Tau and Low-Multiplicity Decays at Belle and Belle II

Stefan Wallner (swallner@mpp.mpg.de)

Max Planck Institute for Physics

Lake Louise Winter Institute February 21, 2024

au Physics at Belle and Belle II

- Unique and clean laboratory to study weak interaction and hadronic systems
- ► Third-generation lepton potentially sensitive to Beyond Standard Model physics
- Precision measurement of τ requires τ factory

au Physics at Belle and Belle II

- Unique and clean laboratory to study weak interaction and hadronic systems
- ► Third-generation lepton potentially sensitive to Beyond Standard Model physics
- ightharpoonup Precision measurement of au requires au factory
 - ▶ Belle : $900\,\mathrm{M}\ au$ pairs produced ($\mathcal{L}pprox 1\,\mathrm{ab}^{-1}$)
 - lacktriangle Belle II: 400 M au pairs produced ($\mathcal{L} pprox 0.4\,\mathrm{ab}^{-1}$)

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{ au}$$

- Fundamental physics parameter and important input, e.g. for lepton-universality tests

 Pseudomass method in $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$
- - $ightharpoonup M_{\min}$ distribution ends at m_{τ}
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - Beam energy $\sqrt{s}/2$
 - ightharpoonup Calibrated using $B\bar{B}$ events
 - ► Final-state particle momentum
 - ightharpoonup Calibrated using $D^0 o K\pi$ standard candle
- Belle II provides World's most precise result

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{\tau}$$

- Fundamental physics parameter and important input, e.g. for lepton-universality tests

 Pseudomass method in $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$
- - $ightharpoonup M_{\min}$ distribution ends at m_{τ}
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - ightharpoonup Beam energy $\sqrt{s}/2$
 - ightharpoonup Calibrated using $B\bar{B}$ events
 - ► Final-state particle momentum
 - ightharpoonup Calibrated using $D^0 o K\pi$ standard candle
- Belle II provides World's most precise result

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{\tau}$$

- Fundamental physics parameter and important input, e.g. for lepton-universality tests

 Pseudomass method in $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$
- - $ightharpoonup M_{\min}$ distribution ends at m_{τ}
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - Beam energy $\sqrt{s}/2$
 - ightharpoonup Calibrated using $B\bar{B}$ events
 - ► Final-state particle momentum
 - ightharpoonup Calibrated using $D^0 o K\pi$ standard candle
- Belle II provides World's most precise result

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{\tau}$$

- ► Fundamental physics parameter and important input, e.g. for lepton-universality tests
- ▶ Pseudomass method in $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$
 - $ightharpoonup M_{\min}$ distribution ends at m_{τ}
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - ▶ Beam energy $\sqrt{s}/2$
 - ightharpoonup Calibrated using $B\bar{B}$ events
 - Final-state particle momentum
 - lacktriangle Calibrated using $D^0 o K\pi$ standard candle
- ► Belle II provides World's most precise result

Partial-Wave Analysis of $au^- o \pi^- \pi^- \pi^+ u_{\tau}$ Decays

- \rightarrow $\pi^-\pi^-\pi^+$ system forms meson resonances
- ▶ Dominated by $a_1(1260)^- \rightarrow \rho^0 \pi^-$ decay
 - Parameters of $a_1(1260)$ poorly known
 - ▶ CLEO II measured twice larger width in τ decays compared to other experiments
 - ► Also other contributions possible
 - a₁(1420) resonance observed only by COMPASS in scattering data
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
 - ► Fit partial-wave model to 7-dimensional angular and mass distribution
- ► CLEO-II performed the only amplitude analysis [PRD 61 (1999) 012002]

Partial-Wave Analysis of $au^- o \pi^- \pi^- \pi^+ u_ au$ Decays

- \blacktriangleright $\pi^-\pi^-\pi^+$ system forms meson resonances
- ▶ Dominated by $a_1(1260)^- \rightarrow \rho^0 \pi^-$ decay
 - Parameters of $a_1(1260)$ poorly known
 - ightharpoonup CLEO II measured twice larger width in au decays compared to other experiments
 - Also other contributions possible
 - $a_1(1420)$ resonance observed only by COMPASS in scattering data
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
 - ► Fit partial-wave model to 7-dimensional angular and mass distribution
- CLEO-II performed the only amplitude analysis [PRD 61 (1999) 012002]

