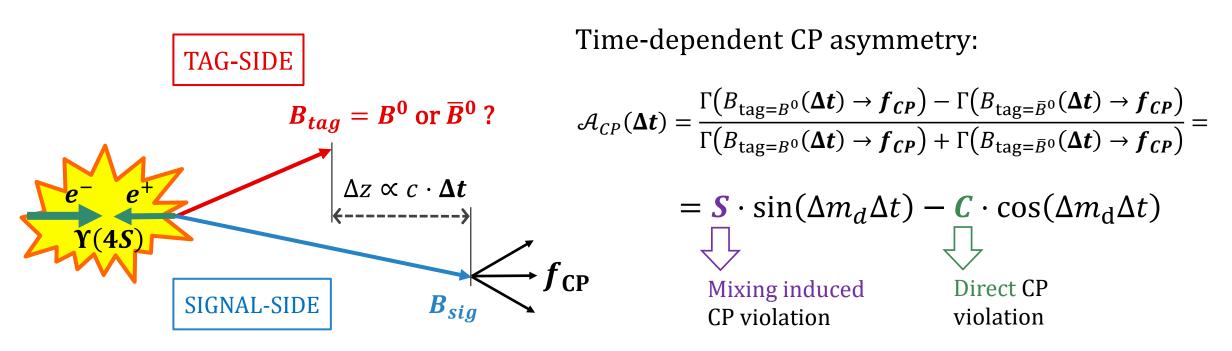
Graph Neural Network Flavor Tagging and Measurement of sin2β at Belle II

Petros Stavroulakis (IPHC Strasbourg) on behalf of the Belle II collaboration 58th Rencontres de Moriond 2024: Electroweak Interactions & Unified Theories, La Thuile, March 27th 2024



Flavor Tagging at Belle II

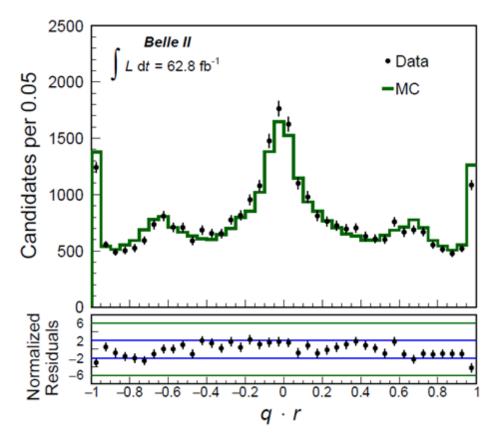
Flavor Tagging is essential in time-dependent and time-integrated CP asymmetry measurements

- > Determine tag-side *B* flavor $q = \pm 1$ at the time of its decay; either B^0 or \overline{B}^0
- ≻ Charge of final state particle in tag-side correlates to B_{tag} flavor, i.e. $B^0 \rightarrow D^- \mu^+ \nu_{\mu}$

Category–based Flavor Tagger

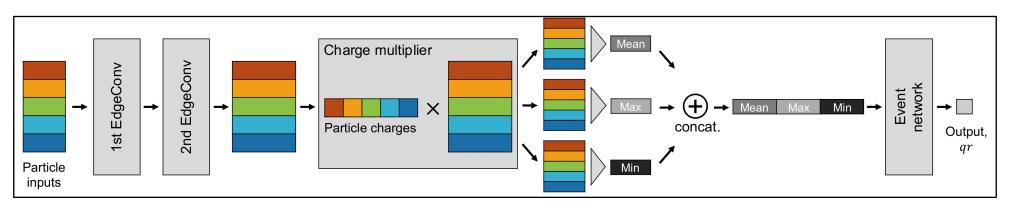
> Kinematic, topology and particle identification information \rightarrow unique signature of "flavor-specific" *B* decays

