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Abstract

We measure the time-dependent CP asymmetries in �0 →  0
(
c0W decay using

(387.5 ± 5.8) × 106 �� pairs collected near the Υ(4() resonance with SuperKEKB
and Belle II from 2019 to 2022. For the measurement, we reconstruct one neutral �
meson in the �0 →  0

(
c0W decay channel, identify the flavor of the accompanying �

meson from its decay products, and measure the proper-time difference between the two
� mesons.

We obtain the following results: for the  0
(
c0 invariant mass around  ∗(892)0 reso-

nance (0.8 to 1.0 GeV/22),

(�% ( ∗0W) = 0.00+0.27
−0.26(stat)+0.03

−0.04(syst) and
��% ( ∗0W) = −0.10 ± 0.13(stat) ± 0.03(syst),

and for the rest of the mass regions up to 1.8 GeV/22,

(�% ( 0
(
c0W) = +0.04+0.45

−0.44(stat) ± 0.10(syst) and
��% ( 0

(
c0W) = +0.06 ± 0.25(stat) ± 0.07(syst).

These results are the most precise to date as a single measurement.





Personal contribution

The measurement reported in this thesis results from the collective efforts of over 1,000
individuals from the Belle II collaboration and the SuperKEKB group. The collabora-
tive work includes designing and constructing the detector and accelerator, managing
data through distributed computing, performing calibration, and developing the analysis
software framework, including tools for vertex fitting, flavor tagging, and multivariate
analysis. The author’s specific contributions primarily focus on the improvement of the
event reconstruction algorithm and selection criteria detailed in Chapter 4, as well as
the refinement of the procedure for estimating CP asymmetry described in Chapter 5.
Details of each effort are described below.

The author has devoted effort to studying the vertex reconstruction of  0
(
. Firstly,

the author has contributed to enhancing the  0
(

reconstruction software described in
Section 4.2.1. The author has contributed to implementing a new feature to eliminate
background hits from  0

(
→ c+c− trajectories in collaborative work. The author has

also fine-tuned the selection criteria inside the software to improve the reconstruction
efficiency. Secondly, the author also developed an original resolution function to ac-
count for the vertex reconstruction using only one  0

(
, as described in Section 5.2.1.

Thirdly, the author has contributed to calibrating the resolution function parameters. Al-
though the development of the fast simulation software, as described in Appendix E,
was a collaborative effort, the author has predominantly studied helix pulls in  0

(
decay

vertices. Additionally, the author has introduced an original model to calibrate the shape
parameters of the helix pulls through cosmic-ray analysis, as outlined in Appendix F.

The author has improved the event selection in Section 4.2. The author has utilized
differential evolution for the optimization of the thresholds. The author has investigated
the case where multiple candidates exist in the event and has developed selection criteria
that effectively keep the signal candidates, as described in Section 4.2.5. The author
has optimized the selection further by tuning the background suppression thresholds
depending on the quality of the flavor tagging, as described in Section 4.2.4.

The author has investigated the background originating from � decays. To accurately
model the "bc–Δ� distribution, the author has divided the background into two distinct
components and applied separate modeling approaches for each, as described in Sec-
tion 5.1.3. Additionally, the author has developed a novel method for constructing the
proper-time difference model in the Monte Carlo simulation. In contrast to preceding
studies where only the �-meson lifetime parameter is adjusted, this method simultane-
ously fits the lifetime and resolution function parameters, as described in Section 5.2.4.





Outline

Chapter 1 provides an overview of time-dependent CP violation in the B-meson system
and emphasizes the significance of �0 →  0

(
c0W decay in exploring physics beyond

the Standard Model. Chapter 2 presents our experimental setup with the SuperKEKB
collider and the Belle II detector. Chapter 3 outlines our data analysis approach for
extracting CP-violation parameters of �0 →  0

(
c0W decay. Chapter 4 details the re-

construction algorithm and selection criteria for �0 →  0
(
c0W decay events. Chapter 5

covers the methodology and results of extracting CP-violating parameters and assessing
systematic uncertainty. Chapter 6 explores constraints on physics beyond the Standard
Model and discusses prospects. The thesis concludes in Chapter 7.
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Chapter 1

Introduction

High-energy physics experiments help us understand the fundamental building blocks
of the universe, known as elementary particles. The Standard Model (SM) of elemen-
tary particles successfully explains most of the observed properties of these particles.
However, there are still unanswered questions, such as the matter-antimatter asymmetry,
the nature of dark matter and dark energy, quantum gravity, the hierarchy problem, and
the strong CP problem. Various theories beyond the Standard Model (BSM) have been
proposed to answer these questions, but so far, none of them have received enough ex-
perimental evidence. To gain insights into BSM physics, we studied the time-dependent
CP asymmetry of the decay of � mesons into  0

(
c0W.

We review the mechanism of decay-time dependent CP violation in the neutral �-
meson system within the SM, the case of �0 →  0

(
c0W decays, and the possible BSM

effects.

1.1 Quark-flavor mixing and CP violation

Quarks are the elementary particles composing hadrons, i.e., baryons (e.g., protons or
neutrons in the nucleus) and mesons (e.g., pions mediating the nuclear force).

Three generations of up- and down-type quarks, D8
! (') and 38

! (') with 8 = 1, 2, 3 (up,
charm, and top for up-type; down, strange, and bottom for down-type), are observed so
far as predicted in the SM. These six types of quarks are called flavor.

While the quark flavor is independent of the strong interaction, the charged-current
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weak interaction changes the flavor of the quark current as

�
`+
,

=
1
√

2
D̄′8!W

`3′8! .

Here D′8
!

and 3′8
!

are the eigenstates of weak interaction, which is related to mass eigen-
states D8

!
and 38

!
with unitary transformation:

D′8! = *
8 9
D D

9

!
, 3′8! = *

8 9

3
3
9

!
.

These two different bases do not make any difference for the neutral current, where
the unitary matrices cancel each other. However, at the interaction with weak charged-
current, the different bases allow transition between generations:

�
`+
,

=
1
√

2
D̄8!W

`
(
*†
D*3

) 8 9
3
9

!
.

The unitary matrix+ = *
†
D*3 is called the Cabbibo-Kobayashi-Maskawa (CKM) matrix.

Since there are three generations of quarks, the complex matrix + has three dimen-
sions and 18 parameters. The unitary condition gives nine constraints, and the remaining
nine parameters are classified into three angles of three-dimensional rotation, e.g., Euler
angles \8 9 (8 9 = 12, 13, 23), and six complex phases. These complex phases are canceled
out by the phase shift of the six quark fields except for one overall phase X [1]. This ir-
reducible complex phase is the only CP violation in the SM currently observed. We can
write down the matrix as

+ =
©­­«
1 0 0
0 223 B23
0 −B23 223

ª®®¬
©­­«
213 0 B134

−8X

0 1 0
−B134

8X 0 213

ª®®¬
©­­«
212 B12 0
−B12 212 0

0 0 1

ª®®¬
=

©­­«
212213 B12213 B134

−8X

−B12223 − 212B23B134
8X 212223 − B12B23B134

8X B23213
B12B23 − 212223B134

8X −212B23 − B12223B134
8X 223213

ª®®¬ ,
where 28 9 and B8 9 are shorthands for cos \8 9 and sin \8 9 . The Wolfenstein parametriza-
tion [2] clarifies the hierarchy of the magnitude and CP violation. By defining

_ B B12,

� B B23/_2, and
d + 8[ B B134

8X/�_3,
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we can rewrite the matrix as

+ =
©­­«

1 − _2/2 _ �_3(d − 8[)
−_ 1 − _2/2 �_2

�_3(1 − d − 8[) −�_2 1

ª®®¬ + O
(
_4

)
. (1.1)

The size of the parameters are [3]

_ = 0.2250 ± 0.0002, � = 0.813+0.012
−0.006, d = 0.160+0.009

−0.005, and [ = 0.357+0.0012
−0.005 .

1.2 Decay-time dependent CP violation in �-meson sys-
tem

A. I. Sanda, I. I. Bigi, and A. B. Carter pointed out that the maximum possible CP vio-
lation of O(sin X) appears in decays of �0 meson thorough the interference from �0–�0

mixing [4–6]. In this section, we formulate the decay-time dependent CP violation in
the neutral �-meson system.

1.2.1 Mixing of neutral �-mesons

The �0 and �0 transit to each other via the box diagrams shown in Fig. 1.1. We formulate
this time evolution in this section.

An initial state �-meson at a time C = 0 can be written as

|k(0)〉 = 0(0) |�0〉 + 1(0) |�0〉 .

Considering the decays of �-mesons, the state at a time C is

|k(C)〉 = 0(C) |�0〉 + 1(C) |�0〉 +
∑
8

28 (C) | 58〉 ,

1 3

3 1

C C

,

,

�0 �0
1 3

3 1
C

C

, ,�0 �0

Figure 1.1: Feynman diagrams for the �0–�0 mixing at the leading order. Only the
dominant contribution from off-shell top quark is shown.
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where 58 covers all the final states. The time evolution of the �-meson system, 0(C) and
1(C), satisfies the Shrödinger equation in the subspace of states:

8
d
dC

(
0(C)
1(C)

)
= H

(
0(C)
1(C)

)
. (1.2)

The effective Hamiltonian H is not Hermitian, but it can be expressed as the sum of a
Hermitian matrix and an anti-Hermitian matrix,

H = M − 8

2
�,

where M and � are Hermitian matrices,

M =
H +H∗

2
=

(
"11 "12
"∗

12 "22

)
,

� = 8(H −H∗) =
(
Γ11 Γ12
Γ∗

12 Γ22

)
.

H is a transition matrix from ( |�0〉 , |�0〉)> to ( 〈�0 | , 〈�0 |) and can be written as

H =

(
〈�0 | H�0 |�0〉 〈�0 | H�0 |�0〉
〈�0 | H�0 |�0〉 〈�0 | H�0 |�0〉

)
,

where H�0 is the effective Hamiltonian for mixing and decay. Assuming the �%) in-
variance of H�0 , we obtain

"11 −
8

2
Γ11 = "22 −

8

2
Γ22.

Considering that the diagonal elements of Hermitian matrices are real, we equate real
and imaginary parts separately as

"11 = "22 = ",

Γ11 = Γ22 = Γ.

These diagonal elements of M and � correspond to mass and total decay width. In
contrast, the non-diagonal elements, "12 and Γ12, correspond to dispersive (off-shell)
and absorptive (on-shell) contributions to the mixing, as shown in Figs. 1.1 and 1.2.

The time evolution of motion is based on the mass eigenstates �1 and �2, which are
two eigenvectors of H:

( |�1〉 , |�2〉) =
(
|�0〉 , |�0〉

)
P
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1 3

3 1

cut

cut

2,D 2,D

,

,

�0 �0

1 3

3 1

cut

cut

2,D

2,D

, ,�0 �0

Figure 1.2: Feynman diagrams for the �0–�0 mixing at the leading order. The dashed
line shows the cut for on-shell contribution.

where

P = (p1,p2) =
(
? ?

@ −@

)
,(

@

?

)2
=
"∗

12 −
8
2Γ

∗
12

"12 − 8
2Γ12

,

|? |2 + |@ |2 = 1.

We can diagonalize H with P as

P −1HP =

(
" − 8

2Γ + @

?

(
"12 − 8

2Γ12
)

0
0 " − 8

2Γ − @

?

(
"12 − 8

2Γ12
))

=

(
<1 − 8

2Γ1 0
0 <2 − 8

2Γ2

)
.

In the last line, we rewrite the eigenvalues with real numbers<1, Γ1, <2, Γ2. The solution
of Eq. (1.2) is (

0(C)
1(C)

)
= P

(
4−8<1C− 1

2Γ1C 0
0 4−8<2C− 1

2Γ2C

)
P −1

(
0(0)
1(0)

)
=

(
6+(C) − ?

@
6−(C)

− @

?
6−(C) 6+(C)

) (
0(0)
1(0)

)
,

where
6±(C) =

1
2

(
4−8<2C− 1

2Γ2C ± 4−8<1C− 1
2Γ1C

)
.
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Now we can write the time evolution of initially pure �0 or �0 state as(
|�0(C)〉 , |�0(C)〉

)
=

(
|�0〉 , |�0〉

) (
6+(C) − ?

@
6−(C)

− @

?
6−(C) 6+(C)

)
,

which satisfy |�0(0)〉 = |�0〉 and |�0(0)〉 = |�0〉.

1.2.2 Decay-time dependent CP violation

Time-dependent decay rate to a final state 5 and its CP-conjugate decay can be calculated
from transition amplitude:

Γ

(
�0 → 5 ; C

)
∝

�� 〈 5 | H |�0(C)〉
��2

=

����6+(C) 〈 5 | H |�0〉 − @

?
6−(C) 〈 5 | H |�0〉

����2,
Γ

(
�0 → 5 ; C

)
∝

��� 〈 5 | H |�0(C)〉
���2

=

����− ?@ 6−(C) 〈 5 | H |�0〉 + 6+(C) 〈 5 | H |�0〉
����2,

where 5 stands for the CP-conjugate of state 5 . Considering the CP-eigen final state 5�%
with eigenvalue b�% = ±1, we can replace the transition amplitude as

〈 5�% | H |�0〉 = M,

〈 5�% | H |�0〉 = b�%M,

〈 5�% | H |�0〉 = M,

〈 5�% | H |�0〉 = b�%M .

The time-dependent decay rates are

Γ

(
�0 → 5�%; C

)
∝

�� 〈 5�% | H |�0(C)〉
��2

=
1
2
|M|24−ΓC

{(
1 + |_ |2

)
cosh

1
2
ΔΓC + 2b�% Re [_] sinh

1
2
ΔΓC

+
(
1 − |_ |2

)
cosΔ<3C − 2b�% Im [_] sinΔ<3C

}
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and

Γ

(
�0 → 5�%; C

)
∝

��� 〈 5�% | H |�0(C)〉
���2

=
1
2

���� ?@ ����2 |M|24−ΓC
{(

1 + |_ |2
)

cosh
1
2
ΔΓC + 2b�% Re [_] sinh

1
2
ΔΓC

−
(
1 − |_ |2

)
cosΔ<3C + 2b�% Im [_] sinΔ<3C

}
,

where we define

Δ<3 B <2 − <1,

ΔΓ B Γ2 − Γ1,

_ B
@

?

M
M .

Δ<3 and ΔΓ can be written in terms of "12 and Γ12, as @/?:

Δ<3 = 2 Re
[
@

?

(
"12 −

8

2
Γ12

)]
=

√√√
2|"12 |2 −

1
2
|Γ12 |2 +

√(
2|"12 |2 −

1
2
|Γ12 |2

)2
+ 4

(
Re

[
Γ∗

12"12
] )2
,

ΔΓ = −4 Im
[
@

?

(
"12 −

8

2
Γ12

)]
= −4

Re
[
Γ∗

12"12
]

Δ<3

.

Here, we take Δ<3 > 0 and determine the sign of @/? accordingly. The off-shell contri-
bution"12 shown in Fig. 1.1 is dominated by the top-quark contribution and proportional
to <2

C [7], while the on-shell contribution Γ12 is expected to scale with <1:���� Γ12
"12

���� ' O
(
<2
1

<2
C

)
∼ 10−3.

We can write down Δ<3 , ΔΓ, and |@/? | up to first order of |Γ12/"12 | as

Δ<3 ' 2|"12 |,

ΔΓ ' −2|"12 | Re
[
Γ12
"12

]
,����@? ���� ' 1 − 1

2
Im

[
Γ12
"12

]
.
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We drop the first-order term as well and use ΔΓ ' 0 and |@/? | ' 1 in the following
discussion.

The decay-time dependent CP asymmetry can be written as

A�% (C) B
Γ
(
�0 → 5�%; C

)
− Γ

(
�0 → 5�%; C

)
Γ
(
�0 → 5�%; C

)
+ Γ

(
�0 → 5�%; C

)
=

(
|_ |2 − 1

)
cosΔ<3C + 2b�% Im [_] sinΔ<3C

|_ |2 + 1
= ��% cosΔ<3C + (�% sinΔ<3C,

where

��% B
|_ |2 − 1
|_ |2 + 1

and (�% B b�%
2 Im [_]
|_ |2 + 1

. (1.3)

Here, ��% ≠ 0 if and only if |M| ≠ |M|. Therefore, we call ��% direct CP asymme-
try. Let us consider this condition more specifically. Since the CP-transformation only
changes the complex phase of a single diagram contribution in M, we need at least two
diagram contributions to satisfy the condition. Let us consider the case where M is a
sum of two amplitudes,

M1 = |M1 |48\148X1 and M2 = |M2 |48\248X2 ,

where \1,2 is CP-odd (weak) phase and X1,2 is CP-even (strong) phase. We can write the
magnitude of amplitude as

|M|2 = |M1 |2 + |M2 |2 + 2|M1 | |M2 | (sin \12 sin X12 − cos \12 cos X12),
|M|2 = |M1 |2 + |M2 |2 − 2|M1 | |M2 | (sin \12 sin X12 + cos \12 cos X12),

where \12 = \1 − \2 and X12 = X1 − X2. Therefore, we need at least two amplitudes
with different weak and strong phases for non-zero ��%. On the contrary, non-zero (�%
could arise even if |M| = |M|. Therefore, we call (�% indirect CP asymmetry. We also
refer to (�% as mixing-induced CP asymmetry since it arises from the phase in �0–�0

mixing, @/?, even if the phase difference in decay, M/M, is small. Note that the sign
of (�% depends on the CP eigenvalue of the final state. Moreover, we can confirm that
��% and (�% are bounded in a unit circle by definition,

�2
�% + (

2
�% ≤ 1.

The equality holds if _ is purely imaginary.
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In the SM, considering that "∗
12 = 〈�0 | H�0 |�0〉 is dominated by the diagrams in

Fig. 1.1,
@

?
'

√
"∗

12
"12

'
+∗
C1
+C3

+C1+
∗
C3

.

At the leading order, the CP-violating phase only appears in +C3 and +D1 as shown in
Eq. (1.1). Therefore, we can approximate @/? using

q1 B arg
[
−
+23+

∗
21

+C3+
∗
C1

]
' c − arg [+C3]

as
@

?
' +C3

+∗
C3

' 4−28q1 .

In case |M| = |M| and the weak phase of M is negligible, we can write CP-violation
parameters as

��% = 0 and (�% = −b�% sin 2q1.

The size of the CP violation sin 2q1 is measured in �0 → 22 0 decays, domninatly
�0 → �/k 0

(
(b�% = −1) and �0 → �/k 0

!
(b�% = +1). The world average is [8]

sin 2q1 = 0.699 ± 0.017.

1.3 Decay-time dependent CP violation of �0 →  0
(
c0W

decays

The final state with W is not the CP eigenstate, so the formulation in Section 1.2 does not
hold as it is. We derive the CP-violation parameters first and then discuss the interesting
suppression in the SM.

1.3.1 CP violation in radiative decays

For the final state with photon, we have two different final states for each polarization:
5�%W' and 5�%W! . These are not CP eigenstates; rather, they transform with each other.
Within the arbitrariness of the CP phase, we can relate the two states as

〈 5�%W' | = b�% 〈 5�%W! | and

〈 5�%W! | = b�% 〈 5�%W' | .

9



We can define the CP eigenstates as

( 〈 5�%W+ | , 〈 5�%W− |) = ( 〈 5�%W' | , 〈 5�%W! |)
1
√

2

(
1 1
1 −1

)
,

with CP eigenvalues ±b�%. Transition amplitudes to these CP eigenstates can be written
as

〈 5�%W± | H |�0〉 = M±,

〈 5�%W± | H |�0〉 = ±b�%M±,

〈 5�%W± | H |�0〉 = M±,

〈 5�%W± | H |�0〉 = ±b�%M±.

We can relate these CP-eigen amplitudes to helicity amplitudes:

(M+,M−) = (M',M!)
1
√

2

(
1 1
1 −1

)
,(

M+,M−
)
=

(
M',M!

) 1
√

2

(
1 1
1 −1

)
,

where

M'(!) = 〈 5�%W'(!) | H |�0〉 ,
M'(!) = 〈 5�%W'(!) | H |�0〉 .

Note that M'(!) corresponds to the amplitude emitting the photon with left (right) he-
licity. Using ΔΓ ' 0, one can write the time-dependent transition amplitudes as

〈 5�%W± | H |�0(C)〉 = 6+(C)M± ∓ @

?
6−(C)b�%M±

' 4−8"C− 1
2ΓC

{
M± cos

1
2
Δ<3C ± 8

@

?
b�%M± sin

1
2
Δ<3C

}
, (1.4)

〈 5�%W± | H |�0(C)〉 = 6+(C)M± ∓ ?

@
6−(C)b�%M±

' 4−8"C− 1
2ΓC

{
M± cos

1
2
Δ<3C ± 8

?

@
b�%M± sin

1
2
Δ<3C

}
. (1.5)

The time-dependent decay rates of �0 without separating the photon polarization is,
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using |@/? | ' 1,

Γ

(
�0 → 5�%W; C

)
= Γ

(
�0 → 5�%W+; C

)
+ Γ

(
�0 → 5�%W−; C

)
∝

�� 〈 5�%W+ | H |�0(C)〉
��2 + �� 〈 5�%W− | H |�0(C)〉

��2
' 1

2
4−ΓC

{(
|M+ |2 +

���M+

���2 + |M− |2 +
���M−

���2)
+

(
|M+ |2 −

���M+

���2 + |M− |2 −
���M−

���2) cosΔ<3C

− 2b�% Im
[
@

?

(
M∗

+M+ −M∗
−M−

)]
sinΔ<3C

}
=

1
2
4−ΓC

{(
|M' |2 + |M! |2 +

���M'

���2 + ���M!

���2)
+

(
|M' |2 + |M! |2 −

���M'

���2 − ���M!

���2) cosΔ<3C

− 2b�% Im
[
@

?

(
M∗

'M! +M∗
!M'

)]
sinΔ<3C

}
.

We can write similarly for �0,

Γ

(
�0 → 5�%W; C

)
∝

��� 〈 5�%W+ | H |�0(C)〉
���2 + ��� 〈 5�%W− | H |�0(C)〉

���2
' 1

2
4−ΓC

{(
|M' |2 + |M! |2 +

���M'

���2 + ���M!

���2)
−

(
|M' |2 + |M! |2 −

���M'

���2 − ���M!

���2) cosΔ<3C

+ 2b�% Im
[
@

?

(
M∗

'M! +M∗
!M'

)]
sinΔ<3C

}
.

Therefore, CP asymmetry parameters can be written as

��% = −
|M' |2 + |M! |2 −

���M'

���2 − ���M!

���2
|M' |2 + |M! |2 +

���M'

���2 + ���M!

���2 , (1.6)

(�% =

2b�% Im
[
@

?

(
M∗

'
M! +M∗

!
M'

)]
|M' |2 + |M! |2 +

���M'

���2 + ���M!

���2 . (1.7)
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O2

1 B

1

W

2

Figure 1.3: 1 → BW6 loop diagram with effective operator O2
2 .

In case of no direct CP violation, |M'(!) | = |M'(!) | and ��% = 0, we can write (�% as

(�% '
b�% Im

[
4−28q1

(
M∗

'
M! +M∗

!
M'

)]
|M' |2 + |M! |2

. (1.8)

The form of the two terms in the numerator indicates that interference can occur only
among final states with the same photon helicity.

1.3.2 CP violation in 1 → BW transitions

Using the operator product expansion, we can write the leading contributions of the
effective Hamiltonian for 1 → BW transitions as

Heff ' −4��√
2
+∗
CB+C1

[
�7O7 + �′

7O
′
7 + �2O2

2
]
,

where

O7 =
4

4c2 Bf`a

(1 + W5

2

)
1�`a and (1.9)

O′
7 =

4

4c2 Bf`a

(1 − W5

2

)
1�`a, (1.10)

representing the short-distance (SD) photon emission, and

O2
2 =

+∗
2B+21

+∗
CB+C1

[
BW` (1 − W5)2

]
[2W` (1 − W5)1], (1.11)

contributing to the long-distance (LD) photon emission through the 1 → BW6 loop dia-
gram shown in Fig. 1.3.

The chirality flip of 1 → B in O7 and O′
7 reflects the chirality structure of the leading

contribution in the SM, as shown in Fig. 1.4 [7]. The angular momentum conservation
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1' B!

W!

C!

,q

<1

(a) 1' → B!W!

1! B'

W'

C!