Partial-Wave Analysis of $au^- o \pi^- \pi^- \pi^+ u_{ au}$ Decays

- \blacktriangleright $\pi^-\pi^-\pi^+$ system forms meson resonances
- ▶ Dominated by $a_1(1260)^- \rightarrow \rho^0 \pi^-$ decay
 - Parameters of $a_1(1260)$ poorly known
 - ightharpoonup CLEO II measured twice larger width in au decays compared to other experiments
 - Also other contributions possible
 - $ightharpoonup a_1(1420)$ resonance observed only by COMPASS in scattering data
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
 - ► Fit partial-wave model to 7-dimensional angular and mass distribution
- ► CLEO-II performed the only amplitude analysis [PRD 61 (1999) 012002]

Partial-Wave Analysis of $au^- o \pi^- \pi^- \pi^+ u_{ au}$ Decays

- Clear $a_1(1260)$ signal in $1^{++}[\rho(770)\pi]_S$ wave
- Narrow $a_1(1420)$ signal in intensity of $1^{++}[f_0(980)\pi]_P$ wave
 - **→** First confirmation of COMPASS measurement

Partial-Wave Analysis of $au^- o \pi^- \pi^- \pi^+ u_{ au}$ Decays

- Clear $a_1(1260)$ signal in $1^{++}[\rho(770)\pi]_S$ wave
- Narrow $a_1(1420)$ signal in intensity of $1^{++}[f_0(980)\pi]_P$ wave
 - → First confirmation of COMPASS measurement

Lepton-Flavor Violation (LFV) in τ Decays

- lacktriangle Lepton Flavor Violation (LVF) is negligibly small in Standard Model +~
 u mixing (below 10^{-50})
- \triangleright Various new-physics models predict branching fractions in the range $10^{-7} 10^{-10}$
 - ➡ Search for lepton flavor violating decay channels

$au^- ightarrow \ell^- V^0$

- Search for decays $\tau^- \to \ell^- V^0$, which $V^0 = \rho^0, \phi, \omega, K^{*,0}$
- ► Consider 1-prong and 3-prong decays on tag side
- ► Multivariate analysis (BDT) to select signal
- Signal region defined by
 - $ightharpoonup M_{\ell V^0} = m_{ au}$ due to missing neutrino
 - $ightharpoonup \Delta E = E_{\ell V^0}^* \sqrt{s}/2 = 0$ upon radiative effects
- ► World's best upper limit for 8/10 channels (90 % confidence level)

$$B(\tau^- \to e^- V^0) < (1.7-2.4) \times 10^{-8}$$

$$B(\tau^- \to \mu^- V^0) < (1.7-4.3) \times 10^{-8}$$

$au^- o \ell^- V^0$

- Search for decays $\tau^- \to \ell^- V^0$, which $V^0 = \rho^0, \phi, \omega, K^{*,0}$
- ► Consider 1-prong and 3-prong decays on tag side
- ► Multivariate analysis (BDT) to select signal
- Signal region defined by
 - $ightharpoonup M_{\ell V^0} = m_{\tau}$ due to missing neutrino
 - $ightharpoonup \Delta E = E_{\ell V^0}^* \sqrt{s}/2 = 0$ upon radiative effects
- ➤ World's best upper limit for 8/10 channels (90 % confidence level)
 - \blacktriangleright $B(\tau^- \to e^- V^0) < (1.7-2.4) \times 10^{-8}$
 - $B(\tau^- \to \mu^- V^0) < (1.7-4.3) \times 10^{-8}$

Lepton-Flavor Violation (LFV) in τ Decays

$au o \mu\mu\mu$

- Untagged: Inclusively use rest of event
- ► Multivariate selection yields 3× larger efficiency compared to Belle
- Upper limit

$$\blacktriangleright B(\tau^- \to \mu^- \mu^- \mu^+) < 1.9 \times 10^{-8}$$

► World's most stringent limit

Dark Sector Searches at Belle II

- ► Dark sector physics
 - **→** Low multiplicity events
- ► L1 trigger for low multiplicity events
 - Single muon, track, photon
 - Displaced-vertex trigger under study
- ► Well known initial condition at *B* factories important for dark sector searches
- Belle II is sensitive to direct production of MeV to GeV mediators

Searches for the $L_{\mu}-L_{\tau}$ Gauge Boson Z'

