CKM and flavour at Belle II

Jim Libby

Indian Institute of Technology Madras

Outline

- Belle II
- Highlights so far
- Lepton flavour:
- tau physics highlights
- B physics highlights
- CP violation
- Tests of lepton-flavour universality
- Evidence for $B^{+} \rightarrow K^{+} v v$
- Prospects

Belle II

Will the next generation perform as well as the first?

Detectors and data samples

- Belle + BaBar collected $0.71+0.43=1.14 \mathrm{ab}^{-1} \mathrm{Y}(4 \mathrm{~S})$ samples
- Many achievements: confirmation of KM mechanism, $b \rightarrow c \tau v$, direct CPV in B decay
- SuperKEKB + Belle II@KEK, Tsukuba
- nanobeam scheme to increase instantaneous luminosity by factor 30 to collect multi-ab ${ }^{-1}$ sample
- World record $4.7 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Target $6 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- So far integrated $362 \mathrm{fb}^{-1}$ at $\mathrm{Y}(4 \mathrm{~S})$
- $+42 \mathrm{fb}^{-1}$ off-resonance to characterize continuum

〒 physics

Tau physics

- 185 standard model decay modes studied - principally hadronic final states
- Unique laboratory to study weak interaction
- Third-generation therefore beyond-SMsensitivity anticipated
- Any observation of lepton-flavour violation in $\tau \rightarrow 3 \mu, \tau \rightarrow \mu \gamma, \tau \rightarrow \mid \phi$ etc new physics
- SM highly suppressed
- Connections to g-2 and lepton universality violation in b decay
- Also, precision measurements of lepton universality in lepton decay, V_{us}, moments, lifetime and mass

τ mass measurement

- Fundamental parameter of the standard model
- Important input to lepton-flavour universality tests

$$
R_{e}=\frac{\mathcal{B}\left[\tau^{-} \rightarrow e^{-} \overline{\nu_{e}} \nu_{\tau}\right]}{\mathcal{B}\left[\mu^{-} \rightarrow e^{-} \overline{\nu_{e}} \nu_{\mu}\right]} \quad\left(\frac{g_{\tau}}{g_{\mu}}\right)_{e}=\sqrt{R_{e} \frac{\tau_{\mu}}{\tau_{\tau}} \frac{m_{\mu}^{3}}{m_{\tau}^{3}}\left(1+\delta_{W}\right)\left(1+\delta_{\gamma}\right)} \quad \text { (} \delta s \text { are radiative corrections) }
$$

- We use the pseudomass variable to determine mass

τ mass measurement

$$
M_{\min }=\sqrt{m_{3 \pi}^{2}+2\left(\sqrt{s} / 2-E_{3 \pi}\right)\left(E_{3 \pi}-\left|\vec{p}_{3 \pi}\right|\right)} \leq m_{\tau}
$$

- Fit to distribution with analytic form that accounts for ISR, FSR and resolution
- Knowing the scale key: beam energy (from $\mathrm{E}_{\mathrm{B}}{ }^{*}$) and momentum (from D mass)

τ mass measurement

World's most precise
measurement to date

Impact on other precision measurements

$\tau \rightarrow 3 \mu$ - lepton flavour violation search

- Inclusive tag of the non-signal τ to increase efficiency multivariate
- Cut ' n ' count in 2D plane of
- $\mathrm{M}_{3 \mu}$ and $\Delta \mathrm{E}=\mathrm{E}_{3 \mu}-\mathrm{E}_{\text {beam }}$ (in c.m.)
- Sideband derived background estimate $0.5_{-0.5}^{+1.4}$ events
- One event observed
- World best limit
- $\mathrm{BF}<1.9 \times 10^{-8}$ ($90 \% \mathrm{c.l}$.)
- Area of competition
- LHCb BF < 4.1×10^{-8} (Run 1 only)
- CMS BF $<2.9 \times 10^{-8}$ (Run 1+2)

$C K M^{201}$ and $C P$ violation

Flavour tagging improvements

Graph-neural-network approach has improved our tagging by 18%

$$
\epsilon(1-2 \omega)=37.4 \%
$$

Time-dependent $C P$ violation- $\boldsymbol{B}^{\mathbf{0}} \rightarrow \boldsymbol{\eta}^{\prime} \boldsymbol{K}_{\boldsymbol{S}}^{\mathbf{0}}$