, q

<B

(b) 1! → B'W'

Figure 1.4: Feynman diagrams for 1 → BW transition at the leading order in the SM ('b
gauge).

in the two-body decay requires the same helicity for B and W in the 1 rest frame. Thus,
only the helicity structures of 1' → B!W! and 1! → B'W' are allowed. Moreover, since
the, boson only interacts with the left-handed current, the mass term, or equivalently,
the interaction with the Goldstone boson (q in Fig. 1.4), corresponds one-to-one to the
helicity. Therefore, in the SM,

�′
7
�7

' <B

<1

' 0.02. (1.12)

Considering only the SD contribution, M'(!) and M'(!) are proportional to � (′)
7

and � (′)∗
7 . We can further simplify Eq. (1.8) as

(�% '
2b�% Im

[
4−28q1�7�

′
7
]

|�7 |2 +
���′

7
��2 . (1.13)

We can evaluate the suppression of (�% from Eq. (1.12) as

(�% ' −2b�%
<B

<1

sin 2q1 ∼ −b�%0.03,

known as AGS oscillation [9, 10].
On the other hand, the LD contribution is free from the helicity suppression we ob-

serve in SD. The evaluation of this contribution suffers from considerable uncertainty in
the hadronic matrix elements. From naive dimensional analysis using soft-collinear ef-
fective theory, this contribution is suppressed by only ΛQCD/<1 and could be as large as
O(0.1) [11, 12]. In the case of �0 →  ∗0W, the O2

2 contribution is explicitly calculated
to be O(0.01) using QCD sum rules on the light cone, revealing its suppression factor
as (ΛQCD/<1)2 [13–15]. The total (�% for  ∗0W is evaluated in Ref. [15] as

(�% ( ∗0W) = (−2.9SD + 0.6LD ± 1.6) × 10−2.
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The same thing is also calculated using perturbative QCD [16],

(�% ( ∗0W) = (−3.5 ± 1.7) × 10−2,

and both agree with each other within uncertainty. On the other hand, the estimation of
the total (�% for inclusive �0 →  0

(
c0W decays is not precise, suffering from potentially

large LD contribution of O(1B/4c) as calculated in the inclusive � → -BW decay [11],
sizeable uncertainty in the hadronic matrix elements, and the interference between the
resonances, including resonances with different spin and parity. The " c dependent
(�% for inclusive  0

(
c0W is estimated in Ref. [12] as��(�% ( 0

(
c0W)

�� ≤ 0.08.

Contrary to (�%, the precise estimate on ��% is not provided even for exclusive  ∗0W,
either in Refs. [15] or [16]. One difficulty is evaluating the uncertainty of the strong
phases for M! , which affects ��% as we see in Section 1.2.2. Another reason is that the
calculation is not motivated because (�% is more sensitive to BSM physics. In the rough
estimation, we approximate ��% ' 0 by ignoring the LD contribution, where +∗

CB+C1 is
the only phase contributing to the amplitude.

1.4 Expected effects of physics beyond the Standard Model

As we discuss in Section 1.3, (�% is suppressed by<B/<1 in the SM. The important thing
is that this suppression arises from the helicity suppression in SD, which can easily be
alleviated in many BSM scenarios. In particular, if the newly introduced particle with
mass<new flips its spin on an internal line, the suppression factor becomes<new/<1. For
this reason, the measurement of (�% in 1 → BW decay is referred to as the “null test” of
the SM. In the following discussion, we ignore the LD contributions for simplicity [17].
Note that this brings 2–10% uncertainty on the estimate of (�%.

1.4.1 Left-right symmetric model

The left-right symmetric model (LRSM) [18] is one of the possible BSM models where
(�% can be enhanced [9]. In this model, the SM, , noted as,1, is a mixture of,! and
,' as (

,+
1

,+
2

)
=

(
cos Z 4−8l sin Z
− sin Z 4−8l cos Z

) (
,+
!

,+
'

)
,
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4+8l sin Z
1' B!

W!

C'

,

q

<C

(a) 1' → B!W!

1!
4−8l sin Z

B'

W'

C'

,

q

<C

(b) 1! → B'W'

Figure 1.5: Feynman diagrams contributing to 1 → BW in the LRSM.

where ,! (,') couples to the left-handed (right-handed) fermion current. The addi-
tional contributions to �7 and �′

7 are shown in Fig. 1.5. The contribution from ,'

enhances the �′
7 through the diagram shown in Fig. 1.5(b), but it does not enhance �7

(Fig. 1.5(a)) due to the small value of sin Z [19]. The effect is calculated in Ref. [19] as

�′
7
�7

' 1017
12
'

12
!

(
80.38 GeV/22

",2

)2

+'∗CB 4
−8l, (1.14)

where ",2 is the mass of ,2, 1' and 1! are the coupling constants for ,' and ,! ,
respectively, and +'CB is the CKM matrix element for ,'. Even within the limitation of
",2 & 5 TeV from the direct search result at the ATLAS experiment [20], (�% can be
±0.16 as depicted in Fig. 1(a) of Ref. [19].

1.4.2 Minimal supersymmetric standard model

One of the most attractive expansions of the SM is the model respecting supersymmetry,
which transforms fermions to bosons and vice versa. In particular, the Minimal Super-
symmetric SM (MSSM) [21] is the smallest expansion of the SM, introducing another
Higgs doublet and the supersymmetric partners of all the SM particles. In the MSSM,
the naturalness and the hierarchy problem are solved by protecting the divergence of the
Higgs mass. It also provides the dark matter candidate and helps the grand unification
of the interactions.

In the MSSM, the squark propagator can change its flavor and chirality and sig-
nificantly contribute to �′

7 [17]. With the mass insertion approximation, the chirality-
flipping 1 → B transition term,

(
X3
'!

)
23, represents the dominant contribution to �′

7
through the diagram shown in Fig. 1.6. Considering only the contribution from

(
X3
'!

)
23
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1! (X3
'!
)23

B'

W'

1̃

1̃! B̃'

Figure 1.6: Feynman diagrams contributing to 1! → B'W' in the MSSM.

and assuming �7 ' �SM
7 , �′

7 ' �′MSSM
7 , and <6̃ ' <@̃, the effect can be calculated as

�′
7
�7

' −66.39 TeV/22

<@̃

(
X3'!

)
23. (1.15)

The largest possible MSSM contribution within the current theoretical and experimental
constraints is evaluated in the parameter scan [22] as

�′MSSM
7 ∼ −0.066 − 0.00428.

Using Eq. (1.13) with �7 ' �SM
7 ' −0.32 (e.g., in Ref. [19]) and �′

7 ' �′MSSM
7 , the

largest possible (�% is obtained to be

(�% ∼ −0.27b�% .

This is 10 times larger than the SM expectation.

1.5 Measurement of (�% and ��% at �-factory

In the �-factory, a pair of � mesons is produced from

4+4− → Υ(4() → �0�0, (1.16)

which is suitable for studying the time-dependent CP violation [4–6]. The �0�0 pair
generated in the above process is in (-wave and quantum-entangled so that one � meson
is �0 (�0) and the other should be �0 (�0) at the same time. Let us assume one neutral
� meson, �sig, is decaying into our signal,  0

(
c0W. By specifying the other neutral �

meson, �tag, as either �0 or �0 from its decay products, we can determine the time-
evolution of �sig from the time when �tag decays. The decay-time dependence can be
measured by boosting Υ(4() in the asymmetric energy collision. Experiments to study
�� property by generating �� pairs through the above process are referred to as �-
factory experiments.
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1.5.1 Decay-time dependent CP violation measurement

We briefly discuss the time evolution of �sig and �tag and the extraction of time-dependent
CP asymmetry.

The �sig and �tag are generated in the decay of Υ(4() and entangled at a time C = 0
as ���(0)〉sig ⊗

���(0)〉tag =
1
√

2

(���0〉
sig ⊗

���0〉
tag −

���0〉
sig ⊗

���0〉
tag

)
.

The time evolution can be written as���(gsig)〉sig ⊗
���(gtag)

〉
tag =

1
√

2

(���0(gsig)
〉

sig ⊗
���0(gtag)

〉
tag −

���0(gsig)
〉

sig ⊗
���0(gtag)

〉
tag

)
' 1

√
2
4−8")−

1
2Γ)

(
− 8 sin 1

2
Δ<3Δg

[ ?
@

���0〉
sig ⊗

���0〉
tag −

@

?

���0〉
sig ⊗

���0〉
tag

]
+ cos

1
2
Δ<3Δg

[���0〉
sig ⊗

���0〉
tag −

���0〉
sig ⊗

���0〉
tag

] )
,

where gsig and gtag are proper times of �sig and �tag, we define ) = gsig + gtag and Δg =

gsig − gtag, and we use ΔΓ ' 0. One can confirm that only the pair of �0 and �0 are
allowed at gsig = gtag.

Using this expression, we can consider the decays of �� pair. Let us assume that
�sig decays to a CP eigenstate, 5CP, at a time gsig, and �tag decays to the flavor-specific
final state, 5±, at a time gsig, which satisfies(〈

5+
��〈

5−
��) H (���0〉 ���0〉) = (

0 0
0 0∗

)
. (1.17)

The time-dependent decay rate can be written as���(〈 5CP
��
sig ⊗

〈
5±

��
tag

)
Hsig ⊗ Htag

(���(gsig)〉sig ⊗
���(gtag)

〉
tag

)���2
' |0 |2

4
4−Γ)

(��M��2 + ��M��2) (1 ± ��% cosΔ<3Δg ± (�% sinΔ<3Δg). (1.18)

In the case of our signal final state, 5CPW, we add contributions from two CP-eigen final
states, 5CPW±. We obtain a formula similar to Eq. (1.18):∑

ℎ∈±

���(〈 5CPWℎ
��
sig ⊗

〈
5±

��
tag

)
Hsig ⊗ Htag

(���(gsig)〉sig ⊗
���(gtag)

〉
tag

)���2
' |0 |2

4
4−Γ)

(��M'

��2+��M!

��2+��M'

��2+��M!

��2) (1 ± ��% cosΔ<3Δg ± (�% sinΔ<3Δg).
(1.19)
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Table 1.1: Previous measurements of (�% and ��% in �0 →  0
(
c0W decay. The uncer-

tainties are statistical and systematic.

collaboration " c [GeV/22] (�% ��%

Belle (2006) [23]
535 × 106��

(0.8, 1.0) −0.32+0.36
−0.33 ± 0.05 −0.20 ± 0.24 ± 0.05

[0, 0.8], [1.0, 1.8) +0.50 ± 0.61 ± 0.29 −0.20 ± 0.37 ± 0.13
[0, 1.8) −0.10 ± 0.31 ± 0.07 −0.20 ± 0.20 ± 0.06

BaBar (2008) [24] (0.8, 1.0) −0.03 ± 0.29 ± 0.03 +0.14 ± 0.16 ± 0.03
467 × 106�� (1.1, 1.8) −0.78 ± 0.59 ± 0.09 +0.36 ± 0.33 ± 0.04

In the experiment, we can measure Δg from the decay vertex distance of �sig and �tag.
However, we cannot measure ) with enough precision, which requires the decay vertex
reconstruction ofΥ(4(). We can obtain the PDF for Δg and @true = ±1, corresponding to〈
5±

��
tag, by integrating ) over the range [|Δg |,∞), corresponding to gsig ∈ [0,∞)∧ gtag ∈

[0,∞):

%(Δg, @true) =
1

4g�0
4
− |Δg |
g
�0 [1 + @true{��% cos(Δ<3Δg) + (�% sin(Δ<3Δg)}], (1.20)

including the correct normalization. Here we replace the total decay width Γ with the
lifetime, g�0 = 1/Γ.

1.5.2 Previous measurements of (�% and ��% using �0 →  0
(
c0W

The time-dependent CP violation in �0 →  0
(
c0W transition was measured in the pre-

ceding �-factory experiments, Belle [23] and BaBar [24]. The reported results are sum-
marized in Tab. 1.1. Their uncertainties are typically around 0.3, which is still large. The
precise measurement for these parameters is crucial for both testing the SM and probing
BSM physics.
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Chapter 2

Setup of the Belle II experiment

The Belle II experiment [25] and the SuperKEKB accelerator [26], located in KEK,
Tsukuba, Japan, is the successor of the Belle experiment and the KEKB accelerator. By
colliding 7 GeV 4− and 4 GeV 4+, we selectively generate Υ(4() at the invariant mass of
10.58 GeV with the Lorentz boost factor of VW = 0.287.

2.1 SuperKEKB

SuperKEKB is the accelerator with the world’s highest instantaneous luminosity. It con-
sists of a linear accelerator, a positron damping ring, and main storage rings as shown
in Fig. 2.1. As of Jul. 2022, ! = 4.7 × 1034 cm−2s−1 has been recorded, and we have
accumulated 428 fb−1. Among them, 423 fb−1 data are taken with sufficient detector per-
formance, containing 362 fb−1 at the Υ(4() resonance, 42 fb−1 below Υ(4() resonance,
and 19 fb−1 above Υ(4() resonance.

Under strong limits from the beam–beam interaction, the luminosity of a ring collider
can be written as

! ∝ W±
(
�±bH±
V∗H±

)
, (2.1)

where V∗H stands for the vertical beta function at the beam collision point (called inter-
action point, IP), � for beam current, bH for vertical beam–beam parameter, and W for
Lorentz factor of beam particles. Indices + and − stand for positron and electron beams,
respectively.

Our target is to accumulate an integrated luminosity of 50 ab−1 with peak luminosity
of 6× 1035 cm−2s−1. We plan to achieve this 30 times higher luminosity than the KEKB
record by increasing beam currents and squeezing V∗H to 0.3 mm. To alleviate the lumi-
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Figure 2.1: A composition of SuperKEKB [27].

nosity decrease by the hourglass effect, we adopt a large crossing angle of 83 mrad. We
name this nano-beam scheme after the expected vertical beam size of fH ' 50 nm. As
of Jul. 2022, we achieved V∗H = 0.8 mm.

Off-orbit beam particles and radiated photons can scatter in the materials of the de-
tector or accelerator. Particles from those secondary scatterings can intrude into the
detection volume to induce the background signals in the detector, other than the signals
of particles from the 4+4− collisions we are interested in measuring. Such beam-related
background hits are referred to as beam background [28]. The high luminosity of Su-
perKEKB leads to many beam background hits, contaminating the physics events such
as photon detection or trajectory finding.

2.2 The Belle II detector and data acquisition system

The Belle II detector is a multi-purpose detector consisting of sub-detectors such as
trackers, particle identifiers, an electromagnetic calorimeter, and a 1.5 T superconducting
solenoid coil with a magnetic return yoke. The detector is hermetic, covering a solid
angle of 3.6c. A drawing for the detector is shown in Fig. 2.2.

The coordinate system is defined as follows: I-axis is along the Belle II solenoid
axis, written in the black-dashed line, directed towards the forward side (right-hand side
of Fig. 2.2); G-axis is horizontal and perpendicular to the I-axis and directed towards the
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right in the figure; H-axis is vertical and directed out of the paper to the top of the Belle
II detector. The cylindrical coordinate (3, i, I)¹ and the spherical coordinate (A, \, i)²
are also used.

2.2.1 Detectors to measure decay vertex position

We locate the vertex detector (VXD) at the radial position of 1.4 cm, which enables us
to measure the production point of a charged particle with a resolution of 14µm [29].
The requirements for VXD are fine position resolution, a small material budget, and
radiation hardness. The beam pipe is also made of beryllium to suppress the material
budget. We place the silicon pixel detectors (PXD) [30] for the inner two layers (L1 and
L2) to achieve a fine position resolution, and the silicon strip detectors (SVD) [31] for
the outer four layers (L3 to L6) covering a total area of 1.2 m2 (drawn in light-blue and
pink in Fig. 2.2). The 3D models of VXD and the layout of the sensors are shown in
Figs. 2.3 and 2.4.

(1) Pixel detector

PXD is decisive for the decay vertex position measurement. The pixel size is 50 ×
(50–85) µm2 depending on the pixel position. Only two L2 sensor ladders are installed
out of the designed 12 until Jul. 2022. The sensors are fabricated based on the depleted
field-effective transistor (DEPFET) technology [32], which allows us to make them as
thin as 50µm thick. The hits of charged particles are reconstructed by combining the
neighboring pixels with S/N > 3. The data size of PXD is reduced by sending hits only
in the region of interest (ROI) decided by the track position reconstructed with SVD and
other detectors.

¹G = 3 cos i, H = 3 sin i
²G = A sin \ cos i, H = A sin \ sin i, I = A cos \
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Figure 2.2: A drawing of the Belle II detector in the longitudinal section (top view) [33].



Figure 2.3: 3D model of VXD [31].

d

Figure 2.4: Schematic views of VXD in 3–I cross-section (left) and G–H (or 3–i) cross-
section (right) [31]. Inner two layers (grey) for PXD and outer four layers for SVD:
blue-dashed for L3 small rectangular sensors, green for L4–6 large rectangular sensors,
orange-dashed for L4–6 trapezoidal sensors.

(2) Silicon vertex detector

SVD covers cylindrical space of 4 cm < 3 < 15 cm from the IP. The essential roles of
SVD are the ROI decision for PXD by reconstructing trajectories of charged particles
with high position resolution, the reconstruction of particles with low momenta, and the
decay vertex measurement of long-lived particles like  0

(
. The geometry is shown in

Fig. 2.4.
SVD comprises four layers of double-sided silicon strip detectors (DSSDs). The

layers are named L3 to L6, with L3 being the innermost layer and L6 being the outermost
layer. The material budget is about 0.7% of the radiation length per layer. We define a
local Cartesian coordinate on each DSSD plane with D- and E-axis corresponding to 3–i
and I in the cylindrical coordinate. There are three types of sensors used in SVD: small
rectangular sensors in L3, large rectangular sensors in the barrel region of L4, L5, and
L6, and trapezoidal sensors installed slantwise in the forward region of L4, L5, and L6.
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Small Large Trapezoidal
No. of D-strips 768 768 768
D-strip pitch 50µm 75µm 50–75µm
No. of E-strips 768 512 512
E-strip pitch 160µm 240µm 240µm
Thickness 320µm 320µm 300µm

Table 2.1: The main characteristics of the three types of DSSDs. Only readout strips are
considered for the number of strips and strip pitch. All sensors have one intermediate
floating strip between two readout strips.

The main characteristics of these sensors are summarized in Tab. 2.1.
On each side of DSSDs, we combine the neighboring strips with S/N > 3 to form

the hits of the charged particles with the position, charge deposit, and hit time. Then we
combine the D-side and E-side hits to reconstruct the 3D position.

2.2.2 Detectors to measure energy and momentum

The energies and momenta of decay products are essential information to reconstruct
particle decay, e.g., the kinematic fit of the decay vertex. The momenta of charged stable
particles such as c± are measurable from the curvatures of trajectories in the magnetic
field. Such trajectories are called tracks, parametrized by five helix parameters at the
point of the closest approach (POCA) to the origin of the coordinate:

• 30: 3 of POCA in the cylindrical coordinate with the sign assigned from the di-
rection of the momentum,

• q0: the angle between the momentum projected in G–H (or 3–i) plane and G-axis.
• l: curvature in G–H plane with the sign assigned by the charge of the particle,
• I0: I of POCA, and
• tan_: the slope of the track on the 3i–I cylindrical plane.

The energies of W and 4 are measurable from the intensity of photons emitted in the
electromagnetic shower. We locate the central drift chamber (CDC, drawn in blue in
Fig. 2.2) just outside VXD to detect and measure the tracks, and the electromagnetic
calorimeter (ECL, drawn in purple (dark green) for the barrel (endcap) region noted as
B-ECL (E-ECL) in Fig. 2.2) outside CDC to detect and measure the electromagnetic
shower.
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(1) Central drift chamber

CDC is a cylindrical drift chamber covering a radius of 16.80 cm < 3 < 111.14 cm. The
primary purposes of CDC are track finding, momentum measurement, and decision of
event triggering for all charged particles. CDC contains 56 layers of sense wires in nine
superlayers: the innermost superlayer contains eight layers of sense wires with smaller
azimuthal gaps to reduce the hit rate and occupancy; the other superlayers have six layers.
The wires are strained either along the I-axis (axial wires) or with a twisted angle (stereo
wires), alternatingly for superlayers. We combine the information from axial and stereo
wires in the offline analysis to reconstruct 3D trajectories. After the track finding in CDC,
the combinatorial Kalman filter adds the 3D hit position in VXD to the tracks [34]. A
found track is then fitted with the CDC and VXD hits considering the detector material
effects starting from the IP.

(2) Electromagnetic calorimeter

ECL is a total absorption electromagnetic calorimeter covering 12.4◦ < \ < 155.1◦

except for two 1◦-wide gaps between the barrel and endcaps. ECL measures the energy
and solid angle of W and 4 with 8,736 CsI(Tl) crystals (6,624 in the barrel region and
2,112 in endcap regions). The crystal length is 30 cm, corresponding to 16.1 radiation
length, and allows some shower particles to penetrate the crystal (shower leakage). The
statistical fluctuation of the shower leakage is the dominant uncertainty in the energy
measurement higher than 1 GeV. The width of the crystal is 5.5× 5.5 cm2 and 1.5 times
larger than the Moliere radius. The signals from neighboring crystals are merged to form
an ECL cluster. A cluster of 5× 5 crystals with the particle-injected crystal at the center
is large enough to reconstruct the shower without leakage in the transverse direction.

2.2.3 Detectors for particle identification

Identifying particle types is also essential for correctly reconstructing the event, espe-
cially for specifying the accompanying � meson as �0 or �0. The 4 and W can be identi-
fied from the characteristic electromagnetic shower in ECL. Other charged-stable parti-
cles need dedicated detectors. The separation of  and c mass is based on the different
Cherenkov radiation angles. We place the time-of-propagation (TOP) counter in the
barrel region between CDC and ECL (drawn in pear-green in Fig. 2.2) and the aerogel
ring-imaging Cherenkov (ARICH) detector in the forward endcap region (drawn in pale-
blue in Fig. 2.2). The ` can be characterized by the penetration through iron plates in
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the outermost  0
!

and ` (KLM) detector (drawn in purple in Fig. 2.2). We also utilize
d� /dG measurements in SVD and CDC to identify low-momentum charged particles.

(1) Time-of-propagation counter

The TOP counter is a Cherenkov detector which consists of quartz as a radiator and the
micro-channel plate PMTs as a sensor. By using the two-dimensional position informa-
tion of (5.3 mm)2 anode pixels and the precise timing information with the transit time
spread as small as 30 ps, we can reconstruct the folded Cherenkov ring image and hence
the radiation angles to separate particles such as  and c.

(2) Aerogel ring-imaging Cherenkov detector

ARICH is also a Cherenkov detector which consists of an aerogel as a radiator and
the hybrid avalanche photo-detector (HAPD) as a sensor. HAPD has a readout pixel
size of (4.9 mm)2 and is placed 20 cm away from the aerogel, enabling us to detect the
Cherenkov ring image and separate  and c.

(3)  0
!

and ` detector

KLM consists of an alternating sandwich of 4.7 cm-think iron plates and 4.4 cm-thick
active detector elements, i.e., resistive plate chambers or plastic scintillators. KLM can
detect showers from hadrons such as  0

!
, which can interact with nuclei in the iron plate

via the strong interaction. We can separate the signals of ` from those of hadrons with
their more substantial penetration without the strong interaction. The iron plate also
plays a role as a support structure of the detector and a return yoke of the magnetic field.

2.2.4 Event triggering and data acquisition systems

Some detectors, such as VXD, rely on an external trigger signal for data readout. To
efficiently capture the events of interest from 4+4− collisions within the limited data
bandwidth, we distribute the global trigger signal (online or level-1 trigger) to all sub-
detectors. Figure 2.5 depicts the overall architecture of the trigger distribution and data
acquisition systems. The trigger decision is made on the FPGA logic, utilizing the on-
line data from CDC, ECL, TOP, and KLM. For trigger distribution, we employ front-
end timing switches (FTSWs) that not only distribute triggers to the front-end readout
electronics but also to the common pipeline platform for electronics readout (COPPER)
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Figure 2.5: A schematic view of the Belle II DAQ system [35]. Front-end readout elec-
tronics (FE dig) for each sub-detectors are first connected to COPPER via Belle2link.
The data from COPPER are first merged in readout PCs (R/O PC) and then merged in
the event builders.

boards in each sub-detector. This enables FTSWs to handle trigger distribution while
preventing buffer overflow in the front-end electronics and COPPER. At Event Builder
1, we merge the data from each sub-detector, excluding PXD, on an event-by-event basis.
Subsequently, we apply physics-level event selections (high-level trigger, HLT) based on
the entire software reconstruction of the event. The PXD data is reduced in the online
selector node (ONSEN), where the created ROIs are applied. These ROIs are generated
by two sources: the data concentrator (DATCON) with only SVD data and HLT using all
detectors except PXD. In Event Builder 2, the reduced PXD data is added to the event,
which is then stored in the online disks.
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Chapter 3

Analysis strategy

As discussed in Section 1.5, to measure (�% and ��% in �0 →  0
(
c0W using 4+4− →

Υ(4() → �0�0 events, we need to:

1. reconstruct one neutral � from the targeting final state  0
(
c0W (�sig),

2. identify the charge sign of 1 quark in the other � (�tag) from its decay products
referred to as flavor q, where @ = +1(−1) means that �sig is �0(�0) at the decay
time of �tag, and

3. measure the difference between the proper decay times of �sig and �tag, referred
to as proper-time difference ΔC.