- New gauge boson Z' couples only to 2^{nd} and 3^{rd} generation of leptons $(L_{\mu} L_{\tau})$
- ► Coupling to μ , τ , ν_{μ} , ν_{τ} with strength g'
 - Decays visibly and invisibly
 - lackbox Decays to dark matter χ could be dominant

- ightharpoonup Search for peak in mass of recoil system against $\mu\mu$
- Neural network for background suppression trained on full $M_{Z'}$ range of Z'
- ► No significant excess observed
- $(g-2)_{\mu}$ favored region excluded for $0.8 < M_{Z'} < 5 \, \text{GeV}/c^2$ for a fully invisible Z'

- ightharpoonup Search for peak in mass of recoil system against $\mu\mu$
- Neural network for background suppression trained on full $M_{Z'}$ range of Z'
- ► No significant excess observed
- $(g-2)_{\mu}$ favored region excluded for $0.8 < M_{Z'} < 5 \,\text{GeV}/c^2$ for a fully invisible Z'

- ightharpoonup Search for peak in mass of recoil system against $\mu\mu$
- ightharpoonup au decays to single charged particle + neutrals
 - ➤ Suppress background using characteristic kinematics
- Exclusion limits on couplings for three models: Z', Axion-like particle (ALP), and leptonic scalar (S)

- \triangleright Search for peak in mass of recoil system against $\mu\mu$
- ightharpoonup au decays to single charged particle + neutrals
 - ➡ Suppress background using characteristic kinematics
- Exclusion limits on couplings for three models: Z',
 Axion-like particle (ALP), and leptonic scalar (S)
 - $ightharpoonup m_S$ probed for the first time above $6.5 \,\mathrm{GeV}/c^2$
 - ► World-leading limits for ALPs

- \blacktriangleright Search for peak in mass of recoil system against $\mu\mu$
- ightharpoonup au decays to single charged particle + neutrals
 - ➡ Suppress background using characteristic kinematics
- Exclusion limits on couplings for three models: Z',
 Axion-like particle (ALP), and leptonic scalar (S)
 - $ightharpoonup m_S$ probed for the first time above $6.5 \,\mathrm{GeV}/c^2$
 - World-leading limits for ALPs

- ► Search for peak in opposite-charge di-muon mass
- ► First upper limit for muonic scalar model from a explicit search
- ▶ Upper limits on Z' already competitive
 - ▶ Due to improved background suppression
- Exclude Z' and scalar explanations for $(g-2)_{\mu}$ over wide mass range

- ► Search for peak in opposite-charge di-muon mass
- ► First upper limit for muonic scalar model from a explicit search
- ► Upper limits on Z' already competitive
 - ▶ Due to improved background suppression
- Exclude Z' and scalar explanations for $(g-2)_{\mu}$ over wide mass range

Summary

- \blacktriangleright Belle and Belle II are leading au and dark sector searches
 - ightharpoonup Precision measurements of au properties
 - Various studies of Standard Model parameters
 - Searches for Beyond Standard Model physics
- Many frontiers of improvement
 - Data sample size
 - Improved analysis techniques and reduced systematic uncertainties
 - Accurate physics models

E		:-	:		:
Further	anar	7515	ın	יחס	vsics

Lepton-flavor violation in $au^- o \ell^- \phi$ [arXiv:2305.04759]

DI 400 (0000) 4040001

- ▶ Lepton-flavor violation in $\tau^- \to \ell^- \alpha$
- [PRL 130 (2023) 181803]
- Test lepton-flavor universality in $au^- o \ell^- ar{
 u}_\ell
 u_ au$
- ightharpoonup Searches for heavy neutrino in au decays
- [PRL 131 (2023) 211802] [PRL 131 (2023) 021801]

[JHEP 11 (2022)]

- Michell Parameters in $\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau$
- Electric Dipole Moment of the \(\tau \)

Further dark-sector searches

- ▶ Long-lived spin-0 mediator in $b \rightarrow s$
- [PRD 108 (2023) L111104]

▶ Dark Higgsstrahlung in $\mu^+\mu^-$

[PRL 130 (2023) 071804] [PRL 125 (2020) 161806]

- Axionlike particle decaying to $\gamma\gamma$
 - Dark leptophilic scalar in association with $au^- au^+$ [arXiv:2207.07476]