- Decay may also have a BSM phase as it is a gluonic penguin
- alter the value of ϕ_{1} from that measured in $b \rightarrow c \bar{c} s$ transitions such as $B^{0} \rightarrow J / \psi K_{S}^{0}$
- Reconstructing $\eta^{\prime} \rightarrow \eta(\gamma \gamma) \pi^{+} \pi^{-}$and $\eta^{\prime} \rightarrow \rho\left(\pi^{+} \pi^{-}\right) \gamma$ we select 829 ± 35 events in $362 \mathrm{fb}^{-1}$ sample
- 3 D fit to $\Delta \mathrm{E}, \mathrm{m}_{\mathrm{BC}}$ and continuum suppression output
- $\sin 2 \phi_{1}^{\prime}=0.67 \pm 0.10 \pm 0.04$
- Consistent with current HFLAV average and that from $b \rightarrow c \bar{c} S$ result

Measurement of $\mathrm{R}(\mathrm{X})$

- Inclusive ratio $R(X)=\frac{B F(B \rightarrow X \tau v)}{B F(B \rightarrow X l \nu)}$
- A complementary alternative to $R\left(D^{(*)}\right)$
- Hadronic-tagging method with a $189 \mathrm{fb}^{-1}$ Belle II sample
- Hadronic tag pioneered by BaBar
- PRL 92071802
- MVA version at Belle II
- Comput. Softw. Big Sci. 3 (2019) 1, 6
- Use missing-mass squared and lepton momentum to isolate signal above $\mathrm{B} \rightarrow$ Xlv background
- Background templates calibrated to control samples and sidebands

Measurement of $R(X)$

- Inclusive ratio $R(X)=\frac{B F(B \rightarrow X \tau v)}{B F(B \rightarrow X l v)}$
- A complementary alternative to $R\left(D^{(*)}\right)$

$R(X)=0.228 \pm 0.016$ (stat) ± 0.036 (syst)

Systematics dominated by control sample reweighting procedures First at B factories
Agrees with SM prediction and the WA R($\mathrm{D}^{\left({ }^{*}\right)}$) values

- VSE IIISSIIE-nIaSs syuaाea aाIu
lepton momentum to isolate signal above $\mathrm{B} \rightarrow$ Xlv background
- Background templates calibrated to control samples and sidebands

$B^{+} \rightarrow K^{+} \boldsymbol{v} \bar{v}$: Motivation

- Well known in SM but very sensitive to BSM enhancements - $3^{\text {rd }}$ gen
- $B\left(B \rightarrow K^{+} v v\right)=(5.6 \pm 0.4) \times 10^{-6}$ [arXiv:2207.13371]
- Challenging experimentally
- Low branching fraction with large background
- No peak - two neutrinos leads to no good kinematic constraint

arXiv:2311.14647 [hep-ex]

Accepted PRD

$\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{v} \overline{\boldsymbol{v}}:$ Analysis strategy

- Two methods: an inclusive tag (8\% efficiency) and conventional hadronic tag (0.4\% efficiency)
- many common features except tag
- Inclusive event variables to suppress background

1. preselect events where missing momentum and signal kaon well reconstructed
2. First boosted decision tree (BDT1): 12 variables
3. Second BDT2: 35 variables -3 times sensitivity
4. BDT2 fit extraction variable in bins of $v \bar{v}$ mass-squared $-q^{2}$

- Many systematic studies with data-driven corrections and checks with control samples

$\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{\nu} \overline{\boldsymbol{v}}$: Results

Combined result

Evidence @ 3.5б

Tension with SM $\left(0.6 \times 10^{-5}\right)$
@ 2.7。

5) Prospects and conclusion

Belle II: after current shutdown

- We have not collected the sample size planned to date
- Beam conditions

- Since summer 2022 until Feb 2024 shutdown for accelerator upgrades to mitigate background and increase luminosity
- Detector upgrades too
- two-layer pixel detector installed
- Path to $2 \times 10^{\mathbf{3 5}} \mathbf{c m}^{-2} \mathrm{~s}^{-1}$ but new final focus to go beyond
- Proposed upgrade from 2028+
- see C. Checci and M. Roney next