Figure 3.1 illustrates the above procedure. The ideal PDF of Δg and @true is given in
Eq. (1.20).

!! !"

!!
""
#

$ = 0
$

$ = Δ$
(#$%" /(#$%

"

(&'%("/("
Υ 4S
boost

Δ$ ≅ Δℓ/,#-

entangled

Figure 3.1: A schematic overview of time-dependent CP asymmetry measurement.
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3.1 Reconstruction

We reconstruct �0 →  0
(
c0W decays where the  0

(
decays into c+c− and the c0 decays

into WW.
 0
(
→ c+c− candidates are formed by combining two oppositely-charged tracks.

 0
(

decays with a significant displacement from the IP due to the long lifetime of 2g =

2.7 cm. This signature makes it easy to discriminate  0
(

from fake candidates formed by
a random combination of tracks originating from the IP. We select  0

(
candidates using

a binary boosted-decision-tree (BDT) classifier [36], which combines information from
multiple variables nonlinearly, and the c+c− invariant mass.

c0 → WW candidates are formed by combining two ECL clusters with no associated
tracks. We select c0 candidates using WW invariant mass. Since the beam backgrounds
dominate low-energy ECL clusters, we also apply momentum thresholds and use a BDT
classifier.

For prompt energetic W, we select the most energetic ECL cluster in the center-of-
mass (CM) frame with no associated tracks. To reject the dominant background from the
asymmetric energy decays of energetic c0 or [ mesons, we evaluate c0 or [ probability
using a BDT classifier.

We reconstruct �sig candidates by combining  0
(
, c0, and W candidates. We select

�sig candidates using beam-energy-constrained mass "bc and energy residual from the
beam measurement Δ� , defined as

"bc B

√(
�∗

beam/2
)2 − p∗2

�
and Δ� B �∗

� −
(
�∗

beam/2
)
, (3.1)

where �∗
beam is the energy of the beam collision at the CM frame and �∗

�
and p∗

�
are

the energy and momentum of the �sig candidate in the CM frame. We classify the �sig
candidates with the 0

(
c0 invariant mass: 0.8 GeV/22 < " c < 1.0 GeV/22 for ∗(892)0

resonance, referred to as mass region 1 (MR1) or  ∗(892)0W channel; and the rest for
the inclusive decays, referred to as non-MR1 or  0

(
c0W channel.

The dominant background comes from continuum 4+4− → @@ events, where @@
is DD, 22, 33, BB, and additionally g+g− is considered. Since the generated particles
are lighter than �-meson, they have larger back-to-back momenta in the CM frame and
leave jet-like signatures in the detector. We suppress these continuum backgrounds with
a BDT classifier using the observables related to the event topology.
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3.2 Flavor tag

The determination of the flavor q relies on the charge of � decay products. Considering
the dominant decay chain of 1 quarks such as 1 → 2ℓ−a (ℓ = 4, `) or 1 → 2 → B,
negatively charged leptons and kaons indicate �0 and vice versa. We use a combination
of category-based BDT classifiers provided by the software called flavor tagger [37].
The combiner BDT returns a combined single value @ · A as a classifier between �0

and �0, where @ = ±1 is a sign to indicate the flavor and A is the reliability of the flavor
assignment ranging from 0 (no flavor information) to 1 (unambiguous flavor assignment).
The @ = +1(−1) is defined to be �tag = �0(�0), in other words �sig = �0(�0) at
the proper decay time of �tag. The tagging performance depends on A, so we split �0

candidates into seven bins according to A, called A-bin. The bin edges are

(0, 0.1, 0.25, 0.45, 0.6, 0.725, 0.875, 1). (3.2)

The numbers one to seven are assigned from the lowest to the highest A-bin.

3.3 ΔC measurement and event categories

Thanks to the asymmetric energy collision, Υ(4(), or equivalently, the CM frame, is
boosted. Since the momenta of �0�0 are small, only 0.3 GeV/2 in the CM frame, we can
approximate the boost factors of � mesons with that of Υ(4() and measure the proper-
time difference from the distance of the two decay vertices along the boost direction:

ΔC =
ℓCP − ℓtag

VW2
, (3.3)

where ℓCP and ℓtag are the decay vertex positions of �sig and �tag projected to the boost
direction, and ΔC is referred to as the measured proper-time difference.¹ We correct the
bias from this approximation of the boost factor by a response function described in
Section 5.2.1(1).

We measure ℓCP and ℓtag by kinematic fits (see Section 4.5). Since the only tracks
used for �sig vertex fit are c+c− from  0

(
and displaced from the IP, the vertex position

resolution varies from around 10µm to 100µm, mainly depending on the innermost
VXD hit layer. This variation is considerable compared to the average flight length of

¹The measured proper-time difference is not the difference of proper decay times but the difference of
decay times in the Υ(4() rest frame, as we cannot measure Υ(4() decay vertices.
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�0, 130µm. Therefore, it is crucial to accurately comprehend the vertex resolution to
correctly measure the time-dependent CP asymmetry.

Our understanding and estimation of the vertex positions and resolutions are limited.
Therefore, we introduce two event categories using the quality of the kinematic fits and
adopt the following strategy to estimate (�% and ��%:

• We classify the reconstructed events into two categories: one is time-differential
(TD) events where the good vertex measurement quality is assured; the other is
the remaining events, called time-integrated (TI) events. The classification criteria
are described in Section 4.5.

• We analyze both TD and TI events in the simultaneous CP-violation parameters
fit. The TD events are modeled using Eq. (1.20). The TI events are modeled using
the same PDF but integrated over Δg to remove ΔC dependence:

%(@true) =
1
2

(
1 + @true��%

1
1 + G2

3

)
, (3.4)

where G3 = Δ<3 · g�0 .

By including the TI events in the analysis, we can improve the precision of ��% mea-
surement.

3.4 Control sample

�+ decay provides a null test of time-dependent CP asymmetry measurement and is suit-
able for the control sample². We analyze �+ →  0

(
c+W as the control sample (channel),

where we can imitate the decay vertex resolution of the signals by ignoring the c+ track
(see Appendix B.2). The branching fraction of this control sample is twice higher than
the signals considering the isospin. The analysis of the control sample is summarized in
Appendix B.

²Another merit of using �+ decay is that one can specify �+ or �− from its decay products, c± in this
case. However, we randomly select a single candidate in this analysis, so the charge of c± is unreliable.
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Chapter 4

Event reconstruction and selection

In this chapter, we describe the reconstruction and selection criteria summarized in Sec-
tion 3.1.

4.1 Experimental data and simulated samples

We analyze the 4+4− collision data taken near the Υ(4() resonance at Belle II from
2019 to summer 2022, which amounts to a total integrated luminosity of 362 fb−1 and
(387.5±5.8) ×106 �� pairs. We apply a loose event selection in HLT, where the events
are tagged as hadron, namely ��- or @@-like. We further apply loose event selections in
the offline software:

• More than one ECL cluster in the CDC acceptance with � > 0.2 GeV.
• Total deposited energy in the ECL is smaller than 9 GeV.

The energy is calculated for charged particles with ?T > 0.1 GeV, |Δ3 | < 0.5 cm,
|ΔI | < 2 cm, and more than 20 CDC hits, and for photons in the CDC acceptance
with � > 0.1 GeV. Here, Δ3 and ΔI are track’s GH- and I-distance from IP.

We use Monte Carlo simulated samples to develop the analysis method. The primary
simulation sample corresponds to 1 ab−1 integrated luminosity combining the generic
events of 4+4− → �0�0, �+�−, DD, 33, BB, 22 and g+g−. The �0�0, without our signal,
and �+�− combined sample is referred to as �� background sample. The DD, 33, BB, 22,
and g+g− combined sample is referred to as the @@ or continuum sample. The additional
2 ab−1 of 4+4− → �0�0 and �+�− is also combined with the 1 ab−1 generic MC for mod-
eling "bc–Δ� and ΔC in �� background. The following samples for specific decays are
also generated:
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• 2M events of �0 →  ∗(892)0(→  0
(
(→ c+c−)c0)W decays referred to as signal

MC sample, used for selection optimization, "bc–Δ� modeling, and ΔC resolution
modeling.

• 10M events of �+ →  ∗(892)+W decays referred to as control MC sample, used
for selection optimization, "bc–Δ� modeling, and ΔC resolution modeling.

• 20M events of �0 → (B3)W and �+ → (BD)W decays referred as mixed and charged
1 → BW MC samples, used to study non-MR1 signals and to model �� back-
ground distribution for Punzi effect correction.

For the event generation, we use EvtGen [38] for hadronic decays, KKMC [39] followed
by the fragmentation by Pythia [40] for @@, and Tauola [41] for g decays. In the EvtGen,
the -B mass spectrum in � → -BW decay is generated based on the Kagan–Neubert
model [42]. The detector response is simulated by Geant4 [43].

We analyze data and MC with the Belle II analysis software framework [44].

4.2 Event reconstruction and selection

We use differential evolution [45] to determine eight cut thresholds (seven daughter se-
lections in Tab. 4.1 and one �sig selection) at the maximum Figure of Merit (FoM). The
differential evolution is a method where cut thresholds are determined by changing the
cut value randomly, and a set of cut thresholds is updated when the FoM gets higher than
before the change. We use significance #sig/

√
#sig + #bkg as FoM, where #sig and #bkg,

the number of signal and background for 1 ab−1-equivalent data size, are counted with
the following requirements:

• in the signal-enhanced region, i.e., 5.27 < "bc < 5.29 GeV/22 and −0.2 < Δ� <

0.1 GeV,
• in MR1, and
• with at least 1 VXD hit for each  0

(
daughter.

After the first loop of optimization, we optimize the �0 selection in each A-bin, as sum-
marized in Tab. 4.2

For the evaluation of FoM, we use signal MC for counting signal candidates and
1 ab−1 generic MC for counting background candidates. We downsize the signal MC
samples to 1/10 to speed up the evaluation of FoM. This adjustment does not deteriorate
the precision of the FoM, as it is primarily constrained by the number of background
candidates in the generic MC.
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Table 4.1: Daughter selections and optimized thresholds.

 0
(

invariant mass |"c+c− − < 0
(
| < 34 MeV/22

+0 probability %+0 > 0.75
Λ veto %Λ < 0.99

c0 invariant mass |"WW − 134| < 30 MeV/22

momentum ?WW > 430 MeV/2

W
c0 probability %c0 < 0.83
[ probability %[ < 0.79

The signal candidates are regarded as truth-matched if the  0
(

and prompt W can-
didates are matched to those from the signal decay in the generator truth information.
We do not require the truth-matching of c0 since the  0

(
provides the vertex information

sufficient for the analysis.

4.2.1 Reconstruction of  0
(

We reconstruct  0
(
→ c+c− decays by combining two oppositely-charged tracks. Since

the c± tracks from  0
(

originate away from the IP, we use a dedicated reconstruction tool
that removes the material effect between the IP and the  0

(
decay vertex and refits these

tracks to measure their momenta correctly. We have improved this tool by expanding
its functionality to remove the hits between the IP and the  0

(
decay vertex. Since these

hits are more likely to be background hits, the accuracy of the vertex reconstruction has
improved with this modification. We have also tuned the selection used in the tool since
we observed 20% signal inefficiency. By loosening the vertex fit j2 cut used in the tool
and instead introducing the selection on the invariant mass, we have salvaged 10% of the
signal with only a few % increase in the data size and the calculation time.

We require the c+c− invariant mass "c+c− to be within ±34 MeV/22 from the PDG
value, < 0

(
= 497.611 MeV/22 [46].  0

(
decays with a significant displacement from the

IP due to the long lifetime of 2g = 2.7 cm. Such long-lived neutral particles decaying
into two oppositely-charged particles are referred to as +0. We utilize this feature in
the BDT classifier %+0 to separate  0

(
candidates against fake candidates formed by a

random combination of tracks originating from the IP, requiring %+0 > 0.75. We veto
+0-like Λ baryon decay, Λ → ?+c−, which survives after +0 selection, using another
BDT classifier. We require loosely %Λ < 0.99. The distributions of variables used for
 0
(

selection are shown in Fig. 4.1. We confirm that the FoM is at a plateau around the
thresholds.
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Figure 4.1: The comparison of the invariant mass, +0 probability, and Λ veto between
 0
(

from signal �0 decay in 2M signal MC (signal, red) and fake  0
(

in 100 fb−1 generic
MC (background, blue). The entries for each component are normalized to 1,000 for the
invariant mass and 100 for BDT classifiers. The FoM of �0 candidates in 1 ab−1 is also
shown in the lower subplot. Since the selections of the invariant mass are applied on the
absolute residual, FoM is shown only on the right side ("c+c− > 0.497611 GeV/22) in
the top plot. The vertical black dashed line represents the threshold we determine.



The hit position uncertainties in PXD are underestimated, and the pull widths of helix
parameters are larger than 1 in MC. We correct uncertainties on track helix parameters
so that the pull distributions are normalized in MC [47]. The correction factors depend
on the layer of the innermost VXD hit, the track momentum, and the track angle. We
also calibrate the data–MC difference of this correction using the cosmic ray analysis.

We observe slightly higher track momenta in data due to the imperfect magnetic field
map. Therefore, we apply a global scaling factor of 0.99987+0.00038

−0.00057 to the momenta of
c± in the experimental data, which is obtained by comparing the peak positions of the
invariant mass of �0 →  −c+ decay in MC and data. The measurement uncertainty is
accounted as a source of systematic uncertainty in Section 5.5.1.

4.2.2 Reconstruction of c0

We reconstruct c0 → WW decay by combining two ECL clusters with no associated
tracks. We require the ECL clusters to have more than 1.5 ECL crystal hits¹ and energy
higher than 20 MeV in the barrel, 22.5 MeV in the forward endcap, and 20 MeV in the
backward endcap.

The energy distribution of the ECL clusters has a downward tail due to the shower
leakage in the crystal. Even though we correct the peak position of the cluster energy,
the combined invariant mass is shifted downward, as shown in Fig. 4.2. We fit around
the peak with a single Gaussian and determined the peak position as 134 MeV/22. We
select c0 candidates with WW invariant mass "WW in the range of 134 ± 30 MeV/22. We
also reject dominant fake c0 from beam background W by requiring the momentum in
the laboratory frame to be larger than 430 MeV/2. The distributions of variables used for
c0 selection are shown in Fig. 4.3. We confirm that the FoM is at a plateau around the
thresholds.

For the experimental data, we apply MC/data scaling factors to the cluster energy
in bins of cluster energies up to 2 GeV. The scaling factor is determined by comparing
the invariant mass of c0 → WW and [ → WW between data and MC. The obtained scale
factors for c0 daughter W’s are typically 1.01 with an uncertainty of 0.0005, which is
accounted as a source of systematic uncertainty in Section 5.5.1.

¹If the ECL clusters are overlapped at the crystal, the number of ECL crystal hits is weighted according
to the energy splitting and returns a non-integer number.
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Figure 4.3: The comparison of the invariant mass and momentum between c0 from sig-
nal �0 decay in 2M signal MC (signal, red) and fake c0 in 100 fb−1 generic MC (back-
ground, blue). The entries for each component are normalized to 1,000 for the invariant
mass and 40 for momentum. The FoM of �0 candidates in 1 ab−1 at each threshold is
also shown in the lower subplot. Since the selections of the invariant mass are applied
on the absolute residual, FoM is shown only on the right side ("WW > 0.134 GeV/22) in
the left plot. The vertical black dashed line represents the threshold we determine.
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Figure 4.4: �cms
W distributions for signal and the other W candidates from 1/11 of signal

MC samples. The dashed line shows the threshold, 1.6 GeV.

4.2.3 Reconstruction of W

We expect prompt energetic W mainly comes from two-body decay, �0 →  ∗(892)0W

or through other resonances. In such a case, the energy in the CM frame �cms
W is about

<�022/2 and significantly higher than other W’s in � decays, as shown in Fig. 4.4. There-
fore, we select the most energetic ECL cluster in the CM frame with no associated tracks
and require �cms

W > 1.6 GeV. Energetic W candidates in background processes domi-
nantly originate from the asymmetric energy decay of energetic c0 or [ mesons. To veto
such W, we combine prompt W candidates with all the other W candidates in the rest of the
event one by one and form possible c0 and [ candidates. We use BDT classifiers as the
c0 and [ probability for these candidates, and we use the highest probability for vetoing
the W candidates from c0 or [. We require c0 probability to be smaller than 0.83 and [
probability to be smaller than 0.79. The distribution of c0 and [ probability used for the
veto is shown in Fig. 4.5. We confirm that the FoM is at a plateau around the thresholds.

For the experimental data, we need to scale the cluster energy as we did for c0.
We use W in �0 →  +c−W decays as the calibration mode. We determine the global
scale factor without energy dependence by comparing Δ� between data and MC. The
analysis is summarized in Appendix A. The obtained MC/data scale factor is 1.0022 ±
0.0005. The measurement uncertainty is accounted as a source of systematic uncertainty
in Section 5.5.1.
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Figure 4.5: The comparison of c0 and [ probability between W from signal �0 decay in
2M signal MC (signal, red) and W not from �0 or �+ in 100 fb−1 generic MC (background,
blue). The entries for each component are normalized to 100. The FoM of �0 candidates
at each threshold in 1 ab−1 is also shown in the lower subplot. The vertical black dashed
line represents the threshold we determine.

4.2.4 Reconstruction of �0

We reconstruct �0 →  0
(
c0W decays by combining  0

(
, c0, and W candidates. We select

the �0 candidates satisfying 5.20 < "bc < 5.29 GeV/22 and −0.5 < Δ� < 0.5 GeV.
We also require the  0

(
c0 invariant mass to be 0.6 < " c < 1.8 GeV/22. The

lower edge corresponds to the kinematical boundary, and the upper edge is required to
separate � or � resonances. The " c distribution is shown in Fig. 4.6. Restricting the
�0 candidates in MR1 also helps to mitigate the observed correlation between " c and
Δ� or A-bin.

4.2.5 Single candidate selections

We have multiple �0 candidates in 76.7% of the events before " c selection, with an
average multiplicity of 4.07. The multiplicity from c0 is dominant, 4.03, and mainly
from fake c0. For efficient single candidate selection, we use a BDT classifier Cc0 to
remove fake c0 mainly from beam background W. We prepare the same number of true
and fake c0’s from 1/11 of signal MC sample with selections² described in Section 4.2.2
(220,608 candidates for each). We use 80% of this sample for training and leave 20%

²We use the thresholds determined in the second-to-last iteration of optimization, but the difference is
slight: |"WW − 134 MeV/22 | < 27 MeV/22 and ?WW > 420 MeV/2.
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mass regions. The distribution is not smooth, reflecting the -B mass spectrum based on
the Kagan–Neubert model [42].

for testing the performance. We use the following nine variables related to c0 and its
daughters for training:

• energy of both W’s,
• five properties of ECL cluster of the less energetic W, namely, azimuthal angle,

number of hits, �1/�9 and �9/�21 (the ratios of energy deposit in 1×1, 3×3, and
5 × 5 − 4 (at the corners) square bundle of crystals), and MVA output for W– 0

!

separation using Zernike moments [48],
• helicity angle and invariant mass of c0.

Figure 4.7 shows Cc0 distributions for signal and background in the BDT test sample.
We select single c0 with the highest Cc0 value.

If multiple  0
(

candidates exist in the event, we choose the one with the highest +0

probability.
We retain 87.8% of the fully-matched (c0 truth matching required) signal candidates

and 99.7% of the signal candidates defined in Section 4.2.
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Figure 4.7: Cc0 distributions for signal and background in the BDT test sample.

4.3 Background suppression

The dominant background comes from 4+4− → @@ (DD, 22, 33, BB, and g+g−). We
use a BDT classifier C@@ to separate the signal from @@ backgrounds, which is called
continuum suppression later on. We prepare the same number of signal �0 candidates in
signal MC sample and �0 candidates from @@ samples, up to single candidate selections
applied³ (962,269 candidates for each). We use 80% of this sample for training and leave
20% for testing the performance.

We define the Rest-Of-Events (ROE) using tracks with at least 1 CDC hit and ?cms <

3.2 GeV/2 and ECL clusters with ? > 50 MeV/2 and ?cms < 3.2 GeV/2 for evaluation of
event-shape variables. The following 29 event-shape variables are used as input:

• '2: the ratio between the second and zeroth Fox–Wolfram moments [49],
• cos \T: the cosine of the angle between the thrust axis of �sig and the thrust axis

of ROE [50],
• )$ ()�): the thrust scalar of ROE (�sig) [51, 52],
• �T: sum of the magnitude of transverse momenta of all the particles in the event,
• "2

miss: squared missing mass of the event defined as

"2
miss =

(
�Υ(4() −

∑
8

�8

)2
−

∑
8

|p8 |2, (4.1)

³We use the thresholds determined in the second-to-last iteration of optimization, but the difference
is slight: |"c+ c− − < 0

(
| < 36 MeV/22, %+0 > 0.76, %Λ < 0.99, |"WW − 134 MeV/22 | < 27 MeV/22,

?WW > 420 MeV/2, %c0 < 0.93, and %[ < 0.81.
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Figure 4.8: C@@ and C′
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distributions for signal and background in the BDT test sample.

Table 4.2: The lower threshold of C@@ (C′
@@

) in each A-bin for MR1 (non-MR1) �sig
candidates.

A-bin 1 2 3 4 5 6 7
MR1 0.93 0.92 0.86 0.86 0.91 0.87 0.65

non-MR1 0.74 0.70 0.72 0.63 0.75 0.60 0.50

where �Υ(4() is the energy of Υ(4() determined from the beam energies, �8 and
p8 are the energy and momentum of a decay product, and the summation of 8 runs
over all the decay products,

• 14 Kakuno Super Fox–Wolfram moments [53],
• 9 CLEO cones [54].

Figure 4.8(a) shows C@@ distributions for signal and background in the BDT test sample.
One can confirm the clear separation of signal and background.

As the flavor tagger is designed for �� events, a high value of A indicates lower
contamination from the @@ background. The C@@ distribution of signal and background
in each A-bin is shown in Fig. 4.9(a), and it’s evident that the highest A-bin provides
the best separation. Moreover, the signal-to-background ratio varies across A-bins. To
address these two A-bin dependencies, we have set different thresholds for each A-bin by
maximizing FoM. The results are summarized in Tab. 4.2.

We utilize signal kinematics in continuum suppression for better signal–background
separation. This brings an undesirable correlation between " c and C@@. After the
A-bin-dependent C@@ selection, " c is correlated to A-bin as well, which makes the frac-
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Figure 4.9: C@@ and C′
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distributions for signal and background in each A-bin. The
entries for each component are normalized to 100. The FoM in 1 ab−1 is also shown in
the lower subplot. The vertical black dashed line represents the threshold we determine.



tion estimation in Section 5.1 complicated and possibly brings bias to the analysis. This
correlation is not visible in the MR1 signal due to the limited " c range but significant
in the non-MR1 signal. To suppress this correlation, we prepare another BDT classifier
C′
@@

for non-MR1 �sig candidates, removing '2, )�, and �T from the input and using
only particles in the ROE to calculate CLEO cones. Figure 4.8(b) shows C′

@@
distribu-

tions for signal and background in the BDT test sample. The comparison of signal and
background in each A-bin is shown in Fig. 4.9(b). We optimize the thresholds for the
non-MR1 signal candidates in the 20M 1 → BW MC sample. The optimized thresholds
are summarized in Tab. 4.2 together with MR1. The loosened selections reflect the worse
separation power and the lower signal yield.

The continuum suppression retains 77% (74%) of the signal while rejecting 95%
(89%) of the background for MR1 (non-MR1) candidates.

