $B\overline{B}$ asymmetries     | $^{+0.010}_{-0.021}$ | $\pm 0.022$          | $^{+0.023}_{-0.015}$ | $^{+0.032}_{-0.033}$ |
| Tag-side interference           | < 0.001              | -0.002               | +0.001               | +0.001               |
| Total                           | $^{+0.033}_{-0.037}$ | $^{+0.032}_{-0.031}$ | $^{+0.100}_{-0.098}$ | $^{+0.071}_{-0.070}$ |

| Sample                                  | Signal yield | $B\overline{B}$ bkg yield | S/N  |
|-----------------------------------------|--------------|---------------------------|------|
| $B^0 \to K^0_S \pi^0 \gamma$ in MR1     | $385\pm24$   | $20\pm 8$                 | 2.36 |
| $B^0 \to K^0_S \pi^0 \gamma$ in non-MR1 | $171\pm23$   | $69\pm19$                 | 0.34 |
| $B^+ \to K^0_S \pi^+ \gamma$            | $843\pm34$   | $55\pm10$                 | 2.68 |





| Parameters     | $\phi_3(^\circ)$ | $r_B^{DK}$      | $\delta_B^{DK}(^\circ)$ | $r_B^{D\pi}$      | $\delta^{D\pi}_B(^\circ)$ | $r_B^{D^*K}$    | $\delta_B^{D^*K}(^{\circ})$ |
|----------------|------------------|-----------------|-------------------------|-------------------|---------------------------|-----------------|-----------------------------|
| Best fit value | 78.6             | 0.117           | 138.4                   | 0.0165            | 347.0                     | 0.234           | 341                         |
| 68.3% interval | [71.4, 85.4]     | [0.105,  0.130] | [129.1,  146.5]         | [0.0109,  0.0220] | [337.4,  355.7]           | [0.165,  0.303] | [327, 355]                  |
| 95.5% interval | [63,92]          | [0.092,  0.141] | [118,  154]             | [0.006,  0.027]   | [322,  366]               | [0.10,  0.37]   | [307, 369]                  |

## $\phi_3/\gamma$ : Belle + Belle II combination



| 1  |  |
|----|--|
| )] |  |
| 1  |  |