58th Rencontres de Moriond Electroweak Interactions and Unified Theories 24 - 31 March 2024

Search for $B^+ \to K^+ v \bar{v}$ with hadronic B-tagging at Belle II

Stefano Moneta, on behalf of the Belle II Collaboration

Introduction and motivations

- FCNC process, suppressed in the Standard Model
 - prediction dominated by uncertainty on hadronic form factors

 $\mathcal{B}(B^+ \to K^+ \nu \overline{\nu})_{\rm SM} = (5.6 \pm 0.4) \times 10^{-6}$ (*) [PRD 107, 014511 (2023)]

- Possible **enhancement** in **new physics scenario** (→ <u>O. Sumensari's talk</u>)
 - leptoquark [PRD 98, 055003 (2018)], axion [PRD 102, 015023 (2020)], dark sector mediator [PRD 101, 095006 (2020)]
 - may be connected to flavor anomalies in $R(D^{(*)})$, $(g-2)_{\mu}$
- Experimentally **challenging** search (**unique** to e^+e^- colliders)
 - low BR and large backgrounds
 - poor kinematic constraints (**2 neutrinos** in final state)
- No evidence on previous measurements at Belle and BaBar
 - reconstruct the partner *B*-meson (**tag**) in a **hadronic** or **semi-lept** final state

(*) including ~10% of long distance $B \rightarrow \tau (\rightarrow Kv)v$ contribution

Stefano Moneta

2

Belle II measurement on Run 1 dataset

Two complementary approaches exploited at Belle II with 362 fb⁻¹

Inclusive tag analysis (ITA)

- First time applied on *Kvv* searches by Belle II [PRL 127, 181802 (2021)]
- Reconstruct signal *B* only, exploit the rest of the event (ROE) to suppress backgrounds
- More sensitive w.r.t. conventional tag
- \rightarrow see <u>P. Goldenzweig's talk</u>

Hadronic tag analysis (HTA)

- Conventional analysis to validate ITA
- Fully reconstruct the *B*-tag kinematics
- Lower background contamination
- $\rightarrow \underline{\text{this}} \text{ talk}$

[arXiv:2311.14647, PRD accepted]

Signal selection strategy

- Identify the **K**⁺ signal candidate
 - 68% *K*-ID efficiency, 1.2% $\pi \rightarrow K$ mis-ID rate
 - charge opposite to the *B*-tag
 - **no additional charged particle** in the event, except *B*-tag and *K*⁺
- Train **BDT classifier** on simulation, to separate signal against all backgrounds
 - $\circ~$ exploit extra energy in the calorimeter ($E_{\rm extra}$), missing energy, event "shape", kinematics
 - 0.4% efficiency, 3.8% expected purity (w.r.t. 8% efficiency, 1% expected purity for ITA)
- Extract signal strength $\mu \equiv \mathcal{B}/\mathcal{B}_{SM}(*)$ via binned maximum-likelihood fit of BDT output
 - include all **systematics** as nuisance parameters
 - exploit **control channels** to validate simulation on data and estimate systematic uncertainties

(*) not including long distance $B \rightarrow \tau (\rightarrow Kv)v$

Stefano Moneta

4

Validation

- Background normalization
 - qq **backgrounds** validated in data sample collected 60 MeV below $\Upsilon(4S)$ resonance
 - *BB* background validated on control sample with same-charge *B*_{tag} and *K* signal candidate
- Adjust *E*_{extra} simulation weighting extra photons' multiplicity in the calorimeter
 - use control sample where π is selected instead of K
- Validate **signal efficiency** with an "**embedded**" signal sample
 - reconstruct $B \rightarrow K J/\psi$, and replace $K J/\psi$ with Kvv

 $\mathcal{B}(B^+ \to K^+ \nu \overline{\nu})$

 $\mu =$

Results on HTA

Extract **signal strength** *µ*

- Limited by statistical uncertainty
- **Dominant systematics** are background normalizations, limited size of simulated sample, and modeling of extra photons

$$\mu = 2.2^{+1.8}_{-1.7} (\text{stat})^{+1.6}_{-1.1} (\text{syst})$$

- Result consistent with **null hypothesis**
 - **1.1 σ** w.r.t. background-only hypothesis (**μ=0**)
 - **0.6 σ** w.r.t. SM hypothesis (*μ***=1**) (*)

(*) not including long distance $B \rightarrow \tau (\rightarrow K v) v$

Stefano Moneta

6

Combination

HTA result consistent with ITA at 1.2σ level

- **Combine** the two results
 - remove common events from ITA sample (~2% of total)
 - combine likelihoods accounting for correlations
 - \circ \Rightarrow **10%** improvement w.r.t. ITA result

 \rightarrow <u>P. Goldenzweig's talk</u>

$$\mathcal{B}(B^+ \to K^+ \nu \overline{\nu}) = (2.3 \pm 0.5 (\text{stat})^{+0.5}_{-0.4} (\text{syst})) \times 10^{-5}$$
 (*)

- **3.5 o** w.r.t. background-only hypothesis
- **2.7 σ** w.r.t. SM hypothesis

First evidence of $B \rightarrow K \nu \nu \nu$ decay

(*) not including long distance $B \rightarrow \tau (\rightarrow K \nu) \nu$

Stefano Moneta

[arXiv:2311.14647, PRD accepted]

Backup slides

Hadronic *B*-tagging

Full Event Interpretation algorithm

- Hierarchical neural network approach
 - 10k combinations of different objects considered for training the classifier

Comp. Soft. Big Sci 3, 6 (2019)

Previous measurements

• Semi-leptonic and hadronic *B*-tagging at Belle and BaBar

Systematic uncertainties (HTA)

Source	Correction	Uncertainty type, parameters	Uncertainty size	Impact on σ_{μ}
Normalization of $B\overline{B}$ background		Global, 1	30%	0.91
Normalization of continuum background		Global, 2	50%	0.58
Leading B -decay branching fractions	_	Shape, 3	O(1%)	0.10
Branching fraction for $B^+ \to K^+ K^0_{\rm L} K^0_{\rm L}$	q^2 dependent $O(100\%)$	Shape, 1	20%	0.20
Branching fraction for $B \to D^{**}$		Shape, 1	50%	< 0.01
Branching fraction for $B^+ \to K^+ n \bar{n}$	q^2 dependent $O(100\%)$	Shape, 1	100%	0.05
Branching fraction for $D \to K^0_{\rm L} X$	+30%	Shape, 1	10%	0.03
Continuum-background modeling, BDT _c	Multivariate $O(10\%)$	Shape, 1	100% of correction	0.29
Number of $B\overline{B}$		Global, 1	1.5%	0.07
Track finding efficiency		Global, 1	0.3%	0.01
Signal-kaon PID	p, θ dependent $O(10 - 100\%)$	Shape, 3	O(1%)	< 0.01
Extra-photon multiplicity	$n_{\gamma \text{extra}}$ dependent $O(20\%)$	Shape, 1	O(20%)	0.61
$K_{\rm L}^0$ efficiency		Shape, 1	17%	0.31
Signal SM form-factors	q^2 dependent $O(1\%)$	Shape, 3	O(1%)	0.06
Signal efficiency		Shape, 6	16%	0.42
Simulated-sample size		Shape, 18	O(1%)	0.60

Signal efficiency vs q^2

Though lower efficiency, HTA has a more flat q^2 dependence w.r.t. ITA

Consistency checks (HTA)

Split the data sample into two halves

• Very good agreement in the extracted signal strengths

Post-fit distributions (HTA)

58th Rencontres de Moriond