

Q^2 distribution of *X*(3915) singletag two-photon production

Yoshiki Teramoto, Osaka Metropolitan Univ. (On behalf of the Belle(II) collaboration)

 $\gamma \gamma^* \to X(3915) \to J/\psi \omega$ X(3915) (= PDG: $\chi_{c0}(3915)$) Y. Teramoto and S. Uehara *et al.* (Belle), PRD 108, 012004 (2023)

Brief history

(1) $B^- \rightarrow J/\psi \omega K^-$ (Belle) S.-K. Choi and S. L. Olsen et al., PRL 94, 182002 (2005) ** (2) $\gamma \gamma \rightarrow J/\psi \omega$ (Belle) 4090 Μ(αJ/ψ) (MeV) S. Uehara et al., PRL 104, 092001 (2010) $M: 3915 \pm 3 \pm 2$ MeV 14 $\Gamma: 17 \pm 10 \pm 3$ MeV X(3915) 12 Events/10 MeV 10 N: $49\pm14\pm4$ events 8 signf. 7.7σ refer \rightarrow no-tag 2γ 2 3.9 4.15 3.85 3.95 4.05 4.1 measurement $M(J/\psi\omega)$ W (GeV) (3) $\gamma \gamma \rightarrow I/\psi \omega$ (BABAR) $M: 3919.4 \pm 2.2 \pm 1.6$ MeV $\rightarrow I^P = 0^+$ J. P. Lees *et al.*, PRD 86, 072002 (2012)

Data analysis

QWG2024

Results: $Q^2 \operatorname{vs} M(J/\psi\omega)$

Event selection (conventional) $\rightarrow J/\psi\omega$ events

QWG2024

Number of events

High Q^2 event

Q^2 distribution: formula

Q² distribution formula

$$Z_{\gamma^*\gamma}(Q^2, M^2, \epsilon) \mathcal{B}(X \to J/\psi\omega) = C(Q^2, M^2) \frac{dN_{ee}(X)}{dQ^2}$$

 Q^2 -dependent $\gamma\gamma$ decay function γ expr. dependent corr.

Theory: Schuler, Berends, and Gulik (SBG model) $\rightarrow c\bar{c}$

$$\frac{Z_{\gamma^*\gamma}(Q^2/M^2)}{G. A. Schuler et al., NP B523, 423 (1998)} = \frac{1}{(1+Q^2/M^2)^4} \left(1+\frac{Q^2}{3M^2}\right)^2 \Gamma_{\gamma\gamma}(0) \qquad J^P = 0^+ 2\gamma \text{ decay width} \\
\frac{1/C(Q^2, M^2)}{M^2} \qquad \text{luminosity function} \\
= 8\pi^2 \frac{(2J+1)(1+Q^2/M^2)}{M^2} \left.\frac{d^2 L_{\gamma^*\gamma}}{dW dQ^2}\right|_{W=M} \\
\times \varepsilon_{\text{eff}}(Q^2) L_{\text{int}} \mathcal{B}(J/\psi \to \ell^+\ell^-) \mathcal{B}(\omega \to \pi^+\pi^-\pi^0) \qquad \overset{N}{\underset{Q}{\longrightarrow}} \frac{10^{8}}{10} = \frac{1}{27} \frac{10^{8}}{10} + \frac$$

Q^2 distribution: measurement

Measured Q^2 distribution: exclude high Q^2 event

Conclusion & Summary

- We measure Q^2 distribution of *X*(3915) by single-tag 2γ
- Q^2 distribution \rightarrow agrees with SBG model: $c\bar{c}$
- Comparison with exotic model \rightarrow not done yet.
- Number of signals = $7.9\pm3.1(\text{stat.})\pm1.5(\text{syst.})$ expected = $4.1\pm0.7 \leftarrow \text{no-tag } 2\gamma \text{ meas.} + \text{SBG model}$
- Future study by Belle II \rightarrow reduce uncertainties

Thank you.