Summary

- lacktriangle Belle and Belle II are leading au and dark sector searches
 - ightharpoonup Precision measurements of au properties
 - ► Various studies of Standard Model parameters
 - Searches for Beyond Standard Model physics
- ► Many frontiers of improvement
 - Data sample size
 - Improved analysis techniques and reduced systematic uncertainties
 - Accurate physics models

Backup

Outline

- 11~ au Mass Measurement at Belle II
- 12 Partial-Wave Analysis of $au^- au \pi^- \pi^- \pi^+
 u_ au$ Decays
- 13 Lepton-Flavor Violation (LFV) in au Decays

$$\begin{array}{c} \bullet \quad \tau^- \to \ell^- V^0 \\ \bullet \quad \tau \to \ell \phi \end{array}$$

$$au au o \ell \phi$$

- lacksquare $au o \ell lpha$, where lpha is an invisible particle
- 14 Searches for $Z' \rightarrow \text{invisible}$

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{ au}$$

- ► Fundamental physics parameter and important input, e.g. for lepton-universality tests
- ► Pseudomass method in $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$
 - $ightharpoonup M_{\min}$ distribution ends at m_{τ}
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by

Beam energy $\sqrt{s}/2$

► Calibrated using $B\bar{B}$ events

Final-state particle momentum

ightharpoonup Calibrated using $D^0 o K\pi$ standard candle

- Fit to M_{\min} distribution
- ► Belle II provides World's most precise result

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{\tau}$$

- ► Fundamental physics parameter and important input, e.g. for lepton-universality tests
- ▶ Pseudomass method in $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$
 - $ightharpoonup M_{\min}$ distribution ends at m_{τ}
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by

Belle II

- ightharpoonup Fit to M_{\min} distribution
- ► Belle II provides World's most precise result

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s/2} - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{\tau}$$

- ► Fundamental physics parameter and important input, e.g. for lepton-universality tests
- ▶ Pseudomass method in $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$
 - $ightharpoonup M_{\min}$ distribution ends at $m_{ au}$
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - ightharpoonup Beam energy $\sqrt{s/2}$
 - ightharpoonup Calibrated using $B\bar{B}$ events
 - Final-state particle momentum
 - ightharpoonup Calibrated using $D^0 o K\pi$ standard candle
- Fit to M_{\min} distribution
- ► Belle II provides World's most precise result

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{\tau}$$

- ► Fundamental physics parameter and important input, e.g. for lepton-universality tests
- ▶ Pseudomass method in $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$
 - $ightharpoonup M_{\min}$ distribution ends at m_{τ}
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - ▶ Beam energy $\sqrt{s}/2$
 - ightharpoonup Calibrated using $B\bar{B}$ events
 - ► Final-state particle momentum
 - lacktriangle Calibrated using $D^0 o K\pi$ standard candle
- Fit to M_{\min} distribution
- ► Belle II provides World's most precise result

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{\tau}$$

- ► Fundamental physics parameter and important input, e.g. for lepton-universality tests
- ▶ Pseudomass method in $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$
 - $ightharpoonup M_{\min}$ distribution ends at m_{τ}
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - ightharpoonup Beam energy $\sqrt{s}/2$
 - ightharpoonup Calibrated using $B\bar{B}$ events
 - ► Final-state particle momentum
 - ightharpoonup Calibrated using $D^0 o K\pi$ standard candle
- ightharpoonup Fit to M_{\min} distribution
- ► Belle II provides World's most precise result

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} < m_{ au}$$

- ► Fundamental physics parameter and important input, e.g. for lepton-universality tests
- ▶ Pseudomass method in $\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau}$
 - $ightharpoonup M_{\min}$ distribution ends at m_{τ}
 - Smeared by resolution and initial and final state radiation
- Accuracy determined by
 - ▶ Beam energy $\sqrt{s}/2$
 - ightharpoonup Calibrated using $B\bar{B}$ events
 - Final-state particle momentum
 - lacktriangle Calibrated using $D^0 o K\pi$ standard candle
- Fit to M_{\min} distribution
- ► Belle II provides World's most precise result

Partial-Wave Analysis of $au^- o \pi^- \pi^- \pi^+ u_{\tau}$ Decays

- $\rightarrow \pi^-\pi^-\pi^+$ system forms meson resonances
- ▶ Dominated by $a_1(1260)^- \rightarrow \rho^0 \pi^-$ decay
 - Parameters of $a_1(1260)$ poorly known
 - ightharpoonup CLEO II measured twice larger width in au decays compared to other experiments
 - ► Also other contributions possible
 - \triangleright $a_1(1420)$ resonance observed only by COMPASS
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
 - ► Fit partial-wave model to 7-dimensional angular and mass distribution
- ► CLEO-II performed the only amplitude analysis [PRD 61 (1999) 012002]

