Charm and beauty hadron decays at Belle and Belle II

Justin Skorupa, on behalf of the Belle II collaboration

LLWI 2024, Lake Louise

2024.02.21

Disclaimer

Too many results to fit all into this presentation

Search for $B^- o \overline{\Xi}^0_c \overline{\Lambda}^c$	2401.04807	Belle
Measurements of $B^0 ightarrow \omega \omega$	2401.04646	Belle
Search for $D^0 o p\ell$	PRD 109, L031101 (2024)	Belle
Evidence of $B^0 o p \Sigma \pi^-$	PRD 108, 052011 (2023)	Belle
Search for CP violation in $D^+_{(s)} \to K^+ K^- \pi^+ \pi^0$,	2305.12806	Belle
$D^+_{({ m s})} o { m K}^+ \pi^- \pi^+ \pi^0$, and $D^+ \stackrel{({ m s})}{ o} { m K}^- \pi^+ \pi^+ \pi^0$ decays		
Search for CP violation in $D^+_{(s)} \to K^+ K^0_S h^+ h^-$	PRD 108, L111102 (2023)	Belle
and observation of $D^+_{(s)} o K^+ K^- K^0_S \pi^+$		
Search for $B_s \to \pi^0 \pi^0$	PRD 107, L051101 (2023)	Belle
Study of $B^+ ightarrow