Tau and low multiplicity physics at Belle and Belle II

58th Rencontres de Moriond 2024 – Electroweak Interactions & Unified Theories

March 24-31, 2024, La Thuile – Valle d'Aosta.

Luigi Corona - INFN Pisa on behalf of the Belle and Belle II collaborations luigi.corona@pi.infn.it

Belle and Belle II

Belle @KEKB, recorded *[Ldt* = 1 ab⁻¹

- Aerogel Cherenkov cnt. n=1.015~1.030 SC Solenoid 15TCsI(TI) TOF Counte **Central Drift Chamber** small cell +He/C₂H₄ Belle + Belle II: ~1.4 ab⁻¹ Si vtx. det. μ/K_L detection 3/4 laver DSSD 14/15 laver RPC+Fe Belle II @SuperKEKB, Run1 recorded **[Ldt = 424 fb**⁻¹ (2019-2022) K_l e muon detector u-ID efficiency: ~90% **EM** Calorimenter σ(E): 4% - 1.6% Particle ID system π -fake-rate: 5% Central Drift Chamber spatial resolution: 100 μm dE/dx resolution: 5% p_{T} resolution: 0.4% Vertex detector vertex resolution: 15 µm
- Belle (1999 2010) and Belle II (2018) operate at B-factories
 - → Asymmetric e⁺e⁻ colliders optimized for the production of **B** meson pairs, but also **D** mesons, τ leptons, ... dark sector
 - → Collisions mainly at Y(4S): $\sqrt{s} = 10.58$ GeV
- Advantages of experiments at **B-factories**
 - Well known initial-state condition and clean environment (low particle multiplicity)
 - -Hermetic detectors with excellent particle identification (PID) and tracking performance
- Belle II
 - Dedicated low-multiplicity triggers -
 - Example: single-photon trigger available in the Run1 data set \rightarrow makes Belle II dataset unique
 - Excellent reconstruction capabilities for **low multiplicities** • and missing energy signatures

Belle II Physics Book, PTEP 2019 12 (2019)

τ physics results

τ-physics at *B* factories

Belle II Physics Book, PTEP 2019 12 (2019)

- B-factories are also τ-factories: -
 - **Belle II** dataset: **390 million** *τ*-pairs
- $e^+e^- \rightarrow \tau^+\tau^-$: back-to-back in center-of-mass frame (CM)
 - → Neutrinos → τ not fully reconstructed
 - → Identified with thrust axis $\hat{n}_{\tau} \rightarrow$ maximizes thrust value T
 - Separate them in two opposite hemispheres
 - Reconstruct specific topologies (1x3 vs 1x1) to suppress background

Thrust value

i runs over all reconstructed particles *p* are expressed in the CM frame

Challenges

- Precise measurements of SM properties
 - Mass, lifetime, branching fractions, ...
 - Challenge: control of systematics sources

- World's leading sensitivities for direct searches
 - → LFV, LFU, search for new particles, ...
 - Challenge: large datasets suitable for rare processes
 - High luminosity
 - New analysis techniques \rightarrow increase signal efficiency

58th Rencontres de Moriond 2024 - EW. March 24-31, 2024. Luigi Corona

LFU in τ -decays – R_{μ} extraction and systematics

model

data 0.995

1.005

P. Feichtinger, Tau2023

- R_{μ} measured through template binned maximum likelihood fits
 - Over lepton momentum bins from 1.5 to 5 GeV
- Main systematics from PID, 0.32%, and triggers, 0.10%
 - **Total systematic** uncertainty of 0.37% →
 - Included in the fit as nuisance parameters
 - Checked the stability of the result before uboxing data
 - Sub-regions for different kinematic variables, data periods, PID requirements
 - Good agreement between the measured values

LFU in *τ*-decays – Result

P. Feichtinger, Tau2023

- $R_{\mu} = 0.9675 \pm 0.0007$ (stat.) ± 0.0036 (sys.) and $|g_{\mu}/g_e|_{\tau} = 0.9974 \pm 0.0019$
 - Most precise test of μ -*e* universality in τ decays