Goals with current data to a few inverse $a b^{-1}$

- Semileptonic decay:
- $V_{c b}$ can we make progress on the inclusive vs. exclusive tension
- KEK report in preparation
- R(D)-R(D*)
- Electroweak penguin
- Missing energy modes like $B \rightarrow K \tau \tau$ and Kvv
- CP violation
- α and the gluonic penguins
- tau
- LFV and precision

> Our Snowmass submission is the most up to date prospects document

- Charm
- final states with neutrals, e.g., $D \rightarrow \pi^{0} \pi^{0}$
- Quarkonium
- $Y(10753)$ scan and isospin partners (ISR and B decay)
- Dark sector and low multiplicity
- dark photon and $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-}$

Conclusion

- $\mathrm{e}^{+} \mathrm{e}^{-}$has an important role to play in the future of flavour
- Belle II is catching up to first generation sample size, we are producing competitive and exciting results
- 37 papers and 10 preliminary results with a paper in preparation
- More before the summer with the Run 1 data
- A lot more to come once we enter the " 10^{35} era" of Run 2 which is just starting

Backup

Tau physics motivation II

- Precision measurements of the τ lepton can have significant impact
- Example:
- first row unitarity of CKM matrix 'Cabibbo angle anomaly'
- $\mathrm{B}(\tau \rightarrow \mathrm{Kv}) / \mathrm{B}(\tau \rightarrow \pi v)$ proportional to $\left|V_{u s} / V_{u d}\right|^{2}$
- Combine with lattice QCD information to provide additional constraint
- Additionally, lepton-flavour universality and dipole moments
- Mass and lifetime important inputs to these calculations

...away from heavy flavour muon g-2

Plot from A. Keshavarzi talk at Lattice 2023

...away from heavy flavour muon g-2

Plot from A. Keshavarzi talk at Lattice 2023

$$
\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)
$$

Muon anomalous magnetic moment

$$
a_{\mu}=\frac{g-2}{2}=a_{\mu}^{\mathrm{QED}}+a_{\mu}^{\mathrm{EW}}+a_{\mu}^{\mathrm{QCD}}
$$

$$
\begin{aligned}
& \text { Hadron contribution term } \\
& \longrightarrow a_{\mu}^{\mathrm{QCD}}=a_{\mu}^{\mathrm{HVP}}+a_{\mu}^{\mathrm{HLbL}}
\end{aligned}
$$

 !

$$
\text { (a) The hadronic } R \text {-ratio }
$$

Leading-order HVP rerm
$2^{\text {nd }}$ largest contribution to the hadronic vacuum polarization estimate as region below 1 GeV in
 c.m. energy dominates
$\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$

- Initial-state radiation technique wide invariant mass range
- Partial Run 1 data set - $191 \mathrm{fb}^{-1}$
- Selection via kinematic fits
- Key challenge is π^{0} efficiency
- Custom determination using ω decay
- Background control samples for $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0} \gamma_{I S R}, e^{+} e^{-} \rightarrow$ $q \bar{q} \gamma_{I S R}$ and $e^{+} e^{-} \rightarrow K^{+} K^{-} \pi^{0} \gamma_{I S R}$

Signal process : $e^{+} e^{-} \rightarrow \gamma_{\mathrm{ISR}} \pi^{+} \pi^{-} \pi^{0}(\rightarrow \gamma \gamma)$
Signal spectrum
Efficiency

$$
\frac{d N_{\mathrm{signal}}}{d m}=\sigma_{e e \rightarrow 3 \pi} \cdot \varepsilon \cdot \frac{d \mathcal{L}_{\mathrm{eff}}}{d m}
$$

3π mass Cross section

$\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$

Source		
Trigger	$0.62-1.05 \mathrm{GeV} / c^{2}$	
ISR photon detection	0.1	(-0.09)
Tracking	0.7	$(+0.15)$
π^{0} detection	0.8	(-1.35)
Kinematic fit $\left(\chi^{2}\right)$	0.6	(-1.43)
Event selection	0.2	(-0.0)
Generator	1.2	
Integrated luminosity	0.6	
Radiative corrections	0.5	
MC statistics	0.2	
Background subtraction	$0.3-0.5$	
Unfolding	$0.7-15$	
Total uncertainty	$2.2-15$	
(Total correction $\left.\varepsilon / \varepsilon_{\mathrm{MC}}-1\right)$		

$$
a_{\mu}^{3 \pi}=(49.02 \pm 0.23 \pm 1.07) \times 10^{-10}
$$

2.6σ tension with BaBar

Light dark sector searches

Dark Sector Candidates, Anomalies, and Search Techniques

- Can access the mass range favored by light dark sector
- Possible sub-GeV scenario