Backups: $c\bar{c}$ -like mini-review

- *X*(3915)
- *X**(3860)
- $\chi_{c0}(3930)$
- *X*(3940)
- $X(3872) \rightarrow \chi_{c1}(3872)$
- $Z(3930) \rightarrow \chi_{c2}(3930)$
- $\chi_{c2}(3930)$
- $R_1(3921), R_2(4014)$

Mass (1)

- D^0 1864.83±0.05 MeV
- D^{\pm} 1869.58±0.09 MeV
- D^{*0} 2006.85±0.05 MeV
- $D^{*\pm}$ 2010.26±0.05 MeV
- *DD* 3729.66 MeV
- D⁺D⁻ 3739.66 MeV
- $D^*\overline{D}$ 3871.68 MeV
- $D^*\overline{D}^*$ 4013.70 MeV

$\chi_{c0}(2P)$ candidates

OZI suppress

- $X(3915) \rightarrow \omega J/\psi$ not seen $D\overline{D}$
- $X^*(3860)$ \rightarrow not seen by LHCb
- $R_1(3921)$ $\rightarrow = X(3915)$? only seen by Belle
- $\chi_{c0}(3930) \rightarrow = X(3915)$? only seen by LHCb

 $\chi_{c2}(2P)$ candidates

 $\chi_{c2}(3930)$

Mass 3922.2 ± 1.0 MeV

 Γ 35.3 ± 2.8 MeV

- $Z(3930) \rightarrow \chi_{c2}(3930) \qquad \gamma \gamma \rightarrow D\overline{D}$
- $R_2(4019)$
- $R_1(3921)$
- $\chi_{c2}(3930)$
- not established yet
 - $B^- \rightarrow K^- D^+ D^-$

X(3915)

Observation $\gamma \gamma \rightarrow \omega J/\psi$, $B^- \rightarrow K^- \omega J/\psi$

Spin 0^{++} favored, 2^{++} could be

Mass $3915 \pm 3 \pm 2 \text{ MeV}$

 Γ 17 ± 10 ± 3 MeV

significance 7.7σ

 $\chi_{c0}(2P)$ candidate, but

Not seen in $J/\psi D\overline{D}$, $K^-D\overline{D}$, $K^-D^*\overline{D}$

 $X^{*}(3860)$

Observation $e^+e^- \rightarrow J/\psi X^*(3860)$ → DD amplitude analysis $J/\psi D\overline{D}$ recoil mass reconstruct Mass 3862⁺²⁶⁺⁴⁰₋₃₂₋₁₃ MeV $\Gamma = 201^{+26+40}_{-67-82}$ MeV Spin 0^{++} favored, 2^{++} could be significance 6.5σ $\chi_{c0}(2P)$ candidate, but Not seen in LHCb

$\chi_{c0}(3930), \chi_{c2}(3930)$

Observation $B^+ \rightarrow D^+ D^- K^+$ (LHCb) $\chi_{cJ} \rightarrow D^+ D^-$

Amplitude analysis \rightarrow both 0⁺⁺ and 2⁺⁺

 $\chi_{c0}(3930)$ Mass $3923.8 \pm 1.5 \pm 0.4$ MeV Γ $17.4 \pm 5.1 \pm 0.8$ MeV $\chi_{c2}(3930)$ Mass $3926.8 \pm 0.24 \pm 0.8$ MeV Γ $34.2 \pm 6.6 \pm 1.1$ MeV

X(3940)

21

$X(3872) \xrightarrow{} \chi_{c1}(3872)$

 $\chi_{c1}(2P) = 1^{++}$

Mass 3871.69 ± 0.17 MeV

 Γ < 1.2 MeV

 $X(3872) \rightarrow \pi^+\pi^- J/\psi, \ \rho J/\psi, \ \omega J/\psi$

 $Z(3930) \rightarrow \chi_{c2}(3930)$

$R_1(3921), R_2(4014)$

Observation $\gamma \gamma \rightarrow \gamma \psi(2S)$ $R_1(3921)$

Mass 3921.3 \pm 2.4 \pm 1.6 MeV $\Gamma = 0.0 \pm 5.3 \pm 2.0 \text{ MeV}$ Spin 0^{++} or 2^{++} significance 4.0σ candidate $\chi_{c0}(2P), \chi_{c2}(2P)$ $R_{2}(4014)$ Mass $4014.4 \pm 4.1 \pm 0.5$ MeV Γ 6 ± 16 ± 12 MeV significance 3.0σ (2,8 σ)