4.4 Flavor tagging

We use a BDT classifier @ · A ∈ [−1, 1] for flavor tagging. The reliability of the flavor
assignment A is binned with the edges summarized in Eq. (3.2). The performance of the
flavor tagger is defined as the following. We first define the wrong-tagging fraction F
and the efficiency Y in a flavor-specific way:

F8± = %(@ = ∓1|A ∈ '8 ∧ @true = ±1), (4.2)
Y8± = %(A ∈ '8 |@true = ±1), (4.3)

where '8 is the range of 8-th A-bin. Then we define the flavor average and flavor asym-
metry of the wrong-tagging fraction and the efficiency:

F8 =
F8+ + F8−

2
, (4.4)

ΔF8 = F8+ − F8−, (4.5)

`8 =
Y8+ − Y8−
Y8+ + Y8−

, (4.6)

Y8 =
Y8+ + Y8−

2
. (4.7)
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Using these values, we can include the effect of incorrect flavor tagging into the PDF of
Eq. (1.20) as

%(Δg, @ |A ∈ '8) =
Y8@ (1 − F8@)%(Δg, @true = @) + Y8−@F8−@%(Δg, @true = −@)∑

± Y
8
±%(@true = ±1)

=

(
1 + `8 ��%

1 + G2
3

)−1 1
4g�0

4
− |ΔC |
g
�0

[
1 − @ΔF8 + @`8 (1 − 2F8)

+ {@(1 − 2F8) + `8 (1 − @ΔF8)}(��% cosΔ<3ΔC + (�% sinΔ<3ΔC)
]
,

(4.8)

where %(@true) and G3 is the same as Eq. (3.4). Since `8 is close to 0, we ignore O(`8)
terms in the PDF and obtain

%(Δg, @) = 1
4g�0

4
− |Δg |
g
�0 [1−@ΔF+@(1−2F) (��% cosΔ<3Δg+(�% sinΔ<3Δg)] . (4.9)

The possible effect of the non-zero `8 is evaluated in Section 5.5.2 as a source of sys-
tematic uncertainty.

The tagging performance in data is evaluated using the flavor-specific and large-
statistics calibration channel, �0/�0 → � (∗)∓ℎ± decays, where ℎ± represents c± or
 ± [55]. Figure 4.10 compares the performance in the calibration channel in data and
MC, signal MC samples, and �� background MC samples. We confirm the agreement
among these MC samples, either in MR1 or non-MR1 candidates. We can also confirm
the agreement between the calibration channel data and MC. We use the performance
obtained from the signal MC for MC analysis and the performance from the calibration
channel data for data analysis.

We do not expect any CP asymmetry in the @@ background. However, the flavor
tagger may bring asymmetry. For this check, we use an "bc–Δ� sideband defined as
an orange trapezoidal area shown in Fig. 4.11. This sideband is selected to be enriched
in @@ events while avoiding contributions from the signal and �� background. We do
not apply the continuum suppression for this @@-enhanced sideband. We check the CP
asymmetry in sideband MC and data, as shown in Fig. 4.12. We observe no asymmetry
and confirm that we can safely use the same ΔC PDF for @ = ±1 in @@ background.
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4.5 Vertex reconstruction

We measure the decay vertex positions of reconstructed � (�sig) and the other � (�tag)
by kinematic fits, as illustrated in Fig. 4.13. We consider the geometry and kinematics
of the entire decay chain, such as the flight of �0 and  0

(
mesons, for the �sig decay

vertex fit [56]. We constrain Υ(4() decay vertex to IP. We reconstruct �tag decay vertex
fit using the rest of the tracks in the event satisfying the following conditions:

• Δ3 < 0.5 cm and |ΔI | < 2 cm,
• at least 1 PXD hit, 1 SVD hit, and 1 CDC hit, and
• ? > 50 MeV/2.

We also apply the helix uncertainty correction described in Section 4.2.1 to these tracks.
We constrain �tag decay vertex to tube region extended from Υ(4() decay region with
�tag momentum, which can be estimated from �Υ(4() and �sig momentum. We require
the fit of the decay vertices to be successful as one of the criteria.

We model the vertex resolution with the response function called resolution func-
tions. We utilize the j2, the number of degrees of freedom ad.f., and the uncertainty fℓ
of the vertex fit to construct the resolution functions. For the �sig vertex fit, we use the fit
j2 for the entire decay chain referred to as j2

�0 and the j2 calculated for the  0
(
→ c+c−

tracks referred to as j2
 0
(

. For the �tag vertex fit, we use the reduced j2 referred to as

(j2/ad.f.)tag. The uncertainty is referred to as f�%
ℓ

for �sig, ftag
ℓ

for �tag.
Based on the resolution function study with the signal MC (see Section 5.2.1), we

require the following �sig vertex quality selection, which categorizes events into TD or
TI as explained in Section 3.3:

• Both c+ and c− from  0
(

have at least 1 VXD hit.

beam spot
0.2µm	×10	µm×240	µm

𝐵!"#
𝐾$%

𝜋&

𝜋% → 𝛾𝛾

𝛾

Υ(4𝑆)

𝐵'(#

𝜋)

tracks

intermediates
𝛾

Figure 4.13: The schematic explanation for �� decay vertices reconstruction.
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in the slice of j2

 0
(

for the cases of  0
(

daughters share their innermost hits or not.

• The innermost hits of c+ and c− from  0
(

do not share E-side SVD hit.
If  0

(
decays near the sensor, the innermost hits of daughter c± may be clusterized

as a single hit and shared by the c+ and c− tracks. Due to the small pixel size
of PXD and the narrow strip pitch on the SVD D-side, these hits are unlikely to
be merged and do not bring a significant bias even if they are merged. However,
due to the relatively wider strip pitch in E-side, we observe a deterioration of the
�sig vertex resolution using the  0

(
with innermost E-side hits shared, as shown in

Fig. 4.14(a). The j2
 0
(

dependent resolution model cannot describe this difference
as we observe different dependencies in Fig. 4.14(b). Therefore, we reject these
candidates for consistent resolution modeling.

• j2
 0
(

< 30 and j2
�0 < 100.

This requirement also suppresses the candidates with different behavior of resolu-
tion. The cut on the j2

 0
(

is dominant, which is also used in the resolution model,

and the cut on the j2
�0 is to reject the extreme cases considering the total fit quality.

We optimize the thresholds by checking the agreement of the resolution model in
both j2 slices.

• f�%
ℓ

< 500µm.
This rejects candidates with the poorest resolution and is loose enough to achieve
99% efficiency.
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We require the same �tag vertex quality as �0 →  0
(
 0
(
 0
(

analysis [47],

• (j2/ad.f.)tag < 100 and
• f

tag
ℓ

< 500µm.

4.6 Selection summary

The selection criteria and efficiencies for MR1 are summarized in Tab. 4.3. The total sig-
nal efficiency in MR1 is (14.88±0.04)% for TD, (7.96±0.04)% for TI, and (22.84±0.04)%
for TD and TI combined, including detector acceptance and pre-selections.

In the data, we have found 369 (449) TD events and 179 (220) TI events in MR1
(non-MR1) channel.
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Table 4.3: The statistics of selections in 2M signal MC. Before single candidate selec-
tions, we count the events that include the surviving candidates. After single candidate
selections, we count the truth-matched candidates. Percentages in parentheses show the
efficiency of the corresponding cut.

selection no. of signal efficiency
no. of events generated 2,000,000 100.0%
after pre-selections 1,273,552 63.7% (63.7%)
%c0 < 0.83 1,177,980 58.9% (92.5%)
%[ < 0.79 1,168,042 58.4% (99.2%)
|"c+c− − < 0

(
| < 34 MeV/22 1,149,357 57.5% (98.4%)

%+0 > 0.75 1,115,458 55.8% (97.1%)
(1 − %Λ) > 0.01 1,112,348 55.6% (99.7%)
|"WW − 134| < 30 MeV/22 1,059,288 53.0% (95.2%)
?WW > 430 MeV/2 1,003,920 50.2% (94.8%)
Single candidate selections 1,001,319 50.1% (99.7%)
Successful �sig decay vertex fit 995,486 49.8% (99.4%)
MR1 708,478 35.4% (71.2%)
continuum suppression 544,778 27.2% (76.9%)
 ∗(892)+W veto 540,215 27.0% (99.2%)
5.27 < "bc < 5.29 GeV/22 505,862 25.3% (93.6%)
−0.2 < Δ� < 0.1 GeV 456,717 22.8% (90.3%)
at least one VXD hit 366,552 18.3% (80.3%)
innermost E-hit not shared 348,563 17.4% (95.1%)
j2
 0
(

< 30 335,270 16.8% (96.2%)

j2
�0 < 100 335,028 16.8% (99.9%)
f�%
ℓ

< 500µm 332,114 16.6% (99.1%)
(j2/ad.f.)tag < 100 298,273 14.9% (89.8%)
f

tag
ℓ

< 500µm 297,578 14.9% (99.8%)
TD 297,578 14.9% (65.2%)
TI 159,139 8.0% (34.8%)



Chapter 5

Measurement of CP asymmetries

We model the PDF for the measured ΔC and @ in the TD events (see Section 4.5) by
the weighted mean of the component-wise PDFs. The signal and �� background PDFs
are modeled with Δg and @ PDF convoluted with the resolution functions, and the @@
background PDF is modeled in the sideband shown in Fig. 4.11:

%TD(ΔC, @; ��%, (�%) = 5sig

∫
dΔg%sig(Δg, @; ��%, (�%)'sig(ΔC − Δg)

+ 5
��

∫
dΔg%

��
(Δg, @)'

��
(ΔC − Δg)

+ 5@@
1
2
%@@ (ΔC),

(5.1)

where %sig(Δg, @; ��%, (�%) is %(Δg, @) in Eq. (4.9). %
��

is the same function shape
but with (�% = ��% = 0 and different lifetime parameter g

��
:

%
��

(ΔC, @) = 1
4g
��

4
− |Δg |
g
�� [1 − @ΔF] . (5.2)

We evaluate the possible impact of the non-zero CP violation parameters in Section 5.5.6
as a source of systematic uncertainty.

We fit only ��% for the TI events using the time-integrated PDF,

%TI(@; ��%) = 5sig
1
2

[
1 − @ΔF + @(1 − 2F)��%

1
1 + G2

3

]
+ 5

��

1 − @ΔF
2

+ 5@@
1
2
. (5.3)

By performing the unbinned maximum likelihood fit to the measured proper-time
difference ΔC and the measured flavor @ with

! (��%, (�%) =
∏
8

%TD(ΔC8, @8; ��%, (�%)
∏
9

%TI(@ 9 ; ��%), (5.4)
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we can extract the CP-violation parameters (�% and ��%.

5.1 Event-by-event fractions

We obtain the event-by-event fractions 5sig, 5
��

, and 5@@ in Eqs. (5.1) and (5.3) from the
total fractions �sig and �

��
determined in the unbinned maximum likelihood fit to the

"bc–Δ� 2D distribution:

%("bc,Δ� ; �sig, ���, j@@, <@@) = �sig%sig("bc,Δ�)
+ (1 − �sig)���%�� ("bc,Δ�)
+ (1 − �sig) (1 − �

��
)%@@ ("bc,Δ� ; j@@, <@@).

(5.5)

For the fit, we use the MR1, non-MR1, and control �sig candidates separately, with
the selection up to  ∗(892)+W veto applied. The fit range is broader than the signal-
enhanced region, 5.23 < "bc < 5.29 GeV/22 and −0.4 < Δ� < 0.3 GeV. The TD
and TI categories are combined since we do not observe differences in "bc and Δ�

distributions.

5.1.1 Distribution shape modeling

Both "bc and Δ� are the kinematical observables of � mesons. Therefore, we observe
peaks or bumps if the reconstructed � mesons are related to the true � mesons. Since
W energy measured in ECL has a long tail, the 2D distribution also has a tail and causes
"bc–Δ� correlation. On the other hand, if the candidates are reconstructed by combining
daughters from both sides of � mesons or @@ background, there is no peaking structure
and hence the correlation.

We model the "bc–Δ� distribution using the following two methods.

1. Gaussian kernel density estimation

We use Gaussian kernel density estimation (KDE) to construct correlated two-
dimensional distribution from the MC samples. The details are described in Ap-
pendix C.

2. Factroized modeling with empirical functions

We can model the uncorrelated two-dimensional distribution with a product of
one-dimensional distributions. We use the ARGUS function for "bc and the 1st-
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or the 2nd-order polynomial for Δ� distributions. We refer to this method as
ARGUS×pol1 or ARGUS×pol2.

The ARGUS function for "bc is parametrized as

5ARGUS(G = "bc; j, 2 = �∗
beam/2)

=
j3

√
2cΨ(j)

· G
22

√
1 − G

2

22 exp
{
−1

2
j2

(
1 − G

2

22

)}
,

(5.6)

where the normalization factor Ψ(j) can be written with the cumulative distri-
bution and probability density function of the standard normal distribution, Φ(G)
and q(G), as

Ψ(j) = Φ(j) − jq(j) − 1
2
, (5.7)

the endpoint 2 is taken from the event-by-event beam energy measurement, and j
is the only free parameter in the fit.

The 2nd-order polynomial for Δ� is parametrized as

5pol2(G = Δ� ;<, A) = 22(A)G2 + 21(<, A)G + 20(<, A), (5.8)

where

22(A) = − 6A
(1 + A) (� − !)3 , (5.9)

21(<, A) = < − (� + !)22(A), and (5.10)

20(<, A) =
1

� − ! − �2 + �! + !2

3
22(A) −

� + !
2

21(<, A), (5.11)

including the normalization in the range [!, �]. The free parameters < and A
satisfy

< =
5pol2(�) − 5pol2(!)

� − ! , (5.12)

A =

∫ �

!
5pol2(G)dG∫ �

!
<(G − !) + 5pol2(!)dG

− 1. (5.13)

In other words, < represents the average slope in the range, and A represents the
deviation from the linear function. We can smoothly change the function to the
1st-order polynomial by setting A = 0, and < represents the slope.
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Table 5.1: The non-MR1 signal shape parameters determined in the fit to 1 → BW mixed
MC sample. The fit uncertainties are estimated using the Hesse matrix.

shape parameters fit results
�peak 0.8704 ± 0.0019
jsig 12.96 ± 0.18
<sig −0.86 ± 0.07
Asig 0.205 ± 0.034

5.1.2 Distribution of signal candidates

Signal candidates are peaking at "bc = <� and Δ� ∼ 0 in the 2D distribution, with the
correlated tail. We fit the KDE to truth-matched �0 (�+) candidates in MR1 using signal
(control) MC sample. More details are described in Appendix C.

The signal �sig candidates in MR1 dominantly decay via  ∗(892) resonance, and the
signal distribution in 1 → BW MC sample agrees with this KDE as shown in Figs. 5.1(a)
and 5.1(c). Note that discrepancies between the models and the distributions are negli-
gibly small and only visible with the extensive statistics of 1 → BW MC sample, O(100)
times bigger than the data. Moreover, the discrepancy out of the signal-enhanced region
can be ignored due to the statistical uncertainties from the dominant backgrounds. In-
deed, the extracted �sig does not significantly deviate from the truth in the statistics of
1 ab−1, as shown in Section 5.1.5.

On the other hand, we need an additional ARGUS×pol2 model to explain the " c

tail of  ∗(892)0 for the non-MR1 signal:

%sig("bc,Δ� ; �peak, jsig, <sig, Asig) = �peak%
KDE
sig ("bc,Δ�)

+(1 − �peak) 5ARGUS("bc; jsig) 5pol2(Δ� ;<sig, Asig).
(5.14)

We determine the four free parameters, �peak, jsig, <sig, and Asig, by fitting to the truth-
matched signal candidates in the 1 → BW sample, as shown in Fig. 5.1(b). The fit results
are summarized in Tab. 5.1. Again a discrepancy between the model and the distribution
is only visible with the high statistics of 1 → BW sample and is not considered in this
analysis.
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Figure 5.1: Comparison of the signal model (KDE for MR1 and control, ”fit” for non-
MR1) and 20M events of 1 → BW mixed (charged) MC signals, corresponding to 56 ab−1

(53 ab−1). The ”fit” is identical to the sum of KDE and ARGUS or pol2. The lower
subplots show the pulls between the model and the histogram.



Table 5.2: The �� background shape parameters determined in the fit to ��MC sample.
The fit uncertainties are estimated using the Hesse matrix.

shape parameters MR1 non-MR1 control
�feed-down 0.751 ± 0.022 0.292 ± 0.016 0.824 ± 0.015
j
��

14.6 ± 0.6 11.89 ± 0.28 11.4 ± 1.0
<
��

−2.2 ± 0.5 −4.56 ± 0.11 −4.28 ± 0.35
A
��

0.9 ± 0.5 −0.240 ± 0.017 −0.18 ± 0.07

5.1.3 Distribution of �� background

Some of the �� background candidates come from a partial reconstruction of �, re-
ferred to as �� feed-down. The dominant component for �0 →  ∗0W signal is from
�+ →  1(1270)+(→  0

(
c0c+)W, where we miss one c+. We fit the KDE to the �0 can-

didates in MR1 using �+ →  1(1270)+(→  0
(
c0c+)W MC samples, which agrees with

�� feed-down distributions in �� samples. For the control channel, we take the distribu-
tion from 3 ab−1 �� samples to account for the minor contribution around Δ� = 0 GeV
from non-radiative decay. More details are described in Appendix C. The other �� back-
ground is a combinatorial reconstruction of both � mesons, which can be modeled with
ARGUS×pol2. Combining the �� feed-down and the �� combinatorial components,
we can model the �� background PDF as

%
��

("bc,Δ� ; �feed−down, j��, <��
, A
��
) = �feed−down%

KDE
�� feed-down

("bc,Δ�)

+(1 − �feed−down) 5ARGUS("bc; j��) 5pol2(Δ� ;<
��
, A
��
).

(5.15)

The fraction of �� feed-down and the shape parameters of �� combinatorial are deter-
mined through the fit to the 3 ab−1 �� MC sample. The fit results are summarized in
Tab. 5.2, and Fig. 5.2 shows the model and MC distribution comparison. We confirm
the agreement between the model and the distribution.

5.1.4 Distribution of continuum background

We first check the independence of "bc and Δ� in @@ MC sample with USP test [57,58],
where the ?-value against the null hypothesis, i.e., no correlation, is tested by resampling
from the histogram PDF. The result in MR1 is shown in Fig. 5.3. The obtained ?-values
are 0.38, 0.73, and 0.73 for MR1, non-MR1, and control channels, respectively. There-
fore, we can ignore the correlation and factorize the PDF.
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Figure 5.2: The results of �� background shape fit to 3 ab−1 of ��MC sample. The ”fit”
is identical to the sum of KDE (”feed-down”) and ARGUS or pol2 (”combinatorial”).
The lower subplots show the pulls between the model and the histogram.
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Figure 5.3: The "bc–Δ� two-dimensional histogram in @@ MC for MR1 channel, and
the distribution of USP test statistics.

We model @@ background distribution in MC with ARGUS×pol1 in MR1 and control
channels, ARGUS×pol2 for non-MR1 channel. Figure 5.4 shows the distribution of
1 ab−1 @@ MC sample and the fitted model. We let the shape parameters j@@ and <@@
free in the signal extraction fit.

5.1.5 Fit results

We extract signal and background fractions and @@ shape parameters from the fit to the
"bc–Δ� distributions using the PDF in Eq. (5.5) separately for three channels: MR1,
non-MR1, and control. The other parameters, i.e., shape parameters of the non-MR1
signal and the MR1/non-MR1/control �� background, are fixed to the values obtained
in Sections 5.1.2 and 5.1.3.

Figures 5.5 and 5.6 show "bc and Δ� distributions and fit PDFs for 362 fb−1 data
and 1 ab−1 MC, respectively. The fit results in data and MC are summarized in Tab. 5.3,
together with the values expected from the MC truth. The yields in the signal-enhanced
region are also evaluated as shown in Tab. 5.4. We obtain #sig = 385 ± 24 for MR1 and
#sig = 171 ± 23 for non-MR1 in the data.

We first validate the fit procedure in MC. We confirm the overall agreement between
the distribution and the fit model in Fig. 5.6. The floated @@ shape parameters are con-
sistent with the expected value determined in the fit to @@-only sample. The extracted
�
��

is 1–2f larger than the expected value counted in MC. This could be due to the ne-

60



0

20

40

60

80
Ev

en
ts

 / 
0.

00
1 

Ge
V/

c2

ARGUS
qq MC

5.23 5.24 5.25 5.26 5.27 5.28 5.29
Mbc [GeV/c2]

5

0

+5 0

20

40

60

80

100

Ev
en

ts
 / 

0.
01

 G
eV pol1

qq MC

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
E [GeV]

5

0

+5

(a) MR1

0

100

200

300

400

Ev
en

ts
 / 

0.
00

1 
Ge

V/
c2

ARGUS
qq MC

5.23 5.24 5.25 5.26 5.27 5.28 5.29
Mbc [GeV/c2]

5

0

+5 0

100

200

300

400
Ev

en
ts

 / 
0.

01
 G

eV pol2
qq MC

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
E [GeV]

5

0

+5

(b) non-MR1

0

50

100

150

200

Ev
en

ts
 / 

0.
00

1 
Ge

V/
c2

ARGUS
qq MC

5.23 5.24 5.25 5.26 5.27 5.28 5.29
Mbc [GeV/c2]

5

0

+5 0

50

100

150

200

Ev
en

ts
 / 

0.
01

 G
eV pol1

qq MC

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
E [GeV]

5

0

+5

(c) control

Figure 5.4: The results of @@ background shape fit in 1 ab−1 of @@ MC. The lower sub-
plots show the pulls between the model and the histogram.
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Figure 5.5: The results of signal extraction fit to 362 fb−1 data. "bc (Δ�) distribution is
shown in Δ� ("bc) signal-enhanced region.
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Figure 5.6: The results of signal extraction in 1 ab−1 of generic MC. "bc (Δ�) distribu-
tion is shown in Δ� ("bc) signal-enhanced region.



Table 5.3: The results of signal extraction fit in 362 fb−1 data and 1 ab−1 MC. The ex-
pected values for fractions are calculated using the generated number of events in each
component in 1 ab−1 MC. The expected values for @@ shape parameters are obtained in
the fit to 1 ab−1 @@-only MC sample.

(a) MR1

fit parameters data MC 1 ab−1 expected
�sig 0.243 ± 0.014 0.235 ± 0.008 0.240
�
��

0.10 ± 0.04 0.258 ± 0.022 0.233
j@@ 10.5 ± 0.8 9.5+0.5

−0.6 10.00+0.30
−0.31

<@@ −1.78+0.27
−0.26 −1.54+0.18

−0.17 −1.77 ± 0.12

(b) non-MR1

fit parameters data MC 1 ab−1 expected
�sig 0.036 ± 0.005 0.118 ± 0.004 0.114
�
��

0.097+0.027
−0.028 0.207+0.018

−0.017 0.182
j@@ 4.7+0.8

−1.0 1.7+1.2
−4.7 3.4+0.4

−0.5
<@@ −1.90+0.15

−0.14 −1.93+0.10
−0.09 −2.03 ± 0.06

A@@ −0.128+0.027
−0.025 −0.081+0.020

−0.019 −0.084+0.016
−0.015

(c) control

fit parameters data MC 1 ab−1 expected
�sig 0.263 ± 0.010 0.233 ± 0.005 0.237
�
��

0.136+0.024
−0.025 0.262+0.013

−0.014 0.226
j@@ 8.3 ± 0.07 6.9 ± 0.5 7.95+0.27

−0.28
<@@ −2.28+0.17

−0.16 −1.98+0.12
−0.11 −2.12 ± 0.08



Table 5.4: The estimated yields in the signal-enhanced region (5.27 < "bc <

5.29 GeV/22 and −0.2 < Δ� < 0.1 GeV) in 362 fb−1 data and MC (scaled from 1 ab−1).
The uncertainties of the yields are propagated from the fractions only, not from the @@
shape parameters. The expected yields are the generated number of events in each com-
ponent in 1 ab−1 MC, which is also scaled to 362 fb−1. The statistical uncertainties in
expected yields are shown in parenthesis, which needs to be considered when compared
with the data.

(a) MR1

yields data MC (scaled) expected
#sig 385 ± 24 373 ± 13 369(±12)
#
��

20 ± 8 54 ± 5 55(±4)
#@@ 149 ± 7 124 ± 4 127(±7)

(b) non-MR1

yields data MC (scaled) expected
#sig 171 ± 23 631 ± 20 614(±15)
#
��

69 ± 19 158 ± 14 157(±8)
#@@ 426 ± 13 388 ± 9 401(±12)

(c) control

yields data MC (scaled) expected
#sig 843 ± 34 757 ± 18 751(±16)
#
��

55 ± 10 113 ± 6 88(±6)
#@@ 234 ± 7 209 ± 4 236(±9)
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Figure 5.7: The comparison of " c distribution between 352 fb−1 data and 1 ab−1

generic MC sample (scaled). The black dashed lines represent the edges of MR1. The
rest of the signal in light gray is dominated by the -B contribution.

glected correlation in @@. We take the possible impact on the CP-violation parameters
into the systematic uncertainty in Section 5.5.4.