• Consistent with SM at 1.4σ

- Combination of CLEO, BaBar and Belle II yields (assuming independent systematics)
 - → $(g_{\mu}/g_{e})_{\tau} = 1.0005 \pm 0.0013$

58th Rencontres de Moriond 2024 - EW. March 24-31, 2024. Luigi Corona

Lepton Flavour Violation searches

[1] M. Giffels et al., Phys. Rev. D 77, 073010 (2008) [2] L. T. Hue et al., Nuclear Physics B, 873, 1 (2013)

[1] K. Hayasaka et al., Phys. Lett. B 687 (2010) 139

- Best upper limits from Belle: 2.1×10^{-8} at 90% CL with 782 fb⁻¹ [1]
 - Signal side: three muons
 - \rightarrow Tag side: 1-track τ decay (events with 4 tracks)
- Belle II competitive with 424 fb⁻¹
 - Inclusive approach: allow at most three tracks in the Tag side
 - Signal detection efficiency increases
 - → 2D signal region \rightarrow large background reduction using
 - $\Delta E_{3\mu} = E_{\tau, sig} E_{beam} vs M_{3\mu}$
 - Background suppression with BDT >
 - $\rightarrow \epsilon_{sig} = 20.42\% \pm 0.06\%$ (x3 larger than Belle) and 0.5 $^{+1.4}_{-0.5}$ expected BKG events, estimated from SB region

tag

n_{thrust}

signal

Belle II Simulation

 $au^-
ightarrow \mu^- \mu^+ \mu^-$

Belle

tag

Rest of Event

signal

Belle II

SR

 20δ SR

1.850

 $\tau \rightarrow \mu \mu \mu$ – Result

A. Martini, Tau2023

• Observed 1 event in the signal region: $B(\tau \rightarrow \mu \mu \mu) = (3.1^{+8.7}_{-3.6} \text{ (stat.)} \pm 0.1 \text{ (syst.)}) \times 10^{-9}$

58th Rencontres de Moriond 2024 - EW. March 24-31, 2024. Luigi Corona

Low Multiplicity physics results

(g-2) of the muon

[1] Muon g-2 T. I., Phys. Rept. 887 (2020)[3] BMW Collab., Nature 593 7857, 51 (2021)[2] Muon g-2 Collab., arXiv:2311.08282 (2023)[4] CMD-3 Collab., arXiv:2302.08834 (2023)

- Hadronic Vacuum Polarization (HVP) contributes to the largest uncertainty in the prediction of the muon (g-2)
- In the context of the Muon (g-2) Theory Initiative [1]
 - Large discrepancy between White Paper predictions (2020) and experimental results
 - Significance for **Fermilab** get to 5σ [2]
- The 5σ discrepancy reduces to $\sim 1\sigma$
 - $a_{\mu}^{HVP,LO}$ from Lattice QCD [3]
 - Latest CMD-3 pion form-factor data in $a_{\mu}^{HVP,LO}$ [4]

 $a_{\mu} = \frac{g}{2}$

HLbl

(a, Error)²

 $=a_{\mu}^{EW}+a_{\mu}^{QED}+a_{\mu}^{CED}$

HVP: hadronic

vacuum polarization

 $a_{\mu}^{QCD} = a_{\mu}^{HVP}$

Hadron-contribution

21.0

9

58th Rencontres de Moriond 2024 - EW. March 24-31, 2024. Luigi Corona

 $\sigma(e^+e^- \rightarrow \pi^+\pi^-\pi^0)$

- Partial Run1 data set of **191 fb**⁻¹
- Initial state radiation (ISR) technique
 - Explore a wide energy range from a single dataset, 0.7-3.5 GeV →
 - **Complementary** to experiments that perform **beam-energy** scanning
- Signal process: $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR}$
 - $\rightarrow \pi^0$ is reconstructed from $\pi^0 \rightarrow \gamma \gamma$
 - Selection through kinematic fit
 - Sum of four-momenta of $\pi^{+}\pi^{-}\gamma\gamma\gamma_{ISR}$ constrained to the four-momenta of the e^+e^- beam
- **Background estimated using control samples**