Light dark sector searches

Dark Sector Candidates, Anomalies, and Search Techniques

- Can access the mass range favored by light dark sector
- Possible sub-GeV scenario
- DM weakly coupled to SM through a light mediator X :
- vector (Z'/dark photon), axion like particles (ALPs), scalar (dark Higgs) or fermions (sterile v)
- Some links to anomalies, e.g., g-2

Invisible decay of Z' to dark matter

- Search for narrow peak in the recoil mass of dimuon pairs

Invisible decay of Z' to dark matter

- Limits on Z^{\prime} coupling g' and mass
- $g_{\mu}-2$ region ruled out for masses from 0.8 to 5 GeV

Phys. Rev. Lett. 130, 231801 (2023)

Paper in preparation

$\boldsymbol{\gamma} / \phi_{3}$: power of Belle + Belle II

- Standard candle in the SM
- Tree-level only + no theory unc.
- LHCb leads the way: $\gamma=(63.8 \pm 3.6)^{\circ}$
- LHCB-CONF-2022-003

Paper in preparation

v/ ϕ_{3} : power of Belle + Belle II

- Standard candle in the SM
- Tree-level only + no theory unc.
- LHCb leads the way: $\gamma=(63.8 \pm 3.6)^{\circ}$
- LHCB-CONF-2022-003
- Several Belle ($711 \mathrm{fb}^{-1}$) + Belle II measurements (varying sample size) - total $\mathrm{O}\left(1 \mathrm{ab}^{-1}\right)$
- $\mathrm{D} \rightarrow \mathrm{K}_{\mathrm{S}}^{0}$ hh - JHEP 02 (2022) 063
- $\mathrm{D} \rightarrow \mathrm{K}_{\mathrm{S}} \mathrm{K} \pi$ - accepted by JHEP
- $\mathrm{D} \rightarrow \mathrm{K}_{\mathrm{S}}^{0} \pi^{0}$, KK - arXiv:2308.05048
- + Belle-only $D \rightarrow K \pi$ and others
- A few ab^{-1} will give a good cross check of this SM parameter

$B \rightarrow K \pi$ isospin sum rule

- Relates these various penguin modes to give a null test of the SM with O(1\%) SM precision - PRD 59, 113002 (1999)

$$
I_{K \pi}=\mathcal{A}_{K^{+} \pi^{-}}+\mathcal{A}_{K^{0} \pi^{+}} \frac{\mathcal{B}\left(K^{0} \pi^{+}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)} \frac{\tau_{B^{0}}}{\tau_{B^{+}}}-2 \mathcal{A}_{K^{+} \pi^{0}} \frac{\mathcal{B}\left(K^{+} \pi^{0}\right)}{\mathcal{\mathcal { B }}\left(K^{+} \pi^{-}\right)} \frac{\tau_{B^{0}}}{\tau_{B^{+}}}-2 \mathcal{A}_{K^{0} \pi^{0}} \frac{\mathcal{B}\left(K^{0} \pi^{0}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)}
$$

- All inputs measured at Belle II including 'no vertex' time-dependent $C P$ asymmetry for $B \rightarrow K^{0}{ }_{s} \pi^{0}-362 \mathrm{fb}^{-1}$ sample

$B \rightarrow K \pi$ isospin sum rule

- Relates these various penguin modes to give a null test of the SM with O(1\%) SM precision - PRD 59, 113002 (1999)

$$
I_{K \pi}=\mathcal{A}_{K^{+} \pi^{-}}+\mathcal{A}_{K^{0} \pi^{+}} \frac{\mathcal{B}\left(K^{0} \pi^{+}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)} \frac{\tau_{B^{0}}}{\tau_{B^{+}}}-2 \mathcal{A}_{K^{+} \pi^{0}} \frac{\mathcal{B}\left(K^{+} \pi^{0}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)} \frac{\gamma_{B^{+}}}{B^{+}}-2 \mathcal{A}_{K^{0} \pi^{0}} \frac{\mathcal{B}\left(K^{0} \pi^{0}\right)}{\mathcal{B}\left(K^{+} \pi^{-}\right)}
$$