We then discuss the fit result in the data. In Fig. 5.5, the fit model agrees with the dis-
tribution within the uncertainty. Overall, the estimated signal and background yields in
the signal region also agree with MC expectations. However, we obtain smaller fractions
for the �� background and non-MR1 signal. This discrepancy could be attributed to the
data-MC difference in the " c spectrum as shown in Fig. 5.7, possibly caused by the im-
perfect simulation of -B →  c branching fraction through hadronization in PYTHIA.
We consider the possible effect as a source of systematic uncertainty in Section 5.5.4.

5.1.6 Correction of Punzi effect

The event-by-event fractions can be calculated using "bc and Δ� as

58 ("bc,Δ�) =
�′
8
%8 ("bc,Δ�)∑

9 �
′
9
% 9 ("bc,Δ�)

, (5.16)

where 8, 9 ∈ {sig, �� feed-down, �� combinatorial, @@} and

�′
sig = �sig,

�′
�� feed-down

= (1 − �sig)����feed−down,

�′
�� combinatorial

= (1 − �sig)��� (1 − �feed−down),
�′
@@

= (1 − �sig) (1 − �
��
).

(5.17)
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Figure 5.8: The distributions of cos \∗
�

and A-bin in the signal region with the vertex
quality requirement (TD) for each component.

Here, we evaluate the fractions separately for �� feed-down and �� combinatorial, as
we expect different ΔC resolution as described in Section 5.2.4. However, as reported by
G. Punzi, the event-by-event fractions may bias the analysis if conditional variables dis-
tribute differently for components [59]. Among them, a significant difference is observed
in the cos \∗

�
distribution, which is used in the resolution function in Section 5.2.1(1),

and the A-bin histogram, on which F and ΔF in Section 4.4 depend. The component-
wise comparison of these two variables is shown in Fig. 5.8 and for the others in Fig. 5.9.
We can see differences among components in Fig. 5.8 but in Fig. 5.9. To avoid this pos-
sible bias, we multiply the probabilities %8 ("bc,Δ�) by the probabilities of these two
variables, assuming the independence:

58 ("bc,Δ�, cos \∗�, A-bin) =
�′
8
%8 ("bc,Δ�)%8 (cos \∗

�
)%8 (A-bin)∑

9 �
′
9
% 9 ("bc,Δ�)% 9 (cos \∗

�
)% 9 (A-bin) . (5.18)

To model the PDFs of these two variables with enough statistics, we use the 1 → BW

sample instead of the �� sample and merge the channels with similar distributions.
For the cos \∗

�
model, we use �0 candidates from signal MC for the signal com-

ponent; �0 and �+ candidates combined from 1 → BW sample for �� feed-down and
combinatorial component. We fit these samples with the 2nd-order polynomial, floating
the pole, ?, and the value there, @. The fitted parameters are summarized in Tab. 5.5, and
their curves and distributions are shown in Fig. 5.10. We model the @@ background with
the flat distribution. The obtained four models for signal, �� feed-down, �� combina-
torial, and @@ are commonly used in all three channels (MR1, non-MR1, and control).
The models obtained in MC are directly applied to the data.

We model the A-bin by filling the histogram for each channel and component with the
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nent.
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and fitted model. The lower subplots show the
pulls between the model and the histogram.



Table 5.5: The fitted parameters for cos \∗
�
. The fit uncertainties are estimated using the

Hesse matrix.

fit parameters signal �� feed-down �� combinatorial
? 0.0042 ± 0.0006 0.0016 ± 0.0034 0.45 ± 0.06
@ 0.7180 ± 0.0005 0.6214 ± 0.0016 0.5280 ± 0.0017
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Figure 5.11: The distributions of A-bin for signal, �� feed-down, and �� combinatorial.

corresponding data. Figure 5.11 shows the nine histograms for signal, �� feed-down,
and �� combinatorial component in MR1, non-MR1, and control channels. We use the
signal, 1 → BW, and control MC samples for signal components in MR1, non-MR1, and
control channels, respectively, and the 1 → BW MC sample for �� feed-down and ��
combinatorial in all three channels. Figure 5.12 shows that the signal MC agrees with
BP;>C [60] data within their uncertainties, where the contribution of the background
is subtracted from the distribution. We apply the histogram obtained in MC to both
data and MC. For the @@ modeling, we use "bc–Δ� sideband. As we do not observe
differences between �0 and �+ candidates, we combine them indiscriminately to increase
the statistics. The data–MC comparison in "bc–Δ� sideband is shown in Fig. 5.13. The
difference between MR1 and non-MR1 comes from the different continuum suppression.
We confirm that the data and MC agree in general. We use the histogram obtained in the
data sideband (MC sideband) to model the @@ component in the data (MC).
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Figure 5.12: The distributions of A-bin in signal MC and BP;>C data.
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5.2 Proper-time difference modeling

We model ΔC distribution based on our understanding of the vertex reconstruction in
signal events, �� background events, and @@ events, each.

5.2.1 Resolution of signal events

The measured proper-time difference ΔC for signal events includes three sources of res-
olution:

1. kinematic approximation ('k) corrects the bias from small �0 momentum in the
CM frame and statistically accounts for the relation between measured vertex dis-
tance and the proper-time difference,

2. �sig decay vertex resolution ('rec) accounts for the smearing of the decay vertex
position by the finite detector resolution,

3. �tag decay vertex resolution ('tag) consists of the detector resolution ('asc) and the
bias from non-primary decay vertices mainly due to the finite lifetime of charmed
intermediate states ('np).

(1) Kinematic approximation

When we measure the proper-time difference with the decay vertex distance, we implic-
itly ignore �momentum in the Υ(4() rest frame. We correct the bias from the difference
in the �� momentum along Υ(4() boost and consider the smearing from the difference
in the proper time of ��. The effect of this kinematical approximation referred to as 'k
can be incorporated by requiring the following relation during the) integral of Eq. (1.19)
and additionally integrate over Δg from −∞ to +∞:

ΔCtrue = 0Δg + 2k), (5.19)

where
0 B

�∗
�

<�0
and 2k B

?∗
�

cos \∗
�

V<�0
. (5.20)
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Here, cos \∗
�

is the angle between the boost of Υ(4() and the momentum of �sig in the
CM frame. The 'k-convoluted PDF can be written as

% ⊗ 'k(ΔCtrue, @) =
1

40g�0
4
− |ΔCtrue |

(0±2k )g�0

[
1 − @ΔF + @(1 − 2F)

1 + (2kg�0Δ<3/0)2

×
{(
��% − (�%

2kg�0Δ<3

0

)
cos

Δ<3ΔCtrue
0 ± 2k

+
(
(�% + ��%

2kg�0Δ<3

0

)
sin

Δ<3ΔCtrue
0 ± 2k

}]
,

(5.21)

including the effect of F and ΔF, where the ± sign corresponds to the sign of ΔCtrue. The
derivation of this form is described elsewhere [61].

(2) Signal-side resolution model

We model the signal-side resolution function 'rec with a double Gaussian,

'rec

(
Xℓ�%; j2

 0
(

, f�%ℓ

)
= (1 − 5 �%tail (j

2
 0
(

))�
(
Xℓ�%; ` = 0, f = B�%main(j

2
 0
(

)f�%ℓ
)

+ 5 �%tail (j
2
 0
(

)�
(
Xℓ�%; ` = 0, f = B�%tailf

�%
ℓ

)
,

(5.22)

with

5 �%tail (j
2
 0
(

) = 5
�%,0
tail + 5

�%,1
tail j2

 0
(

and (5.23)

B�%main(j
2
 0
(

) = B�%,0main + B�%,1main j
2
 0
(

, (5.24)

where Xℓ�% is the residual between reconstructed and true �sig decay vertices along the
Υ(4() boost, and 5

�%,0(1)
tail , B�%,0(1)main and B�%tail are free parameters. The j2 dependence is

employed as a means to account for underestimated uncertainty. When we reconstruct a
track using hits that do not actually belong to the track, the uncertainties associated with
those hits may not adequately explain the deviation from the true track. This leads to an
underestimation of the vertex uncertainty and results in an inflated fit j2. For the 'rec,
we use j2

 0
(

for the resolution model since  0
(
→ c+c− are the only tracks from �sig.

We studied the j2
 0
(

dependence by fitting Xℓ�% with double Gaussian in the 20 slices

of j2
 0
(

. Figure D.1 in Appendix D shows fit results in all the j2
 0
(

slices. The fit results
of three shape parameters 5tail, Bmain, and Btail are shown in Fig. 5.14. We observe clear
linear relation in Bmain and weaker relation in 5tail and Btail. We tried to introduce j2

 0
(

dependence in all three parameters. However, the j2
 0
(

dependence of Btail is unstable
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Table 5.6: The results of Xℓ�% fit in signal MC.

parameter fit result
5
�%,0
tail 0.0075 ± 0.0005
5
�%,1
tail 0.0131 ± 0.0004
B
�%,0
main 1.0007 ± 0.0020
B
�%,1
main 0.0303 ± 0.0010
B�%tail 4.03 ± 0.06
5outlier 0.00051 ± 0.00006

Boutlier [µm] 3.01+0.21
−0.20 × 103

and less significant than the other two parameters. Moreover, we do not observe an
improvement in the model–distribution agreement even with the j2

 0
(

dependence of Btail.

Therefore, we introduce j2
 0
(

dependence only in 5tail and Bmain and not in Btail.

For the signal MC fit, we add another Gaussian to account for the broad outlier. Our
fit PDF is

%

(
Xℓ�%; j2

 0
(

, f�%ℓ

)
= (1 − 5outlier)'rec

(
Xℓ�%; j2

 0
(

, f�%ℓ

)
+ 5outlier�

(
Xℓ�%; ` = 0, f = Boutlier

)
.

(5.25)

The Xℓ�% distribution and fit curve are shown in Fig. 5.15. The resulting fit parameters
are summarized in Tab. 5.6. We also confirm that the model describes the distribution
well in all j2

 0
(

regions, as shown in Fig. D.2 in Appendix D.
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Figure 5.15: Xℓ�% distribution and fitted 'rec in 2M events of signal MC, corresponding
to > 400 ab−1. The lower subplot shows the pulls between the model and the histogram.

(3) Tag-side resolution model

In principle, �tag vertex reconstruction is independent of �sig reconstruction. Thus, we
use the same resolution model as �0 →  0

(
 0
(
 0
(

analysis [47]:

'tag = 'asc ⊗ 'np (5.26)

with

'asc

(
Xℓtag; (j2/ad.f.)tag, f

tag
ℓ

)
= (1 − 5

tag
tail )�

(
Xℓtag; ` = 0, f = (Btag,0

main + B
tag,1
main(j

2/ad.f.)tag)ftag
ℓ

)
+ 5

tag
tail�

(
Xℓtag; ` = 0, f = (Btag,0

tail + Btag,1
tail (j2/ad.f.)tag)ftag

ℓ

)
(5.27)

and

'np

(
Xℓtag; (j2/ad.f.)tag, f

tag
ℓ

)
= 5XX(Xℓtag) + (1 − 5X) 5p�p(Xℓtag; g = gnpf

tag
ℓ

)

+(1 − 5X) (1 − 5p)�n(Xℓtag; g = gnpf
tag
ℓ

),
(5.28)

where �p and �p are one-sided exponential functions,

�p(G; g) =
{

exp(−G/g)/g (G > 0)
0 (G ≤ 0)

and (5.29)

�n(G; g) =
{

0 (G > 0)
exp(+G/g)/g (G ≤ 0)

, (5.30)
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Figure 5.16: Xℓtag distribution and fitted 'tag in 2M events of signal MC, corresponding
to > 400 ab−1. The lower subplot shows the pulls between the model and the histogram.
The asymmetric distribution reflects the asymmetric 'np.

and 5X, 5p, and gnp are expressed by seven free parameters, 5 0,1
X

, 5 0,1
p , and g0,1,max:

5X =


0 ( 5 0

X
+ 5 1

X
(j2/ad.f.)tag < 0)

5 0
X
+ 5 1

X
(j2/ad.f.)tag (0 ≤ 5 0

X
+ 5 1

X
(j2/ad.f.)tag ≤ 1)

1 ( 5 0
X
+ 5 1

X
(j2/ad.f.)tag > 1)

, (5.31)

5p =


0 ( 5 0

p + 5 1
p f

tag
ℓ

< 0)
5 0
p + 5 1

p f
tag
ℓ

(0 ≤ 5 0
p + 5 1

p f
tag
ℓ

≤ 1)
1 ( 5 0

p + 5 1
p f

tag
ℓ

> 1)
, and (5.32)

gnp =

{
g0 + g1(j2/ad.f.)tag (g0 + g1(j2/ad.f.)tag ≤ gmax)
gmax (g0 + g1(j2/ad.f.)tag > gmax)

. (5.33)

The fitted Xℓtag distribution in signal MC is shown in Fig. 5.16. The fitted 12 param-
eters are summarized in Tab. 5.7. The model correctly describes the (j2/ad.f.)tag depen-
dence, as we see no significant deviation in the slice distributions shown in Fig. D.3 in
Appendix D.

(4) Lifetime fit

We perform ΔC fit to extract �0 lifetime g�0 , referred to as lifetime fit, with the PDF of

�f (Δg) =
1

2g�0
4
− |Δg |
g
�0 , (5.34)
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Table 5.7: The results of Xℓtag fit in signal MC.

parameter fit result

'asc

5
tag
tail 0.00265+0.00018

−0.00016
B

tag,0
main 1.0131+0.0041

−0.0042
B

tag,1
main 0.0718+0.0010

−0.0014
B

tag,0
tail 15.8 ± 0.7
B

tag,1
tail 1.85+0.15

−0.14

'np

5 0
X

0.737 ± 0.008
5 1
X

−0.1622 ± 0.0029
5 0
p 0.8677 ± 0.0026

5 1
p [µm−1] −0.00158 ± 0.00006
g0 1.027+0.013

−0.012
g1 0.1925 ± 0.0025
gmax 5.23+0.05

−0.06

in order to test the resolution functions and their parameters listed in Tabs. 5.6 and 5.7.
Using the MC truth information, we can examine the resolution functions and their pa-
rameters with several configurations as follows:

1. Δg fit with �f to check the bias in the reconstruction and selection in Chapter 4,

2. ΔCtrue fit with �f ⊗ 'k to check the bias from (1) 'k,

3. (ℓCP − ℓtag
true)/VW2 fit with �f ⊗ 'k ⊗ 'rec +�outlier to check the bias from (2) 'sig,

4. (ℓCP
true − ℓtag)/VW2 fit with �f ⊗ 'k ⊗ 'tag to check the bias from (3) 'tag, and

5. ΔC fit with �f ⊗ 'k ⊗ 'rec ⊗ 'tag +�outlier to check the overall bias in ΔC modeling.

The fitted lifetimes are summarized in Tab. 5.8. Figure 5.17 shows the ΔC distribution
with the overall fit model. We confirm that all the biases listed above are negligible.
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Table 5.8: The results of lifetime fit in signal MC.

proper-time difference model fit result [ps]
MC input (no fit) 1.519

Δg �f 1.5185 ± 0.0028
ΔCtrue = (ℓCP

true − ℓ
tag
true)/VW2 �f ⊗ 'k 1.5187 ± 0.0028

(ℓCP − ℓtag
true)/VW2 �f ⊗ 'k ⊗ 'rec + �outlier 1.5186 ± 0.0035

(ℓCP
true − ℓtag)/VW2 �f ⊗ 'k ⊗ 'tag 1.5188 ± 0.0031

ΔC = (ℓCP − ℓtag)/VW2 �f ⊗ 'k ⊗ 'rec ⊗ 'tag + �outlier 1.519 ± 0.004
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Figure 5.17: ΔC distribution and fitted model in 2M events of signal MC, corresponding
to > 400 ab−1. The lower subplot shows the pulls between the model and the histogram.
The asymmetric distribution reflects the asymmetric 'np.

5.2.2 Resolution calibration using fast simulation

We develop a fast simulator that can reproduce the j2 dependence of the resolution
function by modeling the helix pulls with double Gaussian (see Appendix E). Together
with data/MC correction of the double Gaussian shape parameters (see Appendix F), the
fast simulator enables the calibration of the resolution functions in the following way:

1. Generate two sets of fast simulations from the MC samples used for the resolution
function modeling: the original fast simulation with the helix pull models obtained
in the signal MC and the calibrated fast simulation with the models corrected by
data/MC correction.
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Table 5.9: The results of Xℓ�% and Xℓtag fit in two fast simulations, one from original
signal MC and the other calibrated with cosmic data. The fit uncertainties are estimated
using the Hesse matrix. The Xℓtag fit in the calibrated fast simulation results in an above
EDM threshold.

parameter original fast sim calibrated fast sim

'rec

5
�%,0
tail 0.0119 ± 0.0011 0.0393 ± 0.0023
5
�%,1
tail 0.0109 ± 0.0008 0.0327 ± 0.0018
B
�%,0
main 1.0154 ± 0.0025 0.9962 ± 0.0029
B
�%,1
main 0.0336 ± 0.0012 0.0287 ± 0.0018
B�%tail 2.95 ± 0.08 2.207 ± 0.029

Xℓ�% outlier
5outlier 0.00067 ± 0.00007 0.00118 ± 0.00008

Boutlier [µm] 2.37 ± 0.14 × 103 1.96 ± 0.09 × 103

'asc

5
tag
tail 0.00277 ± 0.00018 0.00270 ± 0.00018
B

tag,0
main 0.969 ± 0.004 0.9846 ± 0.0034
B

tag,1
main 0.0825 ± 0.0014 0.0812 ± 0.0012
B

tag,0
tail 14.6 ± 0.6 14.4 ± 0.7
B

tag,1
tail 1.94 ± 0.14 1.96 ± 0.15

'np

5 0
X

0.728 ± 0.007 0.731 ± 0.007
5 1
X

−0.1494 ± 0.0021 −0.1509 ± 0.0023
5 0
p 0.8823 ± 0.0026 0.8847 ± 0.0023

5 1
p [µm−1] −0.00171 ± 0.00007 −0.00162 ± 0.00007
g0 1.000 ± 0.012 0.996 ± 0.012
g1 0.2414 ± 0.0027 0.2446 ± 0.0027
gmax 5.73 ± 0.06 5.76 ± 0.06

2. Fit 'rec and 'tag to Xℓ�% and Xℓtag in the two sets of fast simulations. The origi-
nal and calibrated fast simulations give the resolution functions for MC and data,
respectively.

The obtained resolution function parameters are summarized in Tab. 5.9.
We reanalyze the MC with the resolution function obtained in the fast simulation

without data/MC correction to validate the resolution functions obtained in this proce-
dure.

Figure 5.18 shows the distributions of Xℓ�% and Xℓtag. By comparing the curve and
the distribution, we confirm that the resolution functions obtained in the fast simulation
sufficiently explain the signal MC.
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Figure 5.18: Comparison of 'rec and 'tag obtained in the fast simulation with Xℓ�% and
Xℓtag distributions in 2M events of signal MC, corresponding to > 400 ab−1. The lower
subplot shows the pulls between the model and the histogram.

Table 5.10: The results of Xℓtag fit in signal MC with resolution functions obtained in
fast simulation. The MC input, Δg fit, and the ΔCtrue fit are the same as Tab. 5.8.

proper-time difference model fit result [ps]
(ℓCP − ℓtag

true)/VW2 �f ⊗ 'k ⊗ 'rec + �outlier 1.5292 ± 0.0035
(ℓCP

true − ℓtag)/VW2 �f ⊗ 'k ⊗ 'tag 1.5086 ± 0.0031
ΔC = (ℓCP − ℓtag)/VW2 �f ⊗ 'k ⊗ 'rec ⊗ 'tag + �outlier 1.520 ± 0.004

We also repeat the lifetime fit as summarized in Tab. 5.10. The resolution function
and signal MC distribution are compared in Fig. 5.19. We observe some bias in the
lifetime due to the small mismodeling of the resolution. We consider this deviation into
systematic uncertainty in Section 5.5.5.

We confirm that the resolution functions obtained in the fast simulation sufficiently
work in signal MC. Similarly, we expect that the calibrated resolution functions work for
data.

5.2.3 Resolution of signal events in non-MR1 channel

We check the resolution of the non-MR1 signal to see if the resolution functions of
MR1 obtained in �0 →  ∗(892)0W can apply to the resonance other than  ∗(892)0.
Figure 5.20 compares the residual and the resolution function in signal MC. We confirm
that the resolution function obtained in the MR1 signal sample can successfully explain
the resolution of the non-MR1 signal. The results of lifetime fit are also summarized
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Figure 5.19: Comparison of ΔC PDF obtained in fast simulation and ΔC distribution in
2M events of signal MC, corresponding to > 400 ab−1. The lower subplot shows the
pulls between the model and the histogram.

Table 5.11: The results of lifetime fit for non-MR1 signal in 1 → BW MC sample.

proper-time difference model fit result [ps]
MC input (no fit) 1.519

Δg �f 1.510 ± 0.006
ΔCtrue = (ℓCP

true − ℓ
tag
true)/VW2 �f ⊗ 'k 1.510 ± 0.006

(ℓCP − ℓtag
true)/VW2 �f ⊗ 'k ⊗ 'rec + �outlier 1.526 ± 0.008

(ℓCP
true − ℓtag)/VW2 �f ⊗ 'k ⊗ 'tag 1.502 ± 0.007

ΔC = (ℓCP − ℓtag)/VW2 �f ⊗ 'k ⊗ 'rec ⊗ 'tag + �outlier 1.512 ± 0.009

in Tab. 5.11. We observe a slight bias in the true proper-time difference fit, i.e., from
the reconstruction and selection. Otherwise, the behavior is similar to the MR1 signal.
Therefore, we use the same resolution function as in MR1.
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Figure 5.20: Comparison of 'rec and 'tag for MR1 obtained in the fast simulation with
Xℓ�% and Xℓtag distributions of non-MR1 signal in 20M events of 1 → BW MC sample,
corresponding to 56 ab−1. The lower subplot shows the pulls between the model and the
histogram.

5.2.4 Resolution of �� background events

We model the resolution function in the �� background, '
��

, by changing the param-
eters of 'sig. Figure 5.21 illustrates the vertex reconstruction in the �� background
events.

Since we can reconstruct  0
(

candidates with good purity, fake �sig candidates in the
�� background have the same resolution as the signal �sig candidates. We confirm that
the 'rec for the signal candidates agrees with the Xℓ�% distribution of the �� background,
as shown in Fig. 5.22.

On the other hand, fake �tag candidates suffer from contamination by �sig daughter

!!"#Υ(4%)

!$%#

tracks

intermediates
'

unused tracks

Figure 5.21: A schematics of vertex reconstruction in �� feed-down background. The
fake �sig vertex points to one of the � vertex thanks to the high purity of  0

(
. On the

other hand, the fake �tag vertex is heavily smeared by the mixed-up daughter tracks.
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Figure 5.22: Background Xℓ�% distribution in �� 3 ab−1 MC and 'rec for the signal
candidates obtained in the original signal MC. The lower box shows the discrepancy
between the distribution and the model.

tracks. This biases the �tag vertex closer to the �sig vertex and shortens ΔC. We model
this effect with a lifetime shorter than the truth, g

��
< g�0 in Eq. (5.2). We additionally

change the parameters of 'np to account for the bias due to the contamination of �sig
daughters. These two sets of parameters are simultaneously fitted to (ℓCP

true − ℓtag)/VW2
using the �f ⊗ 'k ⊗ 'tag PDF. Though the �� backgrounds contain a similar number
of �0�0 and �+�− events, we use <�0 to calculate 'k. The effect is negligible since the
deviation is only 6 × 10−5 of <�+ . We do not float 'asc since the detector resolution
is expected to be the same as the signal sample in principle. We use 3 ab−1 �� MC
samples for the fit, including the candidates outside of the "bc–Δ� signal-enhanced
region to increase the statistics. We separate the �� feed-down and combinatorial as
in Section 5.1.3 to account for the different sharpness of (ℓCP

true − ℓtag)/VW2 distribution
among the two components, as shown in Fig. 5.23. This is related to the number of �sig
tracks used in the �tag vertexing: a few for feed-down reconstruction and possibly many
for combinatorial reconstruction since �sig can decay without W or c0. The fit result is
summarized in Tab. 5.12. We fix the 5 1

p parameters to 0 in �� combinatorial fit since
we obtain small but positive values in the fit. Figure 5.23 compares the fitted model and
the distribution. We confirm that the fitted models agree well with the MC.