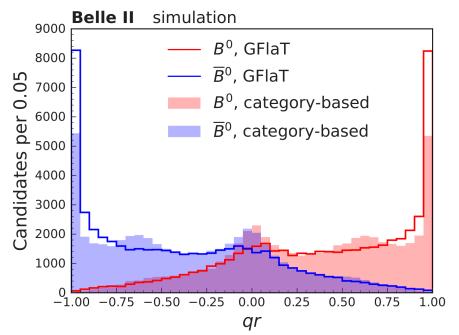
- > Flavor Tagger output: $q \cdot r$ -> confidence of flavor prediction
- > Accounting for inefficiencies in Flavor Tagging:


$$\mathcal{A}_{CP}(\Delta t) = -\Delta w + (1 - 2w)[S \cdot \sin(\Delta m_d \Delta t) - C \cdot \cos(\Delta m_d \Delta t)]$$

with w the **mis-tag fraction** and Δw the asymmetry in wrongly tagging B^0 and \overline{B}^0

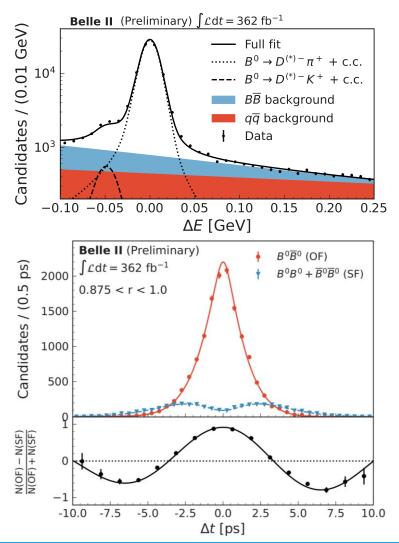
- Flavor Tagger performance metric: effective tagging power
- ➤ Increase in effective tagging power ⇒ higher statistical precision of time-dependent CP asymmetry measurement


3/6



New Flavor Tagger: GFlaT

- > New Flavor Tagger, **GFlaT**, based on graph neural networks
- Accounts for relations between final-state particles
- ➢ Better tagging of events not containing charged leptons
 → smaller bump at $|qr| \approx 0$ and no bump at $|qr| \approx 0.65$
- Relative improvement of 20% in effective tagging power from simulation