- All inputs measured at Belle Il including 'no vertex' time-dependent $C P$ asymmetry for $B \rightarrow K_{S}^{0} \pi^{0}-362 \mathrm{fb}^{-1}$ sample

$$
\begin{aligned}
B= & (14.2 \pm 0.4 \pm 0.9) \times 10^{-6} \\
& \text { Large } \pi^{0} \text { efficiency syst. }
\end{aligned}
$$

$$
A_{K^{0}}=-0.01 \pm 0.12 \pm 0.05
$$ Combination of time-dependent and time-integrated analyses

$B \rightarrow K \pi$ isospin sum rule

- Relates these various penguin modes to give a null test of the SM with O(1\%) SM precision - PRD 59, 113002 (1999)

$$
I_{K \pi}=(-3 \pm 13 \pm 5) \%
$$

Agrees with SM. Competitive with WA: $(-13 \pm 11) \%$.

Belle paper in preparation

Angular coefficients in $\mathrm{B} \rightarrow \mathrm{D}^{*}$ Iv and V_{cb}

- Measure 4D-differential distribution in terms of decay angles and w
- overall proportionality to $\left|\mathrm{V}_{\mathrm{cb}}\right|^{2}$
- $w \geq 1$ is the hadronic recoil parameter - relates to mom. transfer to the leptonic system

Belle paper in preparation

Angular coefficients in $\mathrm{B} \rightarrow \mathrm{D}^{*}$ Iv and V_{cb}

- Measure 4D-differential distribution in terms of decay angles and w
- overall proportionality to $\left|\mathrm{V}_{\mathrm{cb}}\right|^{2}$
- $w \geq 1$ is the hadronic recoil parameter - relates to mom. transfer to the leptonic system
- Extract 12 angular coefficients of the distribution in bins of w for the first time
 using full Belle $711 \mathrm{fb}^{-1}$ sample
- hadronically tagged

Belle paper in preparation

Angular coefficients in $\mathrm{B} \rightarrow \mathrm{D}^{*} \mid \mathrm{v}$ and V_{cb}

- Measure 4D-differential distribution in terms of decay angles and w
- overall proportionality to $\left|\mathrm{V}_{\mathrm{cb}}\right|^{2}$
- $w \geq 1$ is the hadronic recoil parameter - relates to mom. transfer to the leptonic system
- Extract 12 angular coefficients of the distribution in bins of w for the first time
 using full Belle $711 \mathrm{fb}^{-1}$ sample
- hadronically tagged
- Fit performed to coefficients in different form-factor parameterizations and with LQCD inputs to extract V_{cb} as well as parameters of the form-factor model
- WA BF also taken externally


```
    *)
    |}\mp@subsup{V}{\textrm{cb}}{}|=(40.9\pm0.7)\times1\mp@subsup{0}{}{-3}(\textrm{CLN}
```


Hadronic tag

- Full-reconstruction of one B

$\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{v} \overline{\boldsymbol{v}}$: Inclusive signal extraction

$\left(3\right.$ bins in $\left.q_{\text {rec }}^{2}\right) \times\left(4\right.$ bins in $\mu\left(\right.$ BDT $\left.\left._{2}\right)\right)$

- Continuum template constrained by offresonance

$B^{+} \rightarrow K^{+} \boldsymbol{v} \overline{\boldsymbol{v}}:$ Efficiency validation

Ratio between selection on data and simulation for the control sample 1 with 3% uncertainty

$B^{+} \rightarrow K^{+} \boldsymbol{v} \bar{v}$: Background validation example

- An example of a difficult background is charmless $B^{+} \rightarrow K^{+} K_{L}^{0} K_{L}^{0}$, where K_{L}^{0} mesons escape detection
- has an order of magnitude larger BF than signal
- Dedicated studies $B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}$ show good modelling
- generous systematics assigned
- Similar studies for $B^{+} \rightarrow K^{+} n \bar{n}, B^{+} \rightarrow$ $K^{+} K_{L}^{0} K_{S}^{0}$