We check the combined model using the signal extraction fit result in Section 5.1.3.
Figure 5.24 compares the model andΔC distribution of ��MC sample in"bc–Δ� signal-
enhanced region. We confirm that the overall model successfully explains the �� back-
ground ΔC in MC.
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Table 5.12: The results of (ℓCP
true − ℓtag)/VW2 fit in �� sample (3 ab−1). The fit uncertain-

ties are estimated using the Hesse matrix.

parameter �� feed-down �� combinatorial
lifetime g

��
1.336 ± 0.020 0.63 ± 0.06

'np

5 0
X

1.21 ± 0.04 0.98 ± 0.04
5 1
X

−0.213 ± 0.012 −0.134 ± 0.008
5 0
p 0.766 ± 0.022 0.638 ± 0.018

5 1
p [µm−1] −0.0028 ± 0.0007 0 (fixed)
g0 2.84 ± 0.12 4.9 ± 0.4
g1 0.312 ± 0.010 0.116 ± 0.027
gmax 7.24 ± 0.18 8.2 ± 1.0

We also calibrated the resolution function parameters using fast simulations. The
obtained parameters are summarized in Tab. 5.13.
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(b) �� combinatorial

Figure 5.23: (ℓCP
true − ℓtag)/VW2 distribution and fitted �f ⊗ 'k ⊗ 'tag in �� sample

(3 ab−1). The candidates outside of the "bc–Δ� signal-enhanced region are included
to increase the statistics. The lower box shows the discrepancy between the distribution
and fit model.
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Figure 5.24: The �� background ΔC model and the background ΔC distribution in 3 ab−1

�� MC samples. The lower subplot shows the pulls between the model and the his-
togram.



Table 5.13: The results of (ℓ�%true−ℓtag)/VW fit in two fast-simulated �� samples, one from
the original signal MC and the other calibrated with cosmic data. The fit uncertainties
are estimated using the Hesse matrix.

(a) �� feed-down

parameter original fast sim calibrated fast sim
lifetime g

��
1.317 ± 0.025 1.300 ± 0.028

'np

5 0
X

1.232 ± 0.034 1.24 ± 0.06
5 1
X

−0.268 ± 0.011 −0.246 ± 0.025
5 0
p 0.728 ± 0.020 0.715 ± 0.023

5 1
p [µm−1] −0.00205 ± 0.00020 −0.00151 ± 0.00025
g0 1.29 ± 0.23 3.12 ± 0.28
g1 0.693 ± 0.024 0.415 ± 0.033
gmax 9.24 ± 0.26 9.7 ± 0.7

(b) �� combinatorial

parameter original fast sim calibrated fast sim
lifetime g

��
0.667 ± 0.023 0.489 ± 0.028

'np

5 0
X

1.035 ± 0.013 0.924 ± 0.020
5 1
X

−0.120 ± 0.006 −0.145 ± 0.006
5 0
p 0.672 ± 0.016 0.622 ± 0.013

5 1
p [µm−1] 0 (fixed)
g0 5.75 ± 0.29 5.47 ± 0.18
g1 0.147 ± 0.019 0.204 ± 0.019
gmax 9.2 ± 0.4 9.7 ± 0.4



5.2.5 Resolution of continuum background events

We model ΔC PDF for @@ background using the @@-rich "bc–Δ� sideband shown in
Fig. 4.11. We have developed an empirical PDF based on the double Gaussian model
used in the �0 →  0

(
 0
(
 0
(

analysis [47] to better explain the MC samples:

%@@

(
ΔC; -2, fΔC

)
= (1 − 52) (1 − 53)�

(
ΔC; ` = 0, f = (B01 + B

1
1-

2)fΔC
)

+ 52(1 − 53)�
(
ΔC; ` = 0, f = (B02 + B

1
2-

2)fΔC
)

+ 53� (ΔC; ` = 0, f = B3fΔC), (5.35)

where -2 is the average reduced j2 and fΔC is the ΔC uncertainty,

-2 =

j2
 0
(

/1.6 + (j2/ad.f.)tag

2
, (5.36)

fΔC =

√
(f�%

ℓ
)2 + (ftag

ℓ
)2

VW
. (5.37)

The factor of 1.6 in -2 accounts for the effective number of degrees of freedom for the
 0
(

vertex in the �0 vertex fit. The seven free parameters, namely 52, 53, B01, B11, B02, B12,
and B3, are determined in the fit to the sideband.

To better constrain the fit parameters, we remove the continuum suppression (see
Section 4.3) and combine MR1, non-MR1, and control channels. The @@ purity in the
acquired sideband sample is 98.5% in MC as shown in Fig. 5.25. We confirm in Fig. 5.26
that ΔC distribution and its width depending on the -2 in the sideband agree with @@
samples in the signal-enhanced region, either in MR1, non-MR1, or control channel.
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Figure 5.25: ΔC distribution breakdown of generic MC in "bc–Δ� sideband.
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Figure 5.26: ΔC distribution in linear/log scale and -2 dependence of f68 (half-width
between 16% and 84% quantiles) of ΔC/fΔC distribution are compared between signal
region @@ and sideband in generic MC. Top for MR1 �0 candidates, middle for non-MR1
�0 candidates, and bottom for �+ candidates. The ΔC distribution in the sideband agrees
with that of @@ in the signal region. The sideband also represents the -2 dependence of
@@ in the signal region.



Having defined the fit model and the sideband, we analyze the sideband in the data.
Also in data, by comparing ΔC and -2 distribution in Fig. 5.27 and the -2 dependence of
ΔC width in Fig. 5.28 (together with the MC), we have confirmed that the ΔC resolution
model remains consistent even with the continuum suppression and in different channels.
Tab. 5.14 summarizes the fit parameters, and Fig. 5.29 shows the ΔC distribution and the
fit model, together with the results in MC. We confirm that the resolution function models
for MC and data agree with the distribution in MC and data, respectively.
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Figure 5.27: ΔC (in linear and log scale) and -2 distribution in sideband data are com-
pared for in/out of the continuum suppression, �0/�+, and MR1/non-MR1. The ΔC and
-2 distributions agree in general. The slightly sharper ΔC distribution for �0 out of the
continuum suppression selection or �+ can be explained by the slightly smaller -2.
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Figure 5.28: -2 dependence of f68 (half-width between 16% and 84% quantiles) of
ΔC/fΔC distribution in Δ�-"bc sideband are compared. Top for in/out of the continuum
suppression cut, middle for �0/�+, and bottom for MR1/non-MR1. Left for generic MC
and right for data.



Table 5.14: The results of ΔC fit in Δ�-"bc sideband, in MC and data.

fit parameter MC sideband data sideband
52 0.208 ± 0.006 0.239+0.013

−0.012
53 0.0080 ± 0.0004 0.0097+0.0009

−0.0008
B01 0.916 ± 0.005 0.930 ± 0.009
B11 0.0843 ± 0.0019 0.0825+0.0036

−0.0035
B02 1.598 ± 0.027 1.61+0.05

−0.04
B12 0.552+0.014

−0.013 0.478+0.021
−0.020

B3 23.0 ± 0.7 17.9+0.9
−0.8
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Figure 5.29: ΔC distribution and fitted model in sideband region of 1 ab−1 generic MC
(left) and 362 fb−1 data (right). The resolution function models agree with the distribu-
tion both in MC and data.

5.3 Validation

With the event-by-event fractions obtained in Section 5.1 and the resolution functions
obtained in Section 5.2, we can now fit the (�% and ��% with the PDFs in Eqs. (5.1)
and (5.3). Note that the resolution model is fixed except for the event-by-event condi-
tional variables. We also fix the lifetime and mixing parameters to the PDG values [46],

g�0 = 1.519 ± 0.004 ps, (5.38)
Δ<3 = 0.5065 ± 0.0019 ps−1, (5.39)

where these uncertainties are accounted as a source of systematic uncertainty in Sec-
tion 5.5.5. Therefore, (�% and ��% are the only free parameters in the fit. In this section,
we describe various validations for this fit.
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5.3.1 Linearity test in toy Monte Carlo

We have developed a toy Monte Carlo generator according to the PDF used in our fit
model. We test the linearity of CP fit using this toy MC by varying either ��% or (�%
from −1 to 1 in steps of 0.2 while fixing the other to 0. For this purpose, we only perform
CP fit, where the signal and background fractions are fixed at the generator value in the
fit.

The pull shape parameters of fit results to 1,000 pseudo-experiments with 362 fb−1

each are summarized in Fig. 5.30(a). We observe mean bias for ��% and (�% and uncer-
tainty overestimation in (�%. This is due to the low statistics, as these effects are gone in
the results with 4 ab−1 in Fig. 5.30(b). We do not observe any significant deviation from
the expectation and confirm the healthiness of the fitter.

5.3.2 Linearity test in full simulation

To test the entire model including the resolution function, we generate fully-simulated
signal samples with various CP-violation inputs and perform CP fit in each sample.

We modify the SVP_CP model in EvtGen [38] according to Eqs. (1.4) and (1.5) and
vary either ��% or (�% in the same way as in Section 5.3.1. We generate 50,000 events at
each configuration and reconstruct and select the signal events as described in Chapter 4.
We confirm the correct CP asymmetry generation with the modified SVP_CP model by
checking the linearity of CP-violation parameters fitted to Δg and @true in the generator
truth using the PDF in Eq. (1.20), as shown in Fig. 5.31.

We test the linearity of CP-violation parameters fitted to reconstructed ΔC and @ with
only the signal component in Eqs. (5.1) and (5.3). Figure 5.32 summarizes the fit results.
We do not see any discrepancy and confirm that the modeling of ΔC and @ does not bring
significant bias.

5.3.3 Resolution in the control sample

To validate the resolution model in data, we use �+ →  0
(
c+W sample to check the

residual between the �+ vertex with and without c+ tracks, ℓ�% − ℓ�%
c+ . Since the right

c+ track directly comes from the �+ decay vertex, we can estimate the decay vertex with
much better resolution than in the original vertex reconstruction using only  0

(
trajectory.

Hence, we can utilize ℓ�% − ℓ�%
c+ as an alternative for the residual from the true decay

vertex, Xℓ�%, without using truth information. We compare ℓ�%−ℓ�%
c+ and Xℓ�% in control

MC. The distribution of ℓ�%−ℓ�%
c+ shows a sharper peak at 0, which is expected from the
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Figure 5.30: The mean ` and the standard deviation f of pull distribution for various
CP-violation inputs. We fit 1,000 toy MC samples in each input. The titles show the
?-values of j2.
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Figure 5.31: Comparison of generated and fitted CP asymmetries. We use the modified
SVP_CP model in the generation, and fit ��% and (�% to Δg and @true with Eq. (1.20).
The titles show the ?-values of j2.

correlation between the two vertex reconstructions. We confirm the excellent agreement
in the tail part of the distribution. Thus, we can test the resolution in data.

Figure 5.34 compares BP;>C of the residual and the resolution model obtained in the
calibrated fast simulation. We confirm that the resolution model agrees with the residual
distribution in the tail part.

5.3.4 Lifetime fit in data

We perform a lifetime fit in the data. Figure 5.35 shows BP;>C of ΔC and the fitted curve.
We observe no significant deviation between the data and the model. The results are
summarized in Tab. 5.15. The obtained lifetimes are consistent with the PDG values [46]
within the uncertainties.
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Figure 5.32: Comparison of generated and fitted CP asymmetries. We use the modified
SVP_CP model in the generation, and fit ��% and (�% to reconstructed ΔC and @ with the
signal model in Eqs. (5.1) and (5.3). The titles show the ?-values of j2.

5.3.5 Calibration of bias from non-primary decay vertices

We use the incomplete � decay table in the MC generation. For example, some of the
O(0.1%) semi-leptonic modes in the �+ decay table are missing, e.g.,  1(1270)04+a or
c+c−4+a. This data-MC difference brings mismodeling of the bias from non-primary
decay vertices, i.e., the width of �p and �n in 'np. To calibrate this possible difference,
we introduce scale factor Bnp for gnp as

'np

(
Xℓtag; (j2/ad.f.)tag, f

tag
ℓ
, Bnp

)
= 5XX(Xℓtag) + (1 − 5X) 5p�p(Xℓtag; g = Bnpgnpf

tag
ℓ

)

+(1 − 5X) (1 − 5p)�n(Xℓtag; g = Bnpgnpf
tag
ℓ

).
(5.40)

We fit ΔC distribution floating �-meson lifetime and Bnp. We separately fit �0 and �+

to consider the difference of branching fractions decaying into charged and neutral �.
We merge the MR1 and non-MR1 signals for this fit. The fitted Bnp’s are summarized in
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Figure 5.34: BP;>C of the residual between the �+ vertex with and without c+ tracks,
together with the resolution model obtained in the calibrated fast simulation.

Tab. 5.16. The results in both signal and control samples are consistent with 1, i.e., no
correction. We fix Bnp to 1 and consider the fitted uncertainty as a source of systematic
uncertainty in Section 5.5.5.

5.3.6 CP fit in the control sample

We perform the CP fit with the control sample (�+ →  0
(
c+W), where (�% and ��%

are expected to be 0. We use 778 events in the TD category and 379 events in the TI
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Figure 5.35: BP;>C of ΔC in 362 fb−1 data together with the fitted curve.

category. We obtain

(�% ( 0
(
c+W) = 0.11 ± 0.14, and (5.41)

��% ( 0
(
c+W) = 0.03 ± 0.08. (5.42)

The fit result is consistent with the null CP asymmetry. Figure 5.36 compares the BP;>C
and fitted curve, and we confirm that the model agrees with the data well.
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Table 5.15: The results of lifetime fit in 362 fb−1 data.

sample fitted lifetime [ps] PDG value
MR1 1.55 ± 0.14 1.519 ± 0.004

non-MR1 1.58 ± 0.24
control 1.65 ± 0.09 1.638 ± 0.004

Table 5.16: The lifetime and Bnp fit in 362 fb−1 data.

sample fitted lifetime [ps] Bnp
MR1 + non-MR1 1.56 ± 0.12 1.00 ± 0.24

control 1.65 ± 0.10 1.04 ± 0.22
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Figure 5.36: BP;>C of ΔC for @ = ±1 in 362 fb−1 control data, together with the fit-
ted curve. The lower plot shows the asymmetry, defined as (# (@ = +1) − # (@ =

−1))/(# (@ = +1) + # (@ = −1)).



5.4 Results

We perform the CP fit in �0 →  0
(
c0W decays separately for MR1 and non-MR1 chan-

nels. We use 369 (449) events in the TD category and 179 (220) events in the TI category
in MR1 (non-MR1) channel. The results are summarized in Tab. 5.17. Figure 5.37 com-
pares the BP;>C and fitted curve, and also shows the CP asymmetry. We also show the
plots of the events with high A-bin to confirm that we do not see CP asymmetry even
with the small dilution.
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Figure 5.37: BP;>C of ΔC for @ = ±1 and its asymmetry in 362 fb−1 data, together with
the fitted curve. The lower plot shows the asymmetry, defined as (# (@ = +1) − # (@ =

−1))/(# (@ = +1) + # (@ = −1)).
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Table 5.17: The CP-violation parameters fitted to 362 fb−1 data.

channel (�% ��%

MR1 0.00+0.27
−0.26 −0.10 ± 0.13

non-MR1 0.04+0.45
−0.44 0.06 ± 0.25

5.5 Systematic uncertainties

The systematic uncertainties are evaluated with the following three methods:

• Refitting
We propagate the statistical fluctuation of the fit model by refitting the data 1,000
times. The systematic uncertainty is then determined as the standard deviation of
the fitted CP-violation parameters.
Especially for the case of fixed parameters in the fit model, we account for their
statistical fluctuations by adding random Gaussian deviations. The standard devia-
tion of the Gaussian is obtained from the uncertainty of the corresponding param-
eter. In case the parameters are determined with MC, we conservatively double
the deviation (2f) instead of 1f.

• Toy MC
We evaluate the possible model bias by generating pseudo-experiments with an
alternative model. We conservatively select the larger value of the shift of the
mean (as the single-sided uncertainty) and the uncertainty of the mean (as the
double-sided uncertainty). We generated 10,000 pseudo-experiments with 4 ab−1

integrated luminosity.¹
• Testing

For the other cases, we analyze the data or MC with a test configuration and take
the difference from the nominal fit result as their systematic uncertainties.

The systematic uncertainties in this measurement are summarized in Tab. 5.18. In the
following sections, we explain the evaluation of each component.

¹Before obtaining the results from the data, we choose (�% = −0.2 and ��% = 0 as input to be close
to the world average [46] in MR1. We use the evaluation with this parameter setting since the obtained
CP-violation parameters are smaller than these inputs, and the evaluation is conservative enough.
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Table 5.18: The summary of systematic uncertainties.

MR1 non-MR1
source X(�% X��% X(�% X��%

reconstruction of decay ±0.017 ±0.015 ±0.083 ±0.047
flavor tagging ±0.005 +0.009

−0.012 ±0.008 +0.009
−0.013

decay vertex measurement ±0.021 ±0.009 ±0.023 ±0.036
event-by-event fractions ±0.003 +0.003

−0.004 ±0.032 ±0.013
proper-time difference modeling ±0.014 ±0.009 ±0.032 ±0.013
�� background asymmetry +0.010

−0.021 ±0.022 +0.023
−0.015

+0.033
−0.032

tag-side interference < 0.001 +0.002 −0.001 −0.001
total +0.033

−0.037
+0.031
−0.032

+0.100
−0.098

+0.070
−0.071

Table 5.19: The systematic uncertainties from the reconstruction of decay.

MR1 non-MR1
source X(�% X��% X(�% X��%

? scale for c± ±0.0017 ±0.0016 ±0.0024 ±0.0019
� scale for W ±0.0170 ±0.0148 ±0.0825 ±0.0467
total ±0.0171 ±0.0149 ±0.0825 ±0.0467

5.5.1 Reconstruction

During the event reconstruction, we apply MC/data scaling factors to the track momen-
tum and the ECL cluster energy, as noted in Sections 4.2.1 to 4.2.3. We evaluate the
systematic uncertainties by testing the reconstruction of the data with the scaling factor
shifted up and down by the measurement uncertainty. We conservatively use the larger
deviation of the upper and lower shift as the systematic uncertainty. The results are
summarized in Tab. 5.19.

5.5.2 Flavor tagging

We introduce the performance of the flavor tagger in the PDF in Section 4.4. We evaluate
the uncertainty from F and ΔF by refitting. We evaluate the effect of ignored ` in
Eq. (4.9) by toy MC with the effect of `. The results are summarized in Tab. 5.20.
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Table 5.20: The systematic uncertainties related to the flavor tagger.

MR1 non-MR1
source X(�% X��% X(�% X��%

F and ΔF ±0.0045 ±0.0076 ±0.0070 ±0.0085
` ±0.0008 −0.0084 ±0.0009 −0.0088
total ±0.0046 +0.0076

−0.0113 ±0.0070 +0.0085
−0.0122

5.5.3 Decay vertex measurement

We model the measurement of the � decay vertices with the resolution functions. How-
ever, some possible biases are left unmodeled. We consider the following four sources:

1. detector misalignment
We evaluate the effect of the possible detector misalignment by testing with the
full simulation in the four scenarios of misalignment configuration. We generated
1M signal events with (�% = ��% = 0, and the detector response is fully simu-
lated in each scenario. We calculate the differences from the nominal alignment
configuration sample in four scenarios and then add them in quadrature to obtain
the contribution to the systematic uncertainty.

2. IP measurement
In the �-decay vertex fit, we constrain the Υ(4() decay vertex to the IP measured
in 4+4− → `+`− events (see Section 4.5). We quote the uncertainty from this
measurement evaluated for sin 2q1 measurement in �0 → �/k 0

(
decay [62] as

the systematic uncertainty.

3. helix uncertainty correction
The helix uncertainties used in the vertex fit are corrected during the reconstruc-
tion (see Sections 4.2.1 and 4.5). We evaluate the effect by testing the recon-
struction of the data without correction. To avoid overestimation by the statistical
fluctuation from the in and out of the events, we use the same events for both
cases. Instead, we repeat the same evaluation in signal MC allowing the in and
out of the events to address the effect ignored in the above procedure with much
higher statistics. The difference is small, so we take the fit uncertainty. We add
the uncertainties evaluated in data and signal MC in quadrature as the systematic
uncertainty.

4. vertex quality selection
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Figure 5.38: The deviation of (�% and ��% in the control sample with loosened and
tightened vertex quality selections from nominal thresholds.

We only use events with good vertex quality in the TD fit (see Section 4.5). The
possible data–MC difference in the correlation between vertex quality andΔC leads
to the mismodeling of ΔC in data. We evaluate the effect by testing the CP fit in
the data in ten configurations with selection thresholds tightened or loosened by
20%:

• j2
 0
(

< 30 changed to j2
 0
(

< 24 or 36,

• j2
�
< 100 changed to j2

�
< 80 or 120,

• fCP
ℓ

< 500µm changed to fCP
ℓ

< 400µm or 600µm,
• (j2/ad.f.)tag < 100 changed to (j2/ad.f.)tag < 80 or 120, and
• f

tag
ℓ

< 500µm changed to ftag
ℓ

< 400µm or 600µm.

We use the control channel to increase the statistics and use the same evaluation
both for MR1 and non-MR1. The differences from the nominal thresholds are
shown in Fig. 5.38. We take the larger deviation of tighter and looser thresholds
and assign the sum in quadrature as the uncertainty.

The results are summarized in Tab. 5.21.

5.5.4 Event-by-event fractions

We perform the signal extraction fit to estimate the event-wise probability of each com-
ponent in Section 5.1. The mismeasurement of this probability directly leads to the
mismodeling of ΔC and @. We consider the following sources:
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Table 5.21: The systematic uncertainties from the measurement of ΔC.

MR1 non-MR1
source X(�% X��% X(�% X��%

detector misalignment ±0.0049 ±0.0012 ±0.0048 ±0.0012
IP measurement ±0.0024 ±0.0020 ±0.0024 ±0.0020
helix uncertainty correction ±0.0118 ±0.0065 ±0.0158 ±0.0351
vertex quality selection ±0.0163 ±0.0065 ±0.0163 ±0.0065
total ±0.0209 ±0.0095 ±0.0233 ±0.0357

1. limited statistics for KDE model
Our KDE models are affected by the limited statistics of the fitted MC sample (see
Appendix C). To consider the statistical fluctuation of the model, we refit KDE to
1,000 bootstrap samples, where the same number of events as the original dataset
are resampled allowing the overlap (the same events can be selected). The effect
is evaluated by refitting with the obtained 1,000 KDEs.

2. bias from KDE
The "bc–Δ� distribution estimated with KDE can be biased and consequently af-
fect the signal extraction fit. To assess this potential bias, we utilize toy MC where
Δ� and "bc are generated without employing KDE, but rather by bootstrapping
the MC sample used for fitting KDE.

3. pre-fit parameters for signal and �� background
We fit the signal and �� background before the signal extraction fit and fix the
shape parameters in Sections 5.1.2 and 5.1.3. We assess this uncertainty by refit-
ting.

4. signal extraction fit
The fractions and @@ shape parameters determined in the signal extraction fit has
statistical uncertainties (see Section 5.1.5). We assess this uncertainty by refitting.

5. cos \∗
�

PDF model
We model cos \∗

�
distribution for each component in MC in Section 5.1.6. We

assess the uncertainty by refitting.

6. A-bin PDF model
We model A-bin by the histograms obtained in MC or sideband data in Section 5.1.6.
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We assess the uncertainty by refitting, where we independently randomize the his-
togram entries with Poisson distribution for each A-bin and rebuild the PDF. To
account for the possible data–MC difference, we divide the entry by 4 for the his-
togram obtained in MC to double the Poisson fluctuation.

7. bias from "bc–Δ� correlation in @@
We observe a 1–2f overestimation of �

��
in MC (see Section 5.1.5). One possible

cause is the "bc–Δ� correlation in @@, which is confirmed to be small and not
modeled in Section 5.1.4. However, if only 2% of the @@ background is correlated
like �� feed-down, we can explain the observed bias. We evaluate this effect by
testing the CP fit with varied fractions by regarding the portion of �� background
as @@ background. The ratio is determined from MC using the following equation:( [

�
��

]
fit −

[
�
��

]
true

)
/
[
�
��

]
true, (5.43)

which was found to be less than 20% in both the MR1 and non-MR1 signals, as
well as in the control channels. We conservatively take twice the ratio, 40%, to
cover possible data–MC discrepancy in the "bc–Δ� correlation.

8. bias from -B mass spectrum modeling in MC
The " c spectrum in MC is deviated from real data, and the yield and distribu-
tion differ from those in the data. This may bring the data–MC discrepancy in the
KDE–ARGUS×pol2 decomposition of the non-MR1 signal candidates. We eval-
uate this effect by testing the CP fit with varied fractions by regarding the signal
ARGUS×pol2 component as combinatorial �� background.