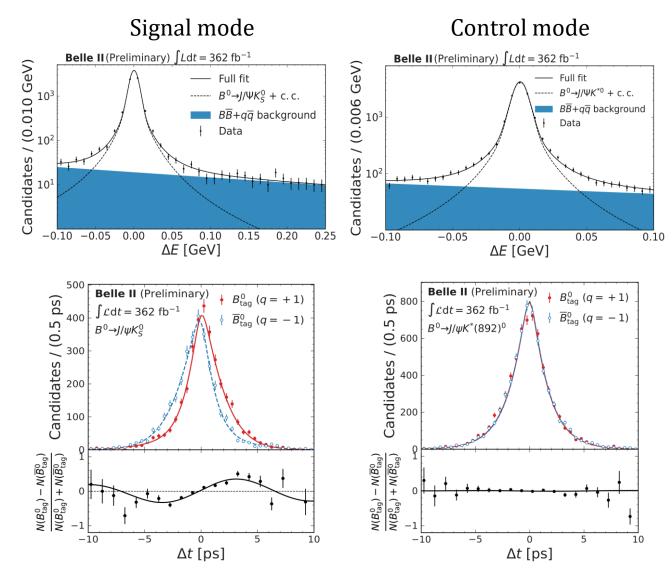

arXiv:2402.17260

Calibration with data

 $\Delta E = E_B^* - \sqrt{s}/2$

- ➤ Calibrate Flavor Tagger and Δt Resolution Function parameters using "self-tagging" B decays:
 - $\begin{array}{cccc} & B^{0} \rightarrow D^{-}\pi^{+} \rightarrow K^{+} \ \pi^{-}\pi^{-}\pi^{+} \\ & \circ & B^{0} \rightarrow D^{*-}\pi^{+} \rightarrow \overline{D}^{0} \ \pi^{-}\pi^{+} \rightarrow K^{+} \ \pi^{-}\pi^{-}\pi^{+} \\ & \circ & B^{0} \rightarrow D^{*-}\pi^{+} \rightarrow \overline{D}^{0} \ \pi^{-}\pi^{+} \rightarrow K^{+} \ \pi^{0}\pi^{-}\pi^{-}\pi^{+} \\ & \circ & B^{0} \rightarrow D^{*-}\pi^{+} \rightarrow \overline{D}^{0} \ \pi^{-}\pi^{+} \rightarrow K^{+} \ \pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{+} \end{array}$
- ► Extract yields from ΔE and subtract Δt background from sideband (*sPlot* <u>NIMA 555, 356-369</u>)
- > Fit background-free Δt for parameters of interest
- ➢ Relative improvement of **18%** in effective tagging power: Category-based: $\varepsilon_{tag} = (31.68 \pm 0.45 \text{ (stat)})\%$ GFlaT: $\varepsilon_{tag} = (37.40 \pm 0.43 \text{ (stat)} \pm 0.36 \text{ (syst)})\%$

27/03/2024



Measurement of $\sin 2\beta$

- ➢ GNN-based Flavor Tagger is used to measure sin2β in B⁰ → J/ψ K⁰_S decays
- > Yield extraction fit to ΔE and fit on background-free Δt :
 - $S = 0.724 \pm 0.035 \text{ (stat)} \pm 0.014 \text{ (syst)}$
 - $C = -0.035 \pm 0.026 \text{ (stat)} \pm 0.013 \text{ (syst)}$
- Statistical uncertainties 8% smaller than with categorybased Flavor Tagger
- ≻ CKM mixing angle β (or φ_1) calculated from *S*:

 $\beta = (23.2 \pm 1.5 \text{ (stat)} \pm 0.6 \text{ (syst)})^{\circ}$

➤ Take-home: New GNN-based Flavor Tagger will lead to higher "effective" integrated luminosity ⇒ more precise measurements at Belle II

P. Stavroulakis (on behalf of the Belle II Collaboration) / Moriond 2024

Questions?

Backup

Tagging Categories

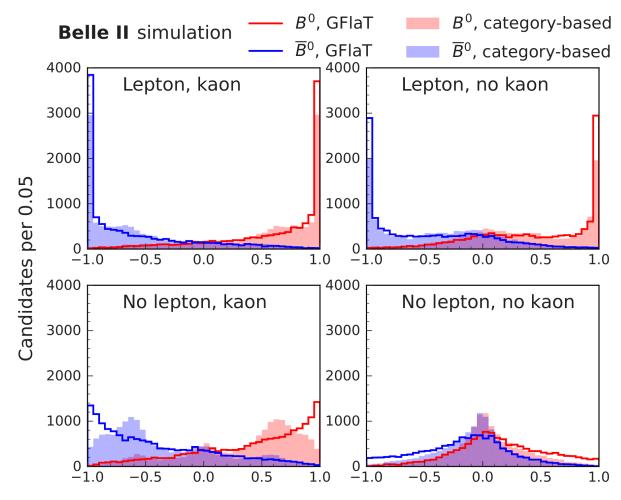
Categories	Targets for \overline{B}^0
Electron	<i>e</i> ⁻
Intermediate Electron	e^+
Muon	μ^-
Intermediate Muon	μ^+
Kinetic Lepton	ℓ^-
Intermediate Kinetic Leptor	$1 \ell^+$
Kaon	K^{-}
Kaon-Pion	K^-, π^+
Slow Pion	π^+
Maximum p^*	ℓ^-, π^-
Fast-Slow-Correlated (FSC)	ℓ^-, π^+
Fast Hadron	π^-, K^-
Lambda	Λ