$B^{+} \rightarrow K^{+} \boldsymbol{v} \bar{v}:$

$>90 \%$ background from $\mathrm{B} \rightarrow \mathrm{D}\left(\mathrm{K}^{+} \mathrm{X}\right) \mid \mathrm{lv}+\mathrm{B} \rightarrow \mathrm{D}\left(\mathrm{K}_{\mathrm{L}} \mathrm{X}\right) \mathrm{K}^{+}$

- KX system agrees well between data and MC
- Prompt K^{+}production studied using prompt π^{+}from $\mathrm{B}^{+} \rightarrow \pi^{+} X$ decays
- Systematic uncertainties on decay branching fractions, enlarged for $D \rightarrow K_{L} X$ and $B \rightarrow D^{* *} \mid v$

$\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{v} \bar{v}$: Systematic uncertainties

Source	Correction	Uncertainty type	Uncertainty size	Impact on σ_{μ}
Normalization of $B \bar{B}$ background	-	Global, 2 NP	50\%	0.88
Normalization of continuum background	-	Global, 5 NP	50\%	0.10
Leading B-decays branching fractions	-	Shape, 5 NP	$O(1 \%)$	0.22
Branching fraction for $B^{+} \rightarrow K^{+} K_{\mathrm{L}}^{0} K_{\mathrm{L}}^{0}$	q^{2} dependent $O(100 \%)$	Shape, 1 NP	20\%	0.49
p-wave component for $B^{+} \rightarrow K^{+} K_{\mathrm{S}}^{0} K_{\mathrm{L}}^{0}$	q^{2} dependent $O(100 \%)$	Shape, 1 NP	30\%	0.02
Branching fraction for $B \rightarrow D^{(* *)}$	-	Shape, 1 NP	50\%	0.42
Branching fraction for $B^{+} \rightarrow n \bar{n} K^{+}$	q^{2} dependent $O(100 \%)$	Shape, 1 NP	100\%	0.20
Branching fraction for $D \rightarrow K_{L} X$	$+30 \%$	Shape, 1 NP	10\%	0.14
Continuum background modeling, $\mathrm{BDT}_{\mathrm{c}}$	Multivariate $O(10 \%)$	Shape, 1 NP	100\% of correction	0.01
Integrated luminosity	-	Global, 1 NP	1\%	<0.01
Number of $B \bar{B}$	-	Global, 1 NP	1.5\%	0.02
Off-resonance sample normalization	-	Global, 1 NP	5\%	0.05
Track finding efficiency	-	Shape, 1 NP	0.3\%	0.20
Signal kaon PID	p, θ dependent $O(10-100 \%)$	Shape, 7 NP	$O(1 \%)$	0.07
Photon energy scale	-	Shape, 1 NP	0.5\%	0.08
Hadronic energy scale	-10\%	Shape, 1 NP	10\%	0.36
K_{L}^{0} efficiency in ECL	- -17%	Shape, 1 NP	8\%	0.21
Signal SM form factors	q^{2} dependent $O(1 \%)$	Shape, 3 NP	$O(1 \%)$	0.02
Global signal efficiency	-	Global, 1 NP	3%	0.03
MC statistics	-	Shape, 156 NP	$O(1 \%)$	0.52

$B^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{v} \overline{\boldsymbol{v}}$: Results

弓
$\mathrm{BF}_{\text {inc }}=(2.8 \pm 0.5$ (stat) ± 0.5 (syst) $) \times 10^{-5}$
$\mathrm{BF}_{\text {had }}=\left(1.1_{-0.8}^{+0.9}(\text { stat })_{-0.5}^{+0.8}(\right.$ syst $\left.)\right) \times 10^{-5}$
$B F_{\text {comb }}=\left(2.4 \pm 0.5(\text { stat })_{-0.4}^{+0.5}(\right.$ syst $\left.)\right) \times 10^{-5}$

Post-fit distributions

Upper: full fit region

Lower: most sensitive region
arXiv:2311.14647 [hep-ex]

Cross checks

- Multiple checks of the anallyses stability, including tests dividing data into approximately equal sub-samples. Reported here as measured branching fraction divided by SM expectation, $\mu=\mathrm{B} / \mathrm{B}_{\mathrm{SM}}$.
- Control measurement of $B^{+} \rightarrow \pi^{+} K^{0}$ decay