9. Punzi effect
We do not consider the conditional variables j2

 0
(

, f�%
ℓ

, (j2/ad.f.)tag, and ftag
ℓ

into the Punzi effect correction, as the differences among the components are mi-
nor (see Section 5.1.6). We evaluate the possible bias by toy MC where these four
conditional variables are randomly sampled for each component from the corre-
sponding distributions shown in Fig. 5.9.

The results are summarized in Tab. 5.22.

5.5.5 Proper-time difference modeling

The ΔC model used for the fit (see Section 5.2) may deviate from the truth and cause
systematic bias. We consider the following sources:
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Table 5.22: The systematic uncertainties from the probability estimation for each com-
ponent.

MR1 non-MR1
source X(�% X��% X(�% X��%

limited statistics for KDE model ±0.0017 ±0.0012 ±0.0060 ±0.0035
bias from KDE model ±0.0008 −0.0007 ±0.0008 ±0.0004
pre-fit parameters for signal and �� bkg. ±0.0002 ±0.0006 ±0.0033 ±0.0019
signal extraction fit ±0.0011 ±0.0011 ±0.0220 ±0.0111
cos \∗

�
model ±0.0003 ±0.0001 ±0.0004 ±0.0002

A-bin model ±0.0022 ±0.0029 ±0.0074 ±0.0047
ignored "bc–Δ� correlation in @@ ±0.0003 ±0.0005 ±0.0064 ±0.0011
-B mass spectrum modeling in MC - - ±0.0191 ±0.0032
Punzi effect ±0.0008 ±0.0004 ±0.0008 ±0.0004
total ±0.0032 +0.0034

−0.0035 ±0.0315 ±0.0132

1. ΔC resolution model for signal component
We evaluate the possible bias from the signal ΔC resolution modeling in Sec-
tion 5.2.1 by comparing the CP fit in signal MC with and without the resolution.

• CP-violation parameters without the resolution are estimated by fitting the
PDF in Eq. (1.20) to Δg and @true.

• CP-violation parameters with the resolution are estimated through the fit to
the ΔC and @true.

The deviation between the two fit results is large enough to include the bias from
possible mismodeling of all the resolution functions in MC, namely 'k, 'rec, 'asc⊗
'np, including the mismodeling from fast simulation.
We also variate the input CP-violation parameter one by one to cover the possible
dependence, whereas the other is fixed to 0 for simplicity. The results are shown
in Fig. 5.39. The dependencies on the input CP-violation parameters are modeled
with a linear function determined by the fit. We add the effects from input (�%
and ��% in quadrature and take them as the systematic uncertainty,

X( = ±
√
(0.0096 · � − 0.0079)2 + (−0.0121 · ( + 0.0058)2, (5.44)

X� = ±
√
(0.0013 · � − 0.0022)2 + (0.0043 · ( − 0.0081)2. (5.45)

Similarly, we evaluate this source of systematic uncertainty for non-MR1 using
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1 → BW MC sample and obtain

X( = ±
√
(−0.0140 · � + 0.0052)2 + (0.0468 · ( − 0.0257)2, (5.46)

X� = ±
√
(−0.0026 · � + 0.0072)2 + (0.0167 · ( + 0.0094)2. (5.47)

2. ΔC resolution function for signal
We also consider the fluctuation of resolution function parameters from the limited
statistics of the fast-simulated MC (see Section 5.2.2) by refitting.

3. ΔC resolution function for �� background
We model the �� background ΔC with the resolution functions determined in the
fast simulation (see Section 5.2.4). We assess the uncertainty by refitting.

4. resolution function calibration
To correct the possible data–MC difference of the wrong hit assignment in the
track, we use the calibrated fast simulation to determine the resolution function for
signal and �� background (see Section 5.2.2). We evaluate the possible deviation
of this method by testing the CP fit with the resolution function determined in the
original fast simulation.

5. ΔC resolution function for @@ background
We model @@ background ΔC distribution using the "bc–Δ� sideband data in Sec-
tion 5.2.5. We assess the uncertainty by refitting.

6. Bnp
We confirm that the Bnp is consistent with 1 in data (see Section 5.3.5). We assess
the uncertainty by refitting.²

7. physics constants
We fix g�0 and Δ<3 to the PDG value [46] in Eqs. (5.38) and (5.39). We assess
the uncertainty by refitting.

The results are summarized in Tab. 5.23.

5.5.6 �� background asymmetry

The fit model in Eqs. (5.1) and (5.3) does not include the time-dependent CP asymmetry
of �� background. To evaluate this impact, we generate toy MC with the CP asymmetry

²For better handling of adding the deviations, we take the logarithm and re-evaluate the uncertainty as
log Bnp = 0 ± 0.23.
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Figure 5.39: The deviation of (�% and ��% in signal MC with CP fit usingΔg andΔC. We
use @true for both configurations. The errors are estimated from the difference between
the uncertainties of the two configurations in quadrature.

in �� background according to the following configuration for the MR1 sample (the
numbers for the non-MR1 sample are also shown in parenthesis):

• The �+�− events, which amounts to 50% of the whole �� background, do not
show time-dependent CP asymmetry.

• Among the rest of the �� background, i.e., �0�0 events, 1 → BW backgrounds are
dominant. They consist of  0

(
[W events, which amounts to 5.4 (36.7) events per

1 ab−1, and other 1 → BW events, which amounts to 52% (25%) of the �0�0 events.
Since we have not measured the CP asymmetries for 1 → BW in various resonances
with enough precision, we conservatively assign ��% = ±1 or (�% = ±1 and take
the largest positive/negative deviations as the positive/negative uncertainty.

• The miss-reconstructed signal events corresponding to 0.060% of the signal com-
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Table 5.23: The systematic uncertainties from the modeling of ΔC.

MR1 non-MR1
source X(�% X��% X(�% X��%

resolution model for signal ±0.0106 ±0.0084 ±0.0246 ±0.0125
resolution function for signal ±0.0011 ±0.0002 ±0.0024 ±0.0006
resolution function for �� background ±0.0005 ±0.0002 ±0.0017 ±0.0009
resolution function calibration ±0.0012 ±0.0024 ±0.0178 ±0.0007
resolution function for @@ background ±0.0011 ±0.0004 ±0.0024 ±0.0010
Bnp ±0.0084 ±0.0015 ±0.0081 ±0.0020
physics parameters ±0.0002 ±0.0002 ±0.0034 ±0.0006
total ±0.0137 ±0.0089 ±0.0318 ±0.0127

ponent enters in �0�0 events with the same (�% and ��% as the signal.
• The CP asymmetry in the rest of the �0�0 events depends on the CP egienvalue
b�%: 75% (13%) with b�% = +1, 25% (51%) with b�% = −1, 0% (27%) of non
CP-eigenstate, i.e., with no CP asymmetry, and 0% (9%) of a mixture of CP-
eigenstates. We conservatively assign b�% of the last categories as the same as
1 → BW background: +1 for (�% < 0, −1 for (�% > 0, and 0 for (�% = 0.
We assign CP asymmetry of (�% = −b�% sin 2q1 and ��% = 0 with sin 2q1 =

0.699 [46].

These fractions are determined by counting the number of events in the 3 ab−1 �� back-
ground MC samples. In case of the miss-reconstructed signal, we use signal MC sample.
For the evaluation of  0

(
[W yield, we generate a dedicated MC sample, where the mass

spectrum of -B →  0
(
[ is modeled not by Kagan–Neubert model [42] but by a sin-

gle peak at 1.45 GeV/22 with the width of 0.30 GeV/22 determined from the measured
distribution in Belle [63].

5.5.7 Tag-side interference

The �0–�0 interference in the �tag decay cause CP asymmetry called tag-side inter-
ference [64]. In Eq. (1.17), we assume that 5tag is perfectly flavor-specific without non-
diagonal components. However, in the case of hadronic flavor-specific decays like �0 →
�+c−, non-diagonal transitions like �0 → �+c− are also allowed with the doubly Cab-
bibo suppression. This causes interference in �tag and brings bias on the measured CP-
violation parameters. The evaluation is detailed in Appendix G.
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Chapter 6

Discussion

By combining the fit result in Section 5.4 and the systematic uncertainty in Section 5.5,
we obtain the following results: for the exclusive �0 →  ∗(892)0W decays (MR1 chan-
nel),

(�% ( ∗0W) = 0.00+0.27
−0.26(stat)+0.03

−0.04(syst) and
��% ( ∗0W) = −0.10 ± 0.13(stat) ± 0.03(syst),

and for the inclusive �0 →  0
(
c0W decays (non-MR1 channel),

(�% ( 0
(
c0W) = +0.04+0.45

−0.44(stat) ± 0.10(syst) and
��% ( 0

(
c0W) = +0.06 ± 0.25(stat) ± 0.07(syst).

In this chapter, we discuss the impact of our measurement and the prospects.

6.1 Comparison with the previous measurements

We compare the obtained (�% ( ∗0W) and ��% ( ∗0W), the previous results explained in
Section 1.5, and the world average in Tab. 6.1(a). The obtained result is consistent with
the preceding measurements within the uncertainties. Figure 6.1 shows the detailed com-
parison of (�% ( ∗0W), including the theoretical expectations. As a single measurement,
this analysis gives the most precise measurement to date, even with the smaller integrated
luminosity. The world average is updated to

(�% ( ∗0W) = −0.09 ± 0.17, (6.1)
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Table 6.1: The comparison of the obtained CP-violation parameters and the previous
measurements.

(a) exclusive �0 →  ∗ (892)0W

data size (�% ��%

this analysis 388 × 106�� 0.00+0.27
−0.26 −0.10 ± 0.13

world average [46] −0.15 ± 0.22 −0.04 ± 0.16
Belle (2006) [23] 535 × 106�� −0.32+0.36

−0.33 −0.20 ± 0.25
BaBar (2008) [24] 467 × 106�� −0.03 ± 0.29 +0.14 ± 0.16

(b) inclusive �0 →  0
(
c0W

data size (�% ��%

this analysis 388 × 106�� +0.04+0.46
−0.45 +0.06 ± 0.26

Belle (2006) [23] 535 × 106�� +0.50 ± 0.68 −0.20 ± 0.39

with the inclusion of the result of this analysis. All the measured and the averaged (�%
are consistent with the SM expectations, −0.023 ± 0.016 [15] and −0.035 ± 0.017 [16],
i.e., we have found no signature of BSM physics in this analysis.

We also compare the obtained (�% ( 0
(
c0W) and ��% ( 0

(
c0W) and the Belle result

reported in 2006 [23] in Tab. 6.1(b), where the similar " c region is analyzed. This
analysis gives a consistent result with the preceding measurement within the uncertain-
ties. We also summarize the comparison of (�% ( ∗0W) in Fig. 6.2, including the theo-
retical expectation. Since the SM expectation [12] and the measurements still have large
uncertainties, we cannot discuss the effect of BSM physics. Providing " c dependence
with much higher statistics in the future will be a good test of the QCD calculation.

6.1.1 Improvements from the Belle experiment

As a single measurement, this analysis gives the most precise measurement to date. Com-
pared to the Belle experiment, the integrated luminosity is around half. The 3.3 times
higher (TD) signal efficiency achieves such high precision. Due to the enlargement of
the VXD detector,  0

(
vertex acceptance is improved by a factor of 1.6. As for the other

sources, improvements in  0
(

reconstruction criteria are important, where we use BDT-
based classifer, while the cut-based selection in Belle.

112



0.75 0.50 0.25 0.00 0.25
SCP(K*0 )

535×106BB
Belle(2006)
467×106BB

BaBar(2008)
388×106BB
this analysis

World average
 (updated)

SM predictions
M. Matsumori et al. (2006)
P. Ball et al. (2007)

Figure 6.1: The measurements of (�% ( ∗0W) and its theoretical expectations (blue and
green bands) in the SM. The world averages before and after the update are also shown
in gray and black, respectively.
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Figure 6.2: The measurements of (�% ( 0
(
c0W) and its theoretical expectation (green

band) in the SM.

6.2 Constraints on the BSM physics

As we discuss in Section 1.4, we can constrain �′BSM
7 with the obtained (�% ( ∗0W):

(�% ( ∗0W) = 0.00+0.27
−0.26(stat)+0.03

−0.04(syst). (6.2)

To visualize the constraint, we use the flavio package [65]. We assume Gaussian
distribution for each constraint on the observables and model parameters and run toy
Monte Carlo. The obtained contour for the real and imaginary part of �′BSM

7 is shown
in Fig. 6.3. We show the constraint solely from this measurement and the global con-
straint [66] where we additionally consider

• world average of the previous (�% ( ∗0W) measurements [8],
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Figure 6.3: Constraints on the real and imaginary part of �′BSM
7 from this measurement

only ((�% ( ∗0W)) and in combination with other measurements (global). The darker
region corresponds to 1f, and the lighter 1–2f.

• branching ratios of �0 →  ∗0W, �+ →  ∗+W, � → -BW, and �0
B → qW [8],

• the coefficient of sinh-term in the time-dependent CP violation of �B → qW de-
cays [67],

AΔ = −
2b�% Re

[(
@

?

)
�B

(
M∗

'
M! +M∗

!
M'

)]
��M'

��2 + ��M!

��2 + ��M'

��2 + ��M!

��2 , (6.3)

and
• angular analysis of �0 →  ∗04+4− [68].

6.3 Prospect of the measurement at Belle II

6.3.1 Improvements anticipated shortly

Some of the tools used in this measurement are being further improved. We evaluate the
gain of these modifications and consider them in the prospects.

(1) Modification of tag-side vertex fitting

The current tag-side vertex fitting ignores the effect from the displaced vertex of charm
mesons. We consider this bias in the resolution function 'np. To reduce bias, we itera-
tively eliminate the track with the highest j2 contribution in the vertex fitting process.
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By this modification, we can narrow 'np and achieve a smaller fit j2. From the study
using signal MC, we expect a 10% yield increase in the TD category. This is consistent
with the efficiency of the (j2/ad.f.)tag selection in Tab. 4.3.

(2) Modification of flavor tagging

The current flavor tagging algorithm is based on a combination of category-based BDT
classifiers. We develop a new flavor tagging algorithm based on the graph neural network
architecture. The effective tagging efficiency,

Yeff =
∑
8

Y8 · (1 − 2F8)2, (6.4)

is evaluated to be 20% larger than the current one from a study using the �0 → �/k ∗0

data. Since Y8 and hence Yeff is dependent on the decay channel, further studies are
ongoing to confirm this improvement in the �0 →  0

(
c0W channel.

6.3.2 Prospects of statistical and systematic uncertainties

The statistic uncertainty is anticipated to scale with the data size by 1/
√∫

!dC. In ad-
dition, the systematic uncertainties from the measurements are also expected to scale in
parallel:

• MC/data correction factors for track momentum and photon energy,
• F and ΔF in flavor tagging,
• signal extraction fit, and
• A-bin and ΔC modeling for @@ background.

Another dominant systematic uncertainty from vertex quality selection is evaluated as
the difference between the two configurations and includes the fluctuation from the lim-
ited data size. Assuming the domination of statistic uncertainty, we also scale this uncer-
tainty by 1/

√∫
!dC. Considering also the 10% increased statistics from the improvement

in tag-side vertex fitting, we visualize the prospects of the uncertainty on (�% ( ∗0W)
in Fig. 6.4. The systematic uncertainty is expected to be dominant after accumulating
30 ab−1. We need to understand our measurements further and decrease the systematic
uncertainty before that. With the target integrated luminosity of 50 ab−1, the uncertainty
is expected to be 0.037. Other main contributions are also expected to decrease in the
future but are not considered in the prospect:
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Figure 6.4: The prospects of the (�% uncertainty vs. the data size.

• The systematic uncertainty from the helix uncertainty correction is evaluated by
removing the correction. We can evaluate it more accurately by repeating the event
reconstruction considering the uncertainty of the correction factors.

• For the �� background asymmetry, we conservatively consider ��% = ±1 and
(�% = ±1 for independent 1 → BW decays such as �0 →  0

(
[W. This will become

smaller if the future measurement gives better constraints on the size of the CP
violation in these decay channels.

• The -B mass spectrum and -B →  c branching fractions will be tuned based on
the future measurement, e.g., using �0 →  0

(
c0ℓ+ℓ−.

6.3.3 Prospects of constraints on BSM physics

Assuming that the central value is unchanged from this measurement, we can visualize
the future constraints on �′BSM

7 in Fig. 6.5. Note that we do not consider the prospects
of the other measurements used for the global constraint.

We can limit the LRSM parameters from Eqs. (1.13) and (1.14) as

",2 >
1'

1!

√
Im

[
+'CB 4

8(2q1+l)
]
· 9.42 TeV/22. (6.5)

In the MSSM, we can limit
(
X3
'!

)
23 from Eqs. (1.13) and (1.15) as

− Im
[ (
X3'!

)
234

−28q1
]
<

<@̃

896 TeV/22 . (6.6)
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Chapter 7

Conclusion

�0 →  0
(
c0W decay is mediated by 1 → BW radiative penguin transition. The mixing-

induced CP violation is suppressed by the left-handedness of the weak current within the
SM and provides a probe for BSM physics. We measure the time-dependent CP asymme-
tries in �0 →  0

(
c0W decay using (387.5±5.8) ×106 �� pairs collected near the Υ(4()

resonance with SuperKEKB and Belle II from 2019 to 2022. For the measurement, we
reconstruct one neutral � meson in the �0 →  0

(
c0W decay channel, identify the flavor

of the accompanying � meson from its decay products, and measure the proper-time
difference between the two � mesons. We obtain the following results: for the  0

(
c0

invariant mass around  ∗(892)0 resonance (0.8 to 1.0 GeV/22),

(�% ( ∗0W) = 0.00+0.27
−0.26(stat)+0.03

−0.04(syst) and
��% ( ∗0W) = −0.10 ± 0.13(stat) ± 0.03(syst),

and for the rest of the mass regions up to 1.8 GeV/22,

(�% ( 0
(
c0W) = +0.04+0.45

−0.44(stat) ± 0.10(syst) and
��% ( 0

(
c0W) = +0.06 ± 0.25(stat) ± 0.07(syst).

We achieved the most precise measurement to date as a single measurement, even with
the less integrated luminosity. The obtained (�% ( ∗0W) is consistent with the SM ex-
pectation, −0.023±0.016 [15] or −0.035±0.017 [16], and no signature of BSM physics
is found.
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Appendix A

Scaling of hard photon energy

In the experimental data, we observe a slight discrepancy in the right tail of Δ� peak, as
shown in Fig. A.1. One possible reason is the lack of MC/data correction for �W larger
than 1.95 GeV, where most of the prompt W from �meson lies. To correct possible data–
MC discrepancy of �W for those W’s, we perform a one-dimensional signal extraction fit
to �0 →  +c−W decays. We analyze 10M events of � →  ∗(892)0W MC samples for
study.

(a) �0 →  0
(
c0W in MR1 (b) �+ →  +c−W in MR1

Figure A.1: The Δ� distributions in 362 fb−1 data without correction and fitted model.
The distribution is shown for "bc signal-enhanced region. The vertical dashed lines
represent the border of Δ� signal-enhanced region. Note that the signal and background
definition is inconsistent with the current one.
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A.1 Strategy

The basic concept is the same as the �W correction for lower energy: apply MC/data
scale factor BW on the measured photon energy-momentum in the Lab frame,

�Lab
W → BW�

Lab
W , (1.1)

pLab
W → BWpLab

W . (1.2)

We apply the same scale factor for �Lab
W and pLab

W since<W = 0. However, modeling �Lab
W

distribution is not straightforward. We move to the Υ(4() CM frame:

�cms
W = W�Lab

W − Wβ · pLab
W . (1.3)

By applying the scale factor, we get scaled �cms
W :

�cms
W → WBW�

Lab
W − Wβ · BWpLab

W = BW�
cms
W . (1.4)

We can still extract the scale factor BW using �cms
W . Moreover, we can use �-candidates’

Δ� for scale factor determination. Recalling the Δ� definition,

Δ� = �cms
W + �cms

 + + �cms
c− − �beam/2, (1.5)

we can derive Δ� after applying the scale factor as

Δ� → BW�
cms
W + �cms

 + + �cms
c− − �beam/2 = Δ� |BW=1 + (BW − 1)�cms

W , (1.6)

the shift proportional to �cms
W . Thus, we can determine the scale factor BW through Δ�

signal extraction fit with shift proportional to the event-by-event �cms
W .

A.2 Event reconstruction and selection

We use the same W reconstruction and selection as the signal channel in Section 4.2.3.
We perform the same selection optimization procedure as the signal channel for the other
selections.

For the  + and c−, we select tracks with at least 20 CDC hits which satisfies Δ3 <
0.5 cm and |ΔI | < 2 cm. We also require the likelihood ratio of particle identification
(PID) for  (c), L /

∑L (Lc/
∑L), to be larger than 0.1 for  + (c−). The selection on

the PID is tight enough, as shown in Figs. A.2(a) and A.2(b).
We require the invariant mass of  +c− system to be 0.8 < " c < 1.0 GeV/22 as

 0
(
c0W in MR1. We also require that the reconstructed �0 must satisfy 5.2 < "bc <
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(b) Lc/
∑L of c−

Figure A.2: The L /
∑L (Lc/

∑L) distribution of  + (c−) in �0 →  +c−W candi-
dates. The red distribution shows signal candidates, and the blue shows the fake candi-
dates. The blue dotted line in the lower plot shows the FoM of �0 candidates at each
threshold value. The vertical dashed line shows the determined threshold.

5.29 GeV/22, |Δ� | < 0.5 GeV. We trained a dedicated BDT classifier C@@ ( +c−W) for
continuum suppression. We use the set of input variables for the non-MR1 signal channel
so as not to bring any severe deformation in background Δ� distributions. We optimize
the C@@ ( +c−W) threshold to be 0.67, as shown in Fig. A.3. For the events with multiple
�0 candidates, we select a single candidate randomly not to bring any deformation in
background Δ� and "bc distributions.
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Figure A.3: The C@@ ( +c−W) distribution of signal (fake) �0 candidates are shown in
red (blue). The blue dotted line in the lower plot shows the FoM at each threshold value.
The vertical dashed line shows the threshold at the highest FoM.

A.3 Fit models

We separate Δ� distributions into the signal, �� background, and @@ background com-
ponents.

The signal distributions are modeled with Johnson function [69],

5Jhonson (G = Δ� ; `, f, W, _) = _

f
√

2c
1√

1 +
( G−`
f

)2
exp

[
−1

2

(
W + _ sinh−1

(G − `
f

))2
]
.

(1.7)
The four shape parameters are fixed to the signal MC fit,

` = 0.02141 ± 0.00010, (1.8)
f = 0.04532 ± 0.00010, (1.9)
W = 0.8696 ± 0.0024, (1.10)
_ = 1.1447 ± 0.0019. (1.11)

The distribution of Δ� in �0 →  ∗(892)0W MC and fitted model are shown in Fig. A.4.
The discrepancy is only significant with the extensive statistics of the MC sample.

One-third of �� background comes from -B resonance, but its yield and distribution
shape is unreliable due to the Kagan–Neubert -B mass spectrum model. Figure A.5(a)
shows the distribution for -B-resonant and the other �� background. We model ��
backgrounds other than -B resonance using spline fit and ignore the contribution from
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Figure A.4: The Δ� distribution of signal candidates in �0 →  ∗(892)0W MC sample.
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(b) spline fit for �� background other than -B

Figure A.5: The Δ� distributions of �� background in 3 ab−1 MC.

-B resonance. The comparison with MC distribution and the spline curve is shown in
Figure A.5(b). We can confirm that the spline curve smooths the histogram without bias.

@@ background is modeled with a linear function with only one parameter: slope,
<@@. We leave floating the shape parameter in the signal extraction fit. The 1 ab−1 MC
distribution and fitted model are shown in Fig. A.6. We do not observe any bias with
this simple modeling.
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Figure A.6: The Δ� distributions of @@ background in 1 ab−1 MC.

A.4 Signal extraction fit

We perform an unbinned maximum likelihood fit to only Δ� with PDF analogous to
Eq. (5.5), floating fractions, @@ shape, and �W scale factor.

We apply shift from �W scale factors for signal and �� background. We do not
need to shift the @@ shape because we float the shape in the fit. We fit with a narrower
range to allow a shift of the spline curve, −0.4 < Δ� < 0.4 GeV. The result in a dress
rehearsal on 1 ab−1 MC is shown in Fig. A.7. The resulting fit parameters are summarized
in Tab. A.1. We observe significant overestimation in �

��
and <@@, which means the

background breakdown is not correctly working. However, we do not observe significant
bias in the signal fraction and �W scale. Since we aim to obtain this �W scale, we proceed
with this fit model.
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Figure A.7: The Δ� distributions in 1 ab−1 generic MC and fitted model.
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Table A.1: The results of signal extraction fits of �0 →  +c−W candidates in 1 ab−1

generic MC.

parameter fit result expectations
(BW − 1)[%] −0.032 ± 0.028 0

�sig 0.393 ± 0.006 0.397
�
��

0.380+0.035
−0.034 0.283

<@@ −0.25+0.27
−0.24 −0.544 ± 0.034

A.5 Results

The fit results on data are shown in Fig. A.8 and Tab. A.2. The result of signal extraction
fit with scaling factor is shown in Section 5.1.5. As shown in Fig. 5.5, the right tail of
Δ� peak better agrees with the data.