Main backgrounds

 $e^+e^- \rightarrow a\overline{a}$

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\gamma$ $e^+e^- \rightarrow K^+K^-\pi^0\gamma$

1.5

Data/MC

0.5

1.2

1.3

π^o efficiency and systematics

- One of the key challenge is the π^0 efficiency
 - One of the main factors of the signal efficiency
 - → signal efficiency: 8.8%-6.6% in the mass range 0.7-3.5 GeV
- Custom determination using ω resonance: $e^+e^- \rightarrow \omega \gamma \rightarrow \pi^+\pi^-\pi^0 \gamma$

- **Partial reconstruction** of $\pi^{+}\pi^{-}\gamma$ final state
 - **Recoil mass** is contrained with a **kinematic fit to the mass of the** π°
 - $N_{partial}$ estimated from a fit to invariant mass $M(\pi^{+}\pi^{-}\pi^{0}_{recoil})$
- N_{full} estimated from a fit to $M(\gamma\gamma)$ ($\pi^0 \rightarrow \gamma\gamma$)
- From data-MC ratio
 - The π^0 efficiency is determined to an accuracy of 1%, which is assumed as systematic uncertainty

Systematic uncertainties (signal ϵ correction factor) %

Source	a a 1 a c T z z	
	0.62-1.0	$05 \mathrm{GeV}/c^2$
Tracking	0.8	(-1.35)
ISR photon detection	0.7	(+0.15)
π^0 detection	1.0	(-1.43)
Kinematic fit (χ^2)	0.6	(+0.0)
Trigger	0.1	(-0.09)
Background suppression	0.2	(-1.90)
Monte Carlo generator	1.2	
Integrated luminosity	0.6	
Radiative corrections	0.5	
Simulated sample size	0.2	
Background subtraction	0.2 - 2.3	
Unfolding	0.7 - 25	
Total uncertainty	2.3-25	
(Total correction $\varepsilon/\varepsilon_{\rm sim} - 1$)		(-4.61)

Belle T

12

 $\sigma(e^+e^- \rightarrow \pi^+\pi^-\pi^0)$ – Result

- $a_{\mu}(3\pi) = (48.91 \pm 0.23 \text{ (stat.)} \pm 1.07 \text{ (syst.)}) \times 10^{-10} \text{ measured on 191 fb}^{-1}$, with accuracy of 2.2%
- Main systematic uncertainties from efficiency and absence of NNLO in the generator
- 6.5% higher than the global fit result with 2.5σ significance

Summary and conclusions

- Belle and Belle II are leading the τ searches, and are providing fundamental results from low-multiplicity event analyses
 - Precision measurements of SM parameters
 - Searches beyond the SM physics
- Many frontiers of improvements
 - Increase data sample size
 - Improved analysis techniques and reduced systematic uncertainties

Analysis presented today

- LFU test in τ decays Tau2023
- Search for the LFV $\tau \rightarrow \mu\mu\mu$ decay Tau2023
- $\sigma(e^+e^- \rightarrow \pi^+\pi^-\pi^0)$ with ISR technique New for Moriond

Summary and conclusions

- Belle and Belle II are leading the τ searches, and are providing fundamental results from low-multiplicity event analyses
 - Precision measurements of SM parameters
 - Searches beyond the SM physics
- Many frontiers of improvements
 - Increase data sample size
 - Improved analysis techniques and reduced systematic uncertainties

Analysis presented today

- LFU test in τ decays Tau2023
- Search for the LFV $\tau \rightarrow \mu\mu\mu$ decay Tau2023
- $\sigma(e^+e^- \rightarrow \pi^+\pi^-\pi^0)$ with ISR technique New for Moriond

Others (τ, dark sector, low-multiplicity, ...)