Underlying decay modes

$$\overline{B}^{0} \to D^{*+} \overline{\nu}_{\ell} \ell^{-}$$

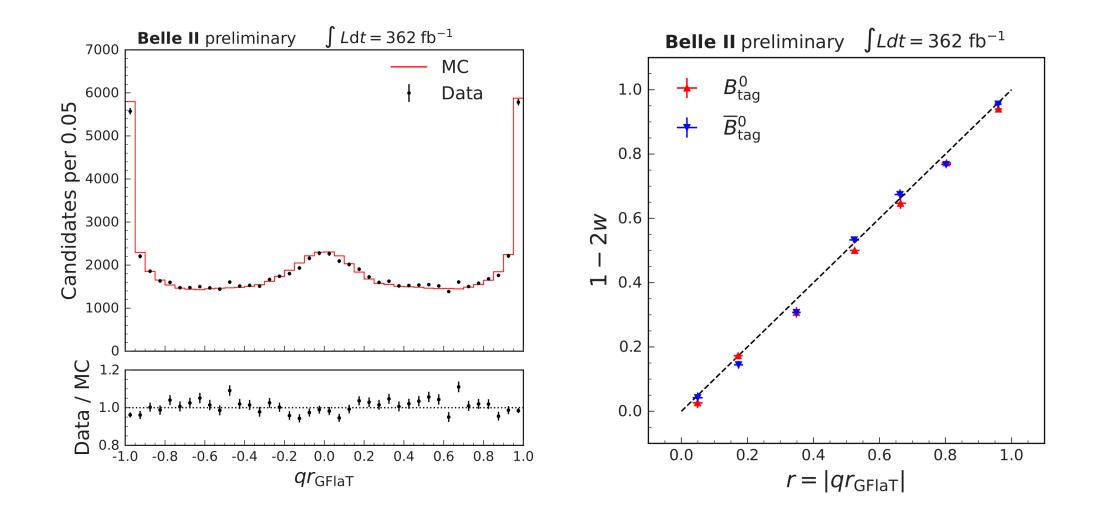
$$\stackrel{\bigcup}{\longrightarrow} D^{0} \pi^{+}$$