- \blacktriangleright $\pi^-\pi^-\pi^+$ system forms meson resonances
- ▶ Dominated by $a_1(1260)^- \rightarrow \rho^0 \pi^-$ decay
 - Parameters of $a_1(1260)$ poorly known
 - ▶ CLEO II measured twice larger width in τ decays compared to other experiments
 - ► Also other contributions possible
 - $ightharpoonup a_1(1420)$ resonance observed only by COMPASS
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
 - ► Fit partial-wave model to 7-dimensional angular and mass distribution
- CLEO-II performed the only amplitude analysis [PRD 61 (1999) 012002]

- \blacktriangleright $\pi^-\pi^-\pi^+$ system forms meson resonances
- ▶ Dominated by $a_1(1260)^- \rightarrow \rho^0 \pi^-$ decay
 - Parameters of $a_1(1260)$ poorly known
 - ▶ CLEO II measured twice larger width in τ decays compared to other experiments
 - Also other contributions possible
 - $ightharpoonup a_1(1420)$ resonance observed only by COMPASS
- Perform amplitude analysis to separate contributions of partial waves with well-defined quantum numbers
 - ► Fit partial-wave model to 7-dimensional angular and mass distribution
- ► CLEO-II performed the only amplitude analysis [PRD 61 (1999) 012002]

- ▶ 1-prong decays on tag side
- ► Achieve high efficiency: 32 %
- ► Maintain low impurity: 18 %
 - ► Main background from $\tau^- \to \pi^- \pi^- \pi^+ \pi^0 \nu_{\tau}$

- ▶ Dominant $a_1(1260)$ signal in $1^{++}[\rho(770)\pi]_S$ wave
- Narrow $a_1(1420)$ signal in intensity of $1^{++}[f_0(980)\pi]_P$ wave
 - **➡** First confirmation of COMPASS measurement
- Novel "freed-isobar" method not requiring knowledge of isobar resonance
 - \blacktriangleright Allows to measure also amplitude of $\pi\pi$ subsystem
 - \triangleright Clear $\rho(770)$ signal
 - \Rightarrow Precision measurement of $\rho(770)$ in clean

- ▶ Dominant $a_1(1260)$ signal in $1^{++}[\rho(770)\pi]_S$ wave
- Narrow $a_1(1420)$ signal in intensity of $1^{++}[f_0(980)\pi]_P$ wave
 - → First confirmation of COMPASS measurement
- Novel "freed-isobar" method not requiring knowledge of isobar resonance

Allows to measure also amplitude of $\pi\pi$ subsystems π

ightharpoonup Precision measurement of $\rho(770)$ in clean

- ▶ Dominant $a_1(1260)$ signal in $1^{++}[\rho(770)\pi]_S$ wave
- Narrow $a_1(1420)$ signal in intensity and phase of $1^{++}[f_0(980)\pi]_P$ wave
 - → First confirmation of COMPASS measurement
- Novel "freed-isobar" method not requiring knowledge of isobar resonance

Allows to measure also amplitude of $\pi\pi$ subsystem

 \sim Clear $\rho(770)$ signal

ightharpoonup Precision measurement of ho(770) in clean

- ▶ Dominant $a_1(1260)$ signal in $1^{++}[\rho(770)\pi]_S$ wave
- Narrow $a_1(1420)$ signal in intensity and phase of $1^{++}[f_0(980)\pi]_P$ wave
 - → First confirmation of COMPASS measurement
- Novel "freed-isobar" method not requiring knowledge of isobar resonance
 - ▶ Allows to measure also amplitude of $\pi\pi$ subsystem
 - ightharpoonup Clear $\rho(770)$ signal
 - Precision measurement of $\rho(770)$ in clean environment

- ▶ Dominant $a_1(1260)$ signal in $1^{++}[\rho(770)\pi]_S$ wave
- Narrow $a_1(1420)$ signal in intensity and phase of $1^{++}[f_0(980)\pi]_P$ wave
 - → First confirmation of COMPASS measurement
- Novel "freed-isobar" method not requiring knowledge of isobar resonance
 - ightharpoonup Allows to measure also amplitude of $\pi\pi$ subsystem
 - ightharpoonup Clear $\rho(770)$ signal
 - ightharpoonup Precision measurement of $\rho(770)$ in clean environment