- τ mass measurement Phys. Rev. D 108, 032006 (2023) Belle II
- ► Search for $\tau \rightarrow la$ (inv.) Phys. Rev. Lett. 130, 181803 (2023) $\mathcal{B}_{elle II}$
- ► LFV $\tau \rightarrow IV^0$ JHEP 2023, 118 (2023) \mathcal{B}_{elle}
- ► LFV $\tau \rightarrow I\phi$ arXiv:2305.04759 (2023) $\mathcal{B}_{elle II}$
- ▶ Michel Parameters in $\tau^- \rightarrow \mu^+ \overline{\nu}_{\mu} \nu_{\tau}$ decays *Belle* Phys. Rev. Lett. 131, 021801 (2023)
- Heavy neutral lepton in τ decays arXiv:2402.02580 (2024) Belle
- Search for $Z' \rightarrow$ invisible Phys. Rev. Lett. 130, 231801 (2023) $\mathcal{B}_{elle\,ll}$
- Search for ττ resonance Phys. Rev. Lett. 131, 121802 (2023) Belle II
- Search for $\mu\mu$ resonance arXiv:2403.02841 (2024) $\mathcal{B}_{elle\,II}$
- ► Long-lived spin-0 mediator in $b \rightarrow s$ Belle II Phys. Rev. D 108, L11104 (2023)
- Dark leptophilic scalar in association with ττ Belle Phys. Rev. D 109, 032002 (2024)
- ... and many others published and ongoing

Belle II Run2 has started!

- Belle II Run2 first collisions on February 20th, 2024
- Target integrated luminosity: 50 ab⁻¹ (x100 w.r.t Run1 dataset)
- Target peak luminosity: 6x10³⁵ cm⁻² s⁻¹ SuperKEKB world record: 4.7 x 10³⁴ cm⁻² s⁻¹

Thank you!

Backup slides

Experiments at B-factories

- Asymmetric e⁺e⁻ colliders optimized for the production of B meson pairs, but also D mesons, τ leptons, ...
- Collisions occur at Y(nS) resonances
 - Mainly at Y(4S): √s = 10.58 GeV just above the production threshold of BB BR(Y(4S) → BB) > 96%
- Asymmetric beam energies: boosted *BB* pairs, for CP-violation time-dependent measurements
- High peak luminosity $L > 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

The Belle II experiment @ SuperKEKB

- SuperKEKB is a new generation B-factory \rightarrow asymmetric e^{+}/e^{-} collider, mainly operated at $\sqrt{s} = 10.58$ GeV [Y(4S)]
- Belle II is the upgrade of Belle @ KEKB
 → Hermetic detector with high performances
- 424 fb⁻¹ collected, currently not in data taking
- Well known initial-state condition and clean environment (Low/no pile-up)
- Dedicated low-multiplicity triggers
 - Suppress high-cross-section QED processes without "killing" the signal
 - Precise knowledge of acceptance and efficiencies of the detector required
 - → Example: single-photon trigger available in the full collected data set
 → makes Belle II dataset unique
- Excellent reconstruction capabilities for low multiplicities and missing energy signatures

LFU in *t*-decays - Combination

P. Feichtinger, Tau2023

$$R_{\mu} = \frac{\mathcal{B}(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau})}{\mathcal{B}(\tau^- \to e^- \bar{\nu}_e \nu_{\tau})}$$

$$\frac{g_{\mu}}{g_{e}} \bigg)_{\tau} = \sqrt{R_{\mu} \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})}} \qquad f(x) = 1 - 8x + 8x^{3} - x^{4} - 12x^{2}\ln x$$

Heavy neutral lepton in τ decays

Belle Collaboration, arXiv:2402.02580 (2024), Sourav Dey Tau2023

- Heavy sterile neutrinos N appears in many extensions of the SM [1]
 - ➤ N mixes with v_{SM}
 - → **N long-lived** for small values of N-v_{SM} mixing
- Limits on $|V_{\tau N}|^2$ are much weaker than limits on $|V_{eN}|^2$, $|V_{\mu N}|^2$ [2]
- Process: $e^+e^- \rightarrow \tau^+\tau^-$
 - → Signal side: $\tau^- \rightarrow \pi^- N$ ($\rightarrow \mu^+ \mu^- \nu_\tau$) $N \rightarrow \mu^+ \mu^-$ form a displaced vertex (DV) > 15 cm from the beam axis

