

Generation of PXD background using Generative Adversarial Networks

Fabio Novissimo, Nikolai Hartmann, Thomas Kuhr

LMU Munich

DPG-Frühjahrstagung, March 8th 2024

Bundesministerium für Bildung und Forschung

Introduction

- The Pixel Vertex Detector (PXD) is the innermost semi-conductor sub-detector of Belle II, at 1.4 cm from the collision point.
- The sensitive area of the PXD is made up by 40 modules. Each module consists of a 250 × 758 pixel matrix.
- ▶ Inner layer: 16 modules implemented into 8 ladders.
- Outer layer: 24 modules implemented into 12 ladders.

Solution: generate background hits on the fly for each sensor.

the background data.

Background

- PXD hits come mainly from background processes.
- Two ways to include background processes:
 - Monte Carlo generation —> shows sizeable discrepancies with measurements.

required for storage and distribution of

Taking random trigger events.Problem: large amount of resources

Generative Adversarial Network

Generating pixels with GAN

Previous approach:

► GAN conditioned on sensor number with a transformer-based relational reasoning module to reproduce the correlations between sensors(IEA-GAN).

Generating pixels with GAN

Previous approach:

GAN conditioned on sensor number with a transformer-based relational reasoning module to reproduce the correlations between sensors(IEA-GAN).

New approach: generate the background using a GAN without conditioning on the sensor number.

- Generate instances of background for all sensors at once.
- ▶ Wasserstein GAN with CNN layers used in the Generator and Discriminator.

Generating pixels with GAN

Previous approach:

GAN conditioned on sensor number with a transformer-based relational reasoning module to reproduce the correlations between sensors(IEA-GAN).

New approach: generate the background using a GAN without conditioning on the sensor number.

- Generate instances of background for all sensors at once.
- ► Wasserstein GAN with CNN layers used in the Generator and Discriminator.

Main goals:

- Check if it is feasible to train the GAN without conditioning.
- Reproduce correctly the correlations between the sensors.

The generated images are visually very similar, but with some subtle differences.

Evaluation - Occupancy per sensor

The model seems to reproduce quite well the sensor occupancy, aside from some minor details probably due to some fluctuations in the weights of the model.

Evaluation - Correlation

The model does not reproduce correctly the correlation between the sensor occupancy.

Evaluation - helix parameters resolution

GAN background can be used to reproduce resolution of the helix parameters.

Vertex reconstruction

- \blacktriangleright Vertex resolution of D^0 in the decay $D^0 \rightarrow K^- \pi^+$
- Results suggests that there is no difference when including the background.

10

10

10

Counts 10

GAN (signal) No Bkg (signal)

Geant (signal)

Evaluation: Clusters

The generated background images have different clusters distributions.

Cluster generation with GAN

- Train GAN to directly generate clusters instead of full sensor pixels.
- Trained using clusters of sizes from 1 to 30.
- Training dataset uniform in cluster size.

Figure: Example of generated clusters

Evaluation: charge distribution

Distribution well reproduced in the peak, but some differences arise for higher values of the pixel charge.

- Successfully trained a GAN to generate PXD hitmaps.
- Differences between simulated and generated images, especially regarding sensor occupancy correlation and clusters.
- Generated background reproduces helix parameters resolution well and does not have any effect on the vertex resolution for the decay $D^0 \rightarrow K^- \pi^+$.
- Successfully trained a GAN to generate clusters.

Next steps:

- Produce whole sensor background data from clusters.
- Investigate possible correlations between cluster's shape and sensor position.

Thank you for your attention!

Backup - Generator

Figure: Generator architecture

Backup - Discriminator

Figure: Discriminator architecture

Evaluation: cluster size