$$\stackrel{\bigcup}{\longrightarrow} X K^{-}$$

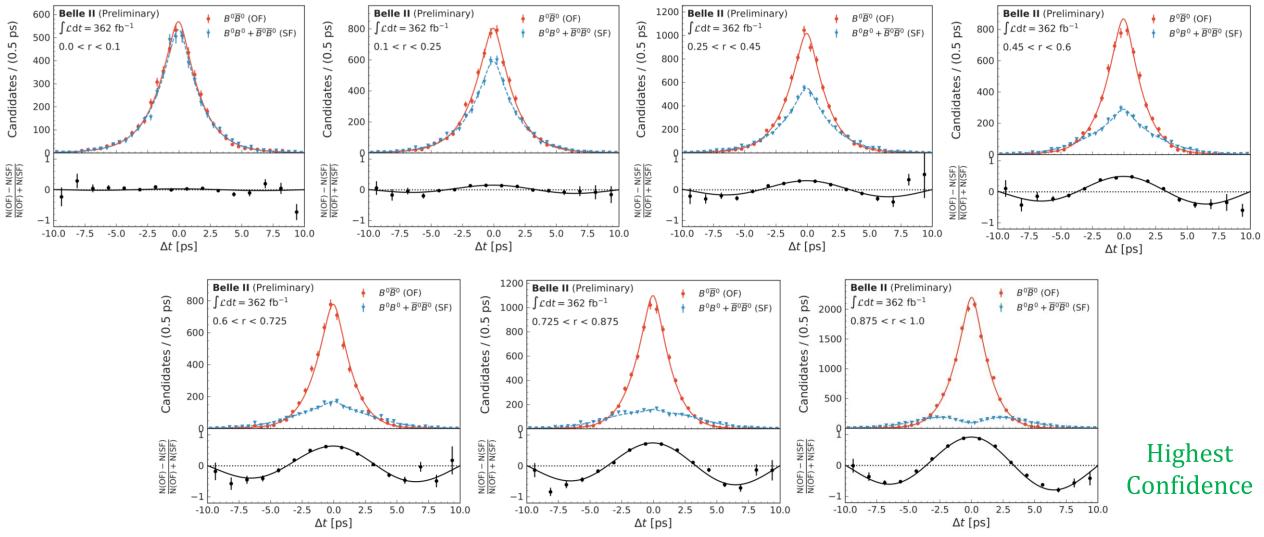

\overline{B}^{0}	$\rightarrow D^+$	π^{-}	(K)	-)
		$\rightarrow \overline{K}^0$	$ u_{\ell}$	ℓ^+

\overline{B}^{0}	\rightarrow	Λ_c^+	X^{*}	_
		L,	• 1	π^+
				$p \pi$

Input variables


Variables	Usage	Descriptions
QpTrack(categoryName) * charge	Input features	multiplication of the charge of each particle by the category-baed Fla- vor Tagger output for each of the
		13 categories;
$p_x, p_y, p_z \; (\texttt{px, py, pz})$		momentum of a charged particle
electronID_noSVD_noTOP, muonID, pionID, kaonID, protonID, deuteronID		particle identification probability calculated from a global likelihood ratio of sub-detectors
$x,y,z\;({\rm dx}{\rm ,}{\rm dy}{\rm ,}{\rm dz})$	Input coordinates, and edge-features $\mathbf{x}_{i} = \mathbf{x}_{i}$	distance of POCA to the interaction point
change	$x_{i_j} - x_i$	abargo of a abargod particle
charge	Charge multiplier block	charge of a charged particle

qr Breakdown



qr

Data/MC & Linearity

Calibration $-\Delta t$ CP mixing fits

Lowest Confidence

Flavor Tagger & Δt Resolution Function Parameters

Parameter	Value from fit	Statistical	Systematic
name	on data [%]	uncertainty [%]	uncertainty [%]
w_0	48.2916	0.7802	0.7475
w_1	42.0736	0.7208	0.3234
w_2	34.6287	0.6123	0.6059
w_3	24.1667	0.6774	0.3635
w_4	16.9810	0.6841	0.9186
w_5	11.4997	0.5284	0.3912
w_6	2.6191	0.2665	0.1414
Δw_0	0.7793	1.1631	0.7064
Δw_1	-1.4107	1.0612	0.9201
Δw_2	-0.0350	0.9690	1.1276
Δw_3	1.6422	1.1340	0.5190
Δw_4	1.3587	1.1523	0.7197
Δw_5	-0.2605	0.9248	0.7084
Δw_6	0.7549	0.5266	0.6042
μ_0	-1.7201	1.4723	1.3175
μ_1	-0.9356	1.3556	1.4511
μ_2	-0.2751	1.2807	1.4629
μ_3	3.2054	1.4414	1.4998
μ_4	1.1738	1.5770	1.4744
μ_5	-1.1284	1.2967	1.5478
μ_6	-0.1784	0.9088	1.3012

r bins: [0, 0.1, 0.25, 0.45, 0.6, 0.725, 0.875, 1]

Parameter	Value from fit	Statistical	Systematic
name	on data	uncertainty [%]	uncertainty [%]
$s_{ m main}$	1.03324	0.05921	0.07897
s_{tail}	2.20154	0.30338	0.29226
$f_{ m max}$	0.31591	0.05065	0.07122
$\mu_{ ext{main}}$	-0.10357	0.04430	0.04305
$\mu_{ ext{tail}}$	-0.53457	0.20269	0.21332
$\mu_{ m main}^6$	0.10940	0.09314	0.10161
$\mu_{ ext{tail}}^{6}$	-0.92925	0.32101	0.48775