Around the K⁰ mass

- → Tag side: $\tau^{+} \rightarrow \pi^{+} \overline{\nu}_{\tau}, \tau^{+} \rightarrow \pi^{+} \pi^{0} \overline{\nu}_{\tau}, \tau^{+} \rightarrow l^{+} \nu_{l} \overline{\nu}_{\tau}$
- Main background from $K^0 \rightarrow \pi^+\pi^-$ vetoed
- Signal region divided in
 - → Low mass, SRL: m^{DV} < 0.42 GeV/c²
 - High mass SRH: m^{DV} > 0.52 GeV/c²
- 58th Rencontres de Moriond 2024 EW. March 24-31, 2024. Luigi Corona

DV = Displaced Vertex

IP = Interaction Point

Heavy neutral lepton in τ decays – Result

Belle Collaboration, arXiv:2402.02580 (2024), Sourav Dey Tau2023

In SRL and SRH observed respectively 0 and 1 events in 915 fb⁻¹

58th Rencontres de Moriond 2024 - EW. March 24-31, 2024. Luigi Corona

20

1 ST

→ It may explain $(g - 2)_{\mu}$ anomaly and DM abundance

Search for an invisible Z' boson

Massive Z' boson with a coupling g' only to leptons with μ - and τ -lepton numbers ($L_{\mu} - L_{\tau}$ extension of the SM)

• Possible decays:

[1,2,3]

- → Z' → invisible (vv or $\chi \overline{\chi}$), Z' → $\mu\mu$, Z' → $\tau\tau$
- $Z' \rightarrow \text{invisible} (Z' \rightarrow v\overline{v}/\chi\overline{\chi})$
 - → If light DM χ kinematically accessible exists, BR(Z' → invisible) = 100%
 - Profit from the excellent Belle II capabilities for missing energy signatures
 - → Searched for through the process $e^+ e^- \rightarrow \mu^+ \mu^- Z'$, $Z' \rightarrow inv$.
 - Signal signature is a narrow peak in the recoil mass of the two final-state muons

58th Rencontres de Moriond 2024 – EW. March 24-31, 2024. Luigi Corona

$L_{\mu} - L_{\tau}$ model Z' branching ratios in leptons

21

[1] Shuve et al., <u>Phys. Rev. D 89 , 113004 (2014)</u> [2] D. Curtin et al., <u>JHEP 02 (2015) 157</u> [3] Altmannshofer et al., <u>JHEP 106 (2016)</u>

Search for a $\mu\mu$ -resonance in $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^$ recoil candidate I. Adachi et al., arXiv:2403.02841 (2024) - submitted to PRD μ Four-track final state with at least three identified as muons • μ $^{\Lambda}$ → Four-track invariant mass compatible with collision \sqrt{s} μ No extra energy → Signal signature is a **narrow peak in the opposite-charge** 1800 di-muon mass $M(\mu\mu)$ Belle II preliminary $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$ 1600 Entries/(100 MeV/c²) $e^+e^- \rightarrow \tau^+\tau^ Ldt = 178 \text{ fb}^{-1}$ 1400 Challenging aggressive suppression of main **SM** $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$ 1200 background $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^$ $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ 1000 $e^+e^- \rightarrow q\overline{q} (q=u,d,c,s)$ Based on classifiers trained exploting the features 800 → data of kinematic distributions in signal events 600 400 Presence of a resonance in both candidate and 200 recoil muon pairs 0 1.5 Data sim Signal extracted through fits to $M(\mu\mu)$ 0.5 10 2 3 8 9 $M(\mu\mu)$ [GeV/c²]

$\mu\mu$ -resonance in $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$ - Results

I. Adachi et al., arXiv:2403.02841 (2024) - submitted to PRD

[1] P. Harris et al., <u>arxiv-2207.08990 (2022)</u>
 [2] S. Gori et al., <u>arxiv-2209.04671 (2022)</u>

- No significant excess found in 178 fb⁻¹
 - Competitive 90% CL upper limits on the g' coupling of the L_μ L_τ model (Z') with BaBar (> 500 fb⁻¹) and Belle (> 600 fb⁻¹) results
 - → First 90% CL upper limits for the muonphilic scalar model from a dedicated search [1, 2]