Table A.2: The results of signal extraction fits of �0 →  +c−W candidates in 362 fb−1

data.

parameter fit result
(BW − 1)[%] +0.22 ± 0.05

�sig 0.435 ± 0.010
�
��

0.18 ± 0.06
<@@ −0.49+0.38

−0.32

129



0

100

200

300

400
qq
BB
fit
signal
data

0.4 0.2 0.0 0.2 0.4
E [GeV]

5

0

+5

Figure A.8: The Δ� distributions in 362 fb−1 data and fitted model.



Appendix B

Control sample �+ →  0
(
c+W

B.1 Selections for the control sample

We reconstruct the control sample using c+ instead of c0 in the signal mode. We re-
construct the c+ from a track in the CDC acceptance, which satisfies |Δ3 | < 0.5 cm,
|ΔI | < 3 cm. We also require the likelihood ratio of particle identification Lc/

∑L to
be larger than 0.01. We optimize the cut on Lc/

∑L of c+ and confirm that the pre-
selection is tight enough, as shown in Fig. B.1. We use the same W and  0

(
selection

criteria as the signal decay.
The primary source of multiplicity comes from the c+ tracks. However, any c+ can-

didates are acceptable for the control sample since we smear the c+ track in the vertex fit.
Thus, we select one candidate randomly when multiple �+ candidates exist. Similarly,
the truth-matching of �+ does not require the truth-matching of c+.

We use the same continuum suppression and apply the same C@@ selection criteria
as the signal mode.
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Figure B.1: The comparison of Lc/
∑L between c+ from signal �+ decay in 10M con-

trol MC (signal, red) and fake c+ in 1 ab−1 generic MC (background, blue). The entries
for each component are normalized to 100. The vertical black dashed line represents
the threshold. The FoM of �+ candidates at each threshold is also shown in the lower
subplot.

B.2 Vertex reconstruction and resolution of the control
sample

The vertex reconstruction of the control sample is similar to the signal mode except for
the c± track, as illustrated in Fig. B.2. To reconstruct the �sig vertex with the same reso-
lution as the signal, we ignore the position information of c± track in the vertex fit. We
confirm that the signal 'rec model determined in fast-simulated signal MC successfully
explains Xℓ�%, as shown in Fig. B.3. The �tag decay vertex reconstruction is entirely the
same as the signal. The required vertex quality for TD events is also aligned with the
signal.

The tag side resolutions for the signal, �� feed-down, and �� combinatorial back-
grounds are modeled in the same procedure as the signal. We summarized the resolution
parameters in Tab. B.1. The obtained resolution function models are compared with the
distributions in Figs. B.4 and B.5. The observed discrepancies are only significant with
the extensive statistics of the MC samples.

The @@ model is by construction combined with the signal sample.
We perform �+ lifetime fit using resolution parameters obtained in fast simulation.

The results are summarized in Tab. B.2. The obtained model and signal MC distribution
are compared in Fig. B.6. We observe a similar behavior as the signal mode. The lifetime
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Figure B.2: The schematic explanation for �� decay vertex reconstruction of the control
sample.
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Figure B.3: Xℓ�% distribution in control MC and 'rec obtained in fast-simulated signal
MC. The lower box shows the discrepancy between the distribution and fit model.

bias in the event reconstruction and selection is slight, while the small mismodeling of the
resolutions brings some bias. However, this level of bias is acceptable for the validation
purpose.
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Figure B.4: Xℓtag distribution in control MC and 'tag obtained in the original fast simu-
lation. The lower box shows the discrepancy between the distribution and fit model.
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Figure B.5: (ℓCP
true − ℓtag)/VW2 distribution in �� sample (3 ab−1) and �f ⊗ 'k ⊗ 'tag

obtained in the original fast simulation. The candidates outside the "bc–Δ� signal-
enhanced region are included to increase the statistics. The lower box shows the dis-
crepancy between the distribution and fit model.



Table B.1: The results of Xℓtag fit in the original fast-simulated 1 → BW sample and
the calibrated fast-simulated 1 → BW sample. The fit uncertainty is estimated from the
Hesse matrix.

(a) signal

parameter original fast sim calibrated fast sim

'asc

5
tag
tail 0.00077 ± 0.00008 0.00080 ± 0.00007
B

tag,0
main 0.986 ± 0.004 1.000 ± 0.004
B

tag,1
main 0.0747 ± 0.0018 0.0728 ± 0.0017
B

tag,0
tail 27.4 ± 2.2 26.9 ± 2.0
B

tag,1
tail 2.8 ± 0.5 2.6 ± 0.4

'np

5 0
X

0.739 ± 0.007 0.763 ± 0.011
5 1
X

−0.1490 ± 0.0029 −0.157 ± 0.005
5 0
p 0.8769 ± 0.0028 0.8827 ± 0.0029

5 1
p [µm−1] −0.00154 ± 0.00008 −0.00161 ± 0.00009
g0 0.941 ± 0.010 0.954 ± 0.013
g1 0.2066 ± 0.0028 0.2109 ± 0.0034
gmax 5.24 ± 0.10 5.24 ± 0.08

(b) �� feed-down

parameter original fast sim calibrated fast sim
lifetime g

��
1.40 ± 0.02 1.396 ± 0.021

'np

5 0
X

1.103 ± 0.020 1.90 ± 0.05
5 1
X

−0.186 ± 0.011 −0.624 ± 0.021
5 0
p 0.783 ± 0.027 0.722 ± 0.026

5 1
p [µm−1] −0.0018 ± 0.0007 −0.0003 ± 0.0008
g0 2.51 ± 0.30 1.52 ± 0.033
g1 0.40 ± 0.04 0.54 ± 0.04
gmax 7.9 ± 0.4 7.7 ± 0.4

(c) �� combinatorial

parameter original fast sim calibrated fast sim
lifetime g

��
0.400 ± 0.024 0.411 ± 0.019

'np

5 0
X

0.756 ± 0.032 0.775 ± 0.014
5 1
X

−0.067 ± 0.007 −0.0798 ± 0.0026
5 0
p 0.607 ± 0.009 0.612 ± 0.009

5 1
p [µm−1] 0 0
g0 5.84 ± 0.12 5.59 ± 0.11
g1 0.081 ± 0.010 0.107 ± 0.011
gmax 8.8 ± 0.4 8.9 ± 0.4



Table B.2: The results of lifetime fit in control MC.

proper-time difference model fit result [ps]
MC input (no fit) 1.638

Δgtrue = gtrue
�sig

− gtrue
�tag

�f 1.6341 ± 0.0028
ΔCtrue = Ctrue

�sig
− Ctrue

�tag
�f ⊗ 'k 1.6349 ± 0.0028

C�sig − Ctrue
�tag

�f ⊗ 'k ⊗ 'rec + �outlier 1.651 ± 0.004
Ctrue
�sig

− C�tag �f ⊗ 'k ⊗ 'tag 1.6241 ± 0.0030
ΔC = C�sig − C�tag �f ⊗ 'k ⊗ 'rec ⊗ 'tag + �outlier 1.641 ± 0.004
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Figure B.6: ΔC distribution in control MC and model obtained in fast simulation. The
lower subplot shows the pull of the discrepancy.



Appendix C

Gaussian kernel density estimation

We use Gaussian kernel density estimation (KDE) in Scikit-learn package [70] to con-
struct correlated two-dimensional distribution from the MC samples, as shown in Fig. C.1.
The KDE smoothes the empirical distribution by assigning one Gaussian for each data
point. In the case of multi-dimension, we need to apply the scaling factor to data so
that the standard dedication of the Gaussian is common to all the dimensions. The scale
factors tuned by hand are summarized in Tab. C.1. The common standard deviation, or
bandwidth, ℎ is determined according to Scott’s factor [71]:

ℎ = =−1/(3+4) , (3.1)

where = for sample size and 3 for dimension. Figures C.2 and C.3 shows the one-
deimensional projections for signal and �� feed-down background. The agreement be-
tween the KDE and the distribution is good in general, while we observe slight over-
smoothing of the steep histogram, such as around the peak. We take the possible impact
into the systematic uncertainty described in Section 5.5.4.

"bc [ GeV/22 ] Δ� [ GeV ]
candidate component scale 0.01 0.14

�0 signal 0.2 0.002 0.028
feed-down bkg. 1 0.01 0.14

�+ signal 0.2 0.002 0.028
feed-down bkg. 1.2 0.012 0.168

Table C.1: Scale factors for "bc and Δ� in each component.
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Figure C.1: The 2D contour plot for KDE curves. The upper half is for signal in MR1,
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Figure C.2: The comparison of MC histogram and KDE curve in 1D projection for
correct reconstruction. The upper half is for �0, and the lower half is for �±.



0

500

1000

1500

ca
nd

id
at

es
/0

.0
01 KDE

MC

5.24 5.26 5.28
Mbc [GeV/c2]

5
0
+5 0

500

1000

1500

2000

ca
nd

id
at

es
/0

.0
1

KDE
MC

0.4 0.2 0.0 0.2
E [GeV]

5
0
+5

B0 feed-down bkg.

0

100

200

300

ca
nd

id
at

es
/0

.0
01 KDE

MC

5.24 5.26 5.28
Mbc [GeV/c2]

5
0
+5 0

100

200

300

ca
nd

id
at

es
/0

.0
1

KDE
MC

0.4 0.2 0.0 0.2
E [GeV]

5
0
+5

B +  feed-down bkg.

Figure C.3: The comparison of MC histogram and KDE curve in 1D projection for feed-
down reconstruction. The upper half is for �0, and the lower half is for �±.



Appendix D

Resolution in j2 slice

We show the vertex position residual distribution in the slice of j2. We confirm that 'rec
and 'asc ⊗ 'np agree well with the distribution even in the j2 slice.
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Figure D.1: Xℓ�% pull distribution and fitted double Gaussian in signal MC are shown
for each j2

 0
(

slice. The lower box shows the discrepancy between the distribution and fit
model.
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Figure D.2: Xℓ�% distribution and fitted 'rec in signal MC are shown for each j2
 0
(

slice.
The lower box shows the discrepancy between the distribution and fit model.
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Figure D.3: Xℓtag distribution and fitted 'tag in signal MC are shown for each (j2/ad.f.)tag

slice. The lower box shows the discrepancy between the distribution and fit model.





Appendix E

Fast simulation

To study the relation between the helix and the resolution function parameter, we devel-
oped a fast simulation where the helix pull is randomly sampled from two Gaussian dis-
tributions (main + tail). The tail component is key to reproducing the j2 dependence of
the resolution function. Without the tail component, which means when the uncertainty
of the vertex fit is correctly estimated, no j2 dependency is observed in the resolution
function.

In this helix study, we use only signals in the signal-enhanced region. Since �0 →
 ∗(892)0(→  0

(
c0)W decay has only  0

(
daughter tracks, we need to take the helices not

at the IP POCA (point of closest approach) but at the true decay vertex POCA. We also
randomize the helix from the true helix at the true decay vertex.

The correlations between helix pulls are shown in Fig. E.1. We observe a strong
correlation between 30 and q0, I0 and tan_. We apply two-dimensional rotation by
∓45◦ as (

(30, q0)wide
(30, q0)narrow

)
=

1
√

2

(
1 1
−1 1

) (
30
q0

)
, (5.1)(

(I0, tan_)wide
(I0, tan_)narrow

)
=

1
√

2

(
1 −1
1 1

) (
I0

tan_

)
. (5.2)

(30, q0)narrow and (I0, tan_)narrow represent the sharpness of correlation. This correlation
is smeared by multiple scattering between the decay vertex and the first (i.e., innermost)
hit. In particular, the tracks originating inside the beampipe have smeared correlation.
Thus, we separately model  0

(
decays outside the beam pipe and  0

(
decays inside the

beampipe, referred to as outer- and inner- 0
(
, respectively. The results of double Gaus-

sian fit to (30, q0)narrow and (I0, tan_)narrow for outer- and inner- 0
(

are shown in Figs. E.2
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Figure E.1: Two-dimensional helix pull distributions of c+ tracks from  0
(

in signal MC.

and E.3. We fit the distribution in a wider range to model the broader distribution of
inner- 0

(
. The resulting fit parameters are summarised in Tab. E.1. The result of the

inner- 0
(

fit is also used to model tag-side tracks since they originate from IP.
In principle, the wrong hit assignment leads to a significant deviation in all five he-

lices. Thus, we force (30, q0)wide, (I0, tan_)wide, and l to be in main or tail simultane-
ously. The result of simultaneous fit is shown for three helices in Fig. E.4. The resulting
fit parameters are summarised in Tab. E.2. This modeling is not entirely accurate due
to one-dimensional wrong hits such as u/v-side SVD hits. This causes the narrower and
larger tail component in the fit. By adding the dilution to allow main-tail cross-term,
∼ 10% of the main component goes to the cross-term, but we ignore this effect for sim-
plicity.

We run the fast simulation based on these fit parameters. The rotated helices before
and after fast simulation show good agreement, as shown in Figs. E.5 to E.7. Slightly
higher peaks come from the narrower tail component in the model. The helix pulls
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Figure E.2: (30, q0)narrow (upper) and (I0, tan_)narrow (lower) distribution and their fit
results of outer- 0

(
daughters in signal MC. Left for linear scale and right for log scale.

correlation in fast simulation is shown in Fig. E.8. The strong correlation between 30 and
q0, I0 and tan_ is reproduced. Since main-tail cross terms in (30, q0)wide, (I0, tan_)wide,
and l are restricted in our model, the two-dimensional plot shows perfect circle contour.

We fit the 'rec and 'tag in this fast simulation sample. For the fit, only fully fast-
simulated samples are used, i.e., we require helix randomization of both  0

(
daughter c±

for Xℓ�% fit and all the tracks used for tag-side vertex fit for Xℓtag. The fit parameters are
summarized in Tab. 5.9. The obtained models and distribution in the original signal MC
are compared in Fig. 5.18. The standard deviation of 'rec depending on j2

 0
(

is shown in

Fig. E.9, together with j2
 0
(

distribution before and after fast simulation.
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Figure E.3: (30, q0)narrow (upper) and (I0, tan_)narrow (lower) distribution and their fit
results of inner- 0

(
daughters in signal MC. Left for linear scale and right for log scale.

Table E.1: The results of (30, q0)narrow and (I0, tan_)narrow fit in signal MC.

parameter fit result

outer- 0
(

(30, q0)narrow

5main 0.3018 ± 0.0034
Bmain 0.0864 ± 0.0007
Btail 0.2920 ± 0.0016

(I0, tan_)narrow

5main 0.180 ± 0.004
Bmain 0.0915 ± 0.0013
Btail 0.3227+0.0021

−0.0020

inner- 0
(

(30, q0)narrow

5main 0.259+0.021
−0.019

Bmain 0.232 ± 0.008
Btail 0.512 ± 0.008

(I0, tan_)narrow

5main 0.237 ± 0.011
Bmain 0.189 ± 0.005
Btail 0.503 ± 0.005
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Figure E.4: (30, q0)wide, l, and (I0, tan_)wide (upper, middle, and lower) distribution
and the fit result of  0

(
daughters in signal MC. Left for linear scale and right for log

scale.



Table E.2: The results of (30, q0)narrow and (I0, tan_)narrow fit in signal MC.

parameter fit result
5main 0.8117+0.0018

−0.0019

(30, q0)wide
Bmain 1.2650 ± 0.0019
Btail 2.331 ± 0.008

l
Bmain 0.8744 ± 0.0015
Btail 1.781 ± 0.007

(I0, tan_)wide
Bmain 1.2184 ± 0.0018
Btail 2.226 ± 0.007
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Figure E.5: (30, q0)narrow (upper) and (I0, tan_)narrow (lower) distributions of outer- 0
(

daughters in original signal MC and fast simulation. Left for linear scale and right for
log scale.
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Figure E.6: (30, q0)narrow (upper) and (I0, tan_)narrow (lower) distributions of inner- 0
(

daughters in original signal MC and fast simulation. Left for linear scale and right for
log scale.
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Figure E.7: (30, q0)wide, l, and (I0, tan_)wide (upper, middle, and lower) distributions
of  0

(
daughters in original signal MC and fast simulation. Left for linear scale and right

for log scale.
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Figure E.8: Two-dimensional helix pull distributions of c+ tracks from  0
(

in fast simu-
lation.
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Appendix F

Helix pull calibration

We can calibrate the difference of resolution function parameters between data and MC
using cosmic MC and data, assuming that the wrong hit assignment causes the tail com-
ponent in helix pulls and j2 dependence of resolution. We analyze cosmic data taken
during beam operation, where we expect the same background condition as the physics
run. We prepare two sets of reconstruction. One is for calibrating the effect of wrong
PXD and SVD hits, where we require both upper and lower tracks to satisfy

• At least one PXD hits detected.
• |I0 | > 0.2 cm to reject peak around IP. We think these tracks come from beam

collision events.
• −2 cm < I0 < 4 cm to reject tracks hitting Ti, which is not in the simulated

geometry.
• |30 | < 1.0 cm to have material effect from beampipe.

The other is for calibrating the effect of wrong SVD hits only. We do not reconstruct
PXD hits for this purpose. We require both tracks to satisfy

• At least three SVD hits detected.
• |I0 | > 0.2 cm to reject peak around IP. We think these tracks come from beam

collision events.
• −8 cm < I0 < 12 cm
• |30 | < 2.5 cm
• |? | < 3 GeV/2

We reconstruct cosmic MC with the same method and criteria.
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Figure F.1: Two-dimensional helix pull distributions of `± tracks in the SVD-
reconstructed cosmic data.

We can extract pull information by comparing upper and lower tracks,

Pull(ℎ) =
ℎupper − ℎlower√
f2
ℎupper

+ f2
ℎlower

, (6.1)

where ℎupper(lower) for upper (lower) helix and fℎupper(lower) for their errors. The upper cos-
mic ray is first reconstructed as the track from IP. Then, the charge and momentum of
the track, i.e., 30, l, and tan_, are flipped. Due to this operation, the strong correlations
in the cosmic pulls are smeared as shown in Fig. F.1, i.e., the correlation shows convolu-
tion of the one in signal MC and the one with flipped along with 30 or tan_. We model
(30, q0)wide ((I0, tan_)wide) and (30, q0)narrow ((I0, tan_)narrow) with the same distribu-
tion, convolution of wide and narrow double Gaussian.

Since the narrow width is buried in the wide width, we use the same shape parameters
as signal MC. The cosmic ray includes both inner- and outer- 0

(
-like components as we
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Table F.1: The results of simultaneous fit of five helices in PXD-reconstructed cosmic
MC and data, and obtained correction factors.

parameter PXD MC PXD Data correction
5main 0.9306 ± 0.0022 0.878+0.015

−0.016 −0.052+0.015
−0.016

(30, q0)wide
Bmain 0.8454 ± 0.0028 0.825 ± 0.015 (−2.4 ± 1.8)%
Btail 2.044+0.025

−0.024 1.73+0.08
−0.07 (−15.3+3.9

−3.6)%

l

` 0.006 ± 0.0004 −0.274 ± 0.019 N/A
Bmain 1.015 ± 0.004 0.975 ± 0.019 (−4.0 ± 1.9)%
Btail 1.785+0.029

−0.028 1.85+0.12
−0.10 (+3.5+6.8

−6.0)%

(I0, tan_)wide
Bmain 0.9037 ± 0.0028 0.890 ± 0.015 (−1.5 ± 1.7)%
Btail 1.949 ± 0.022 1.79+0.08

−0.07 (+8.3+4.2
−3.8)%

analyze cosmic rays regardless of their passing through materials or not. We require
|30 | < 2.5 cm in the above selection. Therefore, we use inner- 0

(
-like components,

assuming that most tracks pass through PXD or beampipe.
We fit seven parameters to describe three double Gaussian for wide helices and mean

` of l as we observe shifts in data. The result of simultaneous fit is summarized in
Tabs. F.1 and F.2. The obtained model is compared with the distribution in Figs. F.2
and F.3. We obtain correction factors from data–MC comparison. We apply corrections
to the helix uncertainty to account for the underestimated uncertainty in PXD hits. Unlike
signal MC, the pull width shows dependency on the uncertainty even after this correction.
To be ignorant of this possible tail contribution, we correct the fraction with a bias factor.
For the width, we simply correct with scales. We do not apply the correction if the
correction factor is null-consistent within the uncertainty.
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Table F.2: The results of simultaneous fit of five helices in SVD-reconstructed cosmic
MC and data, and obtained correction factors.

parameter SVD MC SVD Data correction
5main 0.865 ± 0.005 0.841 ± 0.004 −0.0239 ± 0.0068

(30, q0)wide
Bmain 0.908 ± 0.005 0.933 ± 0.006 (+2.81 ± 0.87)%
Btail 2.046 ± 0.028 2.304+0.028

−0.027 (+12.6 ± 2.0)%

l

` 0.009 ± 0.0006 −0.168 ± 0.0006 N/A
Bmain 0.940 ± 0.006 0.936 ± 0.005 (−0.48 ± 0.84)%
Btail 1.555+0.026

−0.025 1.596 ± 0.023 (+2.6 ± 2.2)%

(I0, tan_)wide
Bmain 0.852 ± 0.005 0.839 ± 0.005 (−1.58 ± 0.79)%
Btail 1.709 ± 0.022 1.950+0.022

−0.021 (+14.1 ± 1.9)%
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Figure F.2: (30, q0)wide, (30, q0)narrow, l, (I0, tan_)wide, and (I0, tan_)narrow (from top
to bottom) distributions and fitted model of PXD-reconstructed cosmic ray data (right
two columns) and MC (left two columns). Left for linear scale and right for log scale.
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Figure F.3: (30, q0)wide, (30, q0)narrow, l, (I0, tan_)wide, and (I0, tan_)narrow (from top
to bottom) distributions and fitted model of SVD-reconstructed cosmic ray data (right
two columns) and MC (left two columns). Left for linear scale and right for log scale.



Appendix G

Tag-side interference

The �0–�0 interference in the �tag decay also cause CP asymmetry called tag-side in-
terference [64]. In Eq.1.20, we model the time-evolution of �tag by decay and �0–�0

mixing. However, the hadronic flavor-specific decay like �0 → �+c− interferes with
the doubly Cabbibo suppressed decay �0 → �+c−. This could bring bias on the mea-
sured CP-violation parameters. We can calculate the tag-side interfered CP-violation
parameters depending on the flavor,

(′�% (@) = b�% Im[_] − @ · A′( |_ |2 − 1) sin(2q1 + q3 − @X′)/'(@) and (7.1)

�′�% (@) =
|_ |2 − 1

2
− 2@ · A′ Im[_] cos(2q1 + q3 − @X′)/'(@), with (7.2)

'(@) = |_ |2 + 1
2

− 2@ · A′ Re[_] cos(2q1 + q3 − @X′). (7.3)

_ is related to the bare CP-violation parameters through Eq. (1.3). The CKM angle q1
and q3 are taken from HFLAV [8] as

q1 = (22.2 ± 0.7)◦ and q3 = (65.9+3.5
−3.3)

◦. (7.4)

The two parameters A′ and X′ are transformed from the measured (+ and (− in Belle
using �0 → �∗−ℓ+a decay [72],

(+ = +0.0096 ± 0.0073 and (− = −0.0067 ± 0.0073, (7.5)

through the relation

(+ = 2A′ sin(2q1 + q3 + X′) and (7.6)
(− = 2A′ sin(2q1 + q3 − X′). (7.7)
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We obtain
A′ = 0.0118 and X′ = 274◦. (7.8)

For the evaluation, we conservatively assume that all the �tag decays in the hadronic
flavor-specific way. We can fairly assume that the number of @ = +1 and @ = −1 events
are the same, as the flavor tagging asymmetry ` is 0-consistent in hadronic � decay data.
 0
(
c0W is a mixture of CP-even (b�% = +1) and odd (b�% = −1) states. We calculate the

ratio of CP-even and odd states from the measured (�% as

#even − #odd
#even + #odd

=
(�%

sin 2q1
, (7.9)

approximating the bare (�% with measured (�%. We take the difference between the bare
(calculated) and tag-side interfered (observed) CP-violation parameters as the single-
sided uncertainty.
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