58th Rencontres de Moriond Electroweak Interactions & Unified Theories 27 March, 2024

Measurements of $B \rightarrow K\pi$ and $B \rightarrow \pi\pi$ Branching Fractions and *CP* Asymmetries at Belle II

Shu-Ping Lin* On behalf of the Belle II collaboration

* lin@pd.infn.it — University of Padova and INFN

Università degli Studi di Padova

Motivation

$$\begin{split} \mathscr{B}_X &= \Gamma(B \to X) / \Gamma_B \\ \mathscr{A}_{CP}^X &= \frac{\Gamma(\bar{B} \to \bar{X}) - \Gamma(B \to X)}{\Gamma(\bar{B} \to \bar{X}) + \Gamma(B \to X)} \end{split}$$

Ideal for Belle II

• $B \rightarrow K\pi$: isospin sum rule

$$I_{K\pi} = \mathscr{A}_{K^{+}\pi^{-}} + \mathscr{A}_{K^{0}\pi^{+}} \cdot \frac{\mathscr{B}_{K^{0}\pi^{+}}}{\mathscr{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathscr{A}_{K^{+}\pi^{0}} \cdot \frac{\mathscr{B}_{K^{+}\pi^{0}}}{\mathscr{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathscr{A}_{K^{0}\pi^{0}} \cdot \frac{\mathscr{B}_{K^{0}\pi^{0}}}{\mathscr{B}_{K^{+}\pi^{-}}} \approx 0$$

- Exactly zero in the limit of isospin symmetry and no EW penguins
 - O(1%) theoretical precision; O(10%) experimental precision, driven by $\mathscr{A}_{K^0\pi^0}$
- Sensitive probe of non-SM physics entering the decay amplitudes in the gluonic penguin loop
- All final states are measured: $B^0 \to K^+\pi^-$, $B^+ \to K^0_S \pi^+$, $B^+ \to K^+\pi^0$, $B^0 \to K^0_S \pi^0$
- $B \rightarrow \pi \pi$: towards CKM angle α/ϕ_2

 $\phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right)$ Least precisely known angle

• Combined information of $B^0 \to \pi^+\pi^-$, $B^+ \to \pi^+\pi^0$, $B^0 \to \pi^0\pi^0$ to reduce hadronic uncertainties exploiting isospin symmetry

Analysis Strategy

- Reconstruct the decays in 362 fb^{-1} with similar selections
- Continuum suppression (CS) for each channel
 - Suppress $e^+e^- \rightarrow q\bar{q} \ (q = u, d, s, c)$
 - MVA trained with **event shape variables**
- 2D fit (ΔE , C') to measure the BF and CP asymmetries
 - Difference in the reconstructed and expected *B* energy

 $\Delta E = E_B^* - \sqrt{s/2}$

- Transformed CS output classifier *C'* (probability integral transformation)
- Determine A_{CP} by measuring B/B
 yields using the charge of B or a flavour-tagging algorithm [Eur. Phys. J. C 82, 283 (2022)]
- Correct for data-simulation discrepancy using abundant control channels

Result – ΔE fits

362 fb^{-1}

Phys. Rev. D 109, 012001 (2024)

4

Result

 362 fb^{-1}

Phys. Rev. D 109, 012001 (2024)

Decay	\mathcal{B} [10 ⁻⁶] \mathcal{A}_{CP}
$B^0 ightarrow K^+ \pi^-$ $B^+ ightarrow K^+ \pi^0$	$\begin{array}{rrr} 20.67 \pm 0.37 \pm 0.62 & -0.072 \pm 0.019 \pm 0.007 \\ 13.93 \pm 0.38 \pm 0.71 & 0.013 \pm 0.027 \pm 0.005 \end{array}$
$egin{array}{cccc} B^+ & o K^0 \pi^+ \ B^0 & o K^0 \pi^0 \end{array}$	$\begin{array}{c} 24.37 \pm 0.71 \pm 0.86 \\ 10.73 \pm 0.63 \pm 0.62 \end{array} \qquad \begin{array}{c} 0.046 \pm 0.029 \pm 0.007 \\ -0.01 \pm 0.12 \pm 0.04 \end{array}$
$egin{array}{ccc} B^0 o \pi^+\pi^- \ B^+ o \pi^+\pi^0 \end{array}$	

- $B^0 \rightarrow K_S^0 \pi^0$ result from a combined analysis with <u>*Phys. Rev. Lett.* 131, 111803 (2023)</u>
- Branching fractions are limited by systematic uncertainties except for $B^0 \to K_S^0 \pi^0$ and $B \to \pi \pi$

Major systematic uncertainties: π^0 efficiency, B^+/B^0 production ratio, $N_{B\bar{B}}$, K_S^0 efficiency

• Asymmetries limited by statistical uncertainties

• $I_{K\pi} = -0.03 \pm 0.13 \pm 0.04$ (world average: 0.13 ± 0.11)

Summary

- Measured branching fractions and *CP* asymmetries for the rare decays: $B^0 \to K^+\pi^-$, $B^0 \to \pi^+\pi^-$, $B^+ \to K^+\pi^0$, $B^+ \to \pi^+\pi^0$, $B^+ \to K^0_S\pi^+$, $B \to K^0_S\pi^0$
- Obtained a sum rule test for $B \rightarrow K\pi$ decays compatible with SM expectation
- Results competitive and in agreement with world best measurements
- The sum rule test is limited by the statistical uncertainty of $B^0 \to K^0 \pi^0 CP$ asymmetry

Backup

Pull 2.5 -2.5 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 C' $K_S^0 \pi^0$ correlation with TD analysis 0.060 0.04 \pm

Result -C' fits

Systematic Uncertainties

Source [%]	$B^0 \to K^+ \pi^-$	$B^0 o \pi^+ \pi$	$B^+ \to K^+ \pi^0$	$B^+ o \pi^+ \pi^0$	$B^+ \to K^0_S \pi^+$	$B^0 \to K^0_S \pi^0$
Tracking	0.5	0.5	0.2	0.2	0.7	0.5
$N_{B\bar{B}}$	1.5	1.5	1.5	1.5	1.5	1.5
$f^{+-/00}$	2.5	2.5	2.4	2.4	2.4	2.5
π^0 efficiency			3.8	3.8		3.8
K_S^0 efficiency					2.0	2.0
CS efficiency	0.2	0.2	0.7	0.7	0.5	1.7
PID correction	0.1	0.1	0.1	0.2		
ΔE shift and scale	0.1	0.2	1.2	2.0	0.3	1.7
$K\pi$ signal model	0.1	0.2	0.1	< 0.1	<0.1	0.1
$\pi\pi$ signal model	< 0.1	0.1	< 0.1	<0.1		
$K\pi$ feed-across model	<0.1	0.1	< 0.1	0.1		
$\pi\pi$ feed-across model	0.1	0.2	<0.1	0.1	0.1	
$K_{\underline{S}}^{0}K^{+}$ model				- -	0.1	
BB model			0.3	0.5	<0.1	0.3
$q\bar{q}$ flavor model	0.4	0.1	1.0	0.0	0.4	0.9
Multiple candidates	<0.1	< 0.1	1.0	0.3	0.1	0.3
Total	3.0	3.0	5.1	5.2	3.6	5.8
Source	$B^+ \rightarrow K$	^{π+} π ⁻	$B^+ \to K^+ \pi^0$	$B^+ \rightarrow \pi^+ \pi^0$	$B^+ o K^0_S \pi^+$	$B^0 \to K^0_S \pi^0$
ΔE shift and scale	< 0.00)1	0.001	0.002	0.001	0.003
$K_{c}^{0}K^{+}$ model			0.001	0.002	0.001	0.002
$B\bar{B}$ background asymmetry	7					0.026
$a\bar{a}$ background asymmetry						0.024
$q\bar{q}$ flavor model						0.011
Fitting bias				0.007	0.006	
Instrumental asymmetry	0.007	7	0.005	0.004	0.004	
Total	0.007	7	0.005	0.008	0.007	0.037

Flavour Tagger (category-based)

- Multivariate methods to determine the flavour of the tag-side *B* meson in events with a pair of neutral *B* mesons.
- One of the neutral *B* decays to a *CP* eigenstate and the other to a flavour-specific channel.
- Determine the flavour at the time of its decay.
- The different signatures can be grouped into 13 categories.
- Assign flavour $q = \pm 1$ and flavour-tagger quality *r* for each event.

Categories	Targets	$\sim \nu_{\ell}$
Electron	e^-	and the second s
Intermediate Electron	e^+	$\overline{B}^{0} \longrightarrow \pi^{+}$
Muon	μ^-	$D^{*+} \longrightarrow K^{-}$
Intermediate Muon	μ^+	D° \rightarrow π^+
KinLepton	e^-	7
Intermediate KinLepton	ℓ^+	$\rightarrow \pi^- (K^-)$
Kaon	K^-	ν_{ℓ}
KaonPion	K^- , π^+	$B^{0} \longrightarrow \ell^{+}$
SlowPion	π^+	D^+
FastHadron	π^- , K^-	\mathbf{K}^{0}
MaximumP	ℓ^- , π^-	► V ⁻
FSC	ℓ^- , π^+	
Lambda	Λ	\overline{B}^{0} π^{+}
Total= 13		Λ_c^+ π^-

Fig. 6.5 Underlying decay modes of the flavor tagging categories.

Time-Dependent $B^0 \to K_S^0 \pi^0$ Analysis

Phys. Rev. Lett. 131, 111803 (2023)

• Time-dependent *CP* asymmetries

 $\mathscr{A}_{CP}(t) = \mathscr{S}_{CP} \sin(\Delta m t) - \mathscr{C}_{CP} \cos(\Delta m t)$ Mixing-induced asymmetry Direct asymmetry

- Fit $(M_{bc}, \Delta E, C', \Delta t)$ in bins of the flavour tagging quality to extract the *CP* asymmetries \mathcal{S}_{CP} and \mathcal{C}_{CP}
- Validated on $B^0 \rightarrow J/\psi K_S^0$ reconstructed without the J/ψ vertex
- Precision competitive with world's best