Lepton-Flavor Violation (LFV) in τ Decays

- lacktriangle Lepton Flavor Violation (LVF) is negligibly small in Standard Model $+ \,
 u$ mixing (below 10^{-50})
- \blacktriangleright Various new-physics models predict branching fractions in the range $10^{-7} 10^{-10}$
 - ➡ Search for lepton flavor violating decay channels

[Belle II Snowmass Paper]

Lepton-Flavor Violation (LFV) in τ Decays $\tau \to \ell \phi$

$$au o \ell \phi$$

- ightharpoonup Similar strategy as $au^- o \ell V^0$ measurement at Belle
- ► First application of untagged approach
 - ► Fully inclusive on tag side
- Upper limits
 - $B(\tau^- \to e^- \phi) < 23 \times 10^{-8}$
 - $B(\tau^- \to \mu^- \phi) < 9.7 \times 10^{-8}$

$au ightarrow \ell lpha$, where lpha is an invisible particle

- Fixed kinematic of two-body decay for given m_{α} characteristic for signal
- ▶ Normalized lepton energy X_ℓ in τ^- rest frame
 - $ightharpoonup au^-
 ightharpoonup \ell^- lpha$ yields fixed X_ℓ
 - ightharpoonup Broadened by approximation of au^- rest frame from hadronic tag system
 - $ightharpoonup au^-
 ightarrow \ell^- ar{
 u}_\ell
 u_ au$ yields broad peak
- ▶ 2–14 times more stringent limit than ARGUS

$au ightarrow \ell lpha$, where lpha is an invisible particle

- Fixed kinematic of two-body decay for given m_{α} characteristic for signal
- ▶ Normalized lepton energy X_{ℓ} in τ^- rest frame
 - $ightharpoonup au^- o \ell^- lpha$ yields fixed X_ℓ
 - \blacktriangleright Broadened by approximation of τ^- rest frame from hadronic tag system
 - $ightharpoonup au^- o \ell^- ar{
 u}_\ell
 u_ au$ yields broad peak
- ▶ 2–14 times more stringent limit than ARGUS

$au o \ell lpha$, where lpha is an invisible particle

- Fixed kinematic of two-body decay for given m_{α} characteristic for signal
- ▶ Normalized lepton energy X_{ℓ} in τ^- rest frame
 - $ightharpoonup au^- o \ell^- lpha$ yields fixed X_ℓ
 - \blacktriangleright Broadened by approximation of τ^- rest frame from hadronic tag system
 - $ightharpoonup au^- o \ell^- ar{
 u}_\ell
 u_ au$ yields broad peak
- ▶ 2–14 times more stringent limit than ARGUS

$au ightarrow \ell lpha$, where lpha is an invisible particle

- Fixed kinematic of two-body decay for given m_{α} characteristic for signal
- ▶ Normalized lepton energy X_{ℓ} in τ^- rest frame
 - ▶ $\tau^- \to \ell^- \alpha$ yields fixed X_ℓ
 - \blacktriangleright Broadened by approximation of τ^- rest frame from hadronic tag system
 - $ightharpoonup au^- o \ell^- ar{
 u}_\ell
 u_ au$ yields broad peak
- ▶ 2–14 times more stringent limit than ARGUS

- ightharpoonup Search for peak in mass of recoil system against $\mu\mu$
- Neural network for background suppression trained on Z' signal and background
- ► No significant excess observed
- $(g-2)_{\mu}$ favored region excluded for $0.8 < M_{Z'} < 5 \text{ GeV}/c^2$ for a fully invisible Z'

- ightharpoonup Search for peak in mass of recoil system against $\mu\mu$
- Neural network for background suppression trained on Z' signal and background
- ► No significant excess observed
- $(g-2)_{\mu}$ favored region excluded for $0.8 < M_{Z'} < 5 \, \text{GeV}/c^2$ for a fully invisible Z'

- ightharpoonup Search for peak in mass of recoil system against $\mu\mu$
- Neural network for background suppression trained on Z' signal and background
- No significant excess observed
- $(g-2)_{\mu}$ favored region excluded for $0.8 < M_{Z'} < 5 \, \text{GeV}/c^2$ for a fully invisible Z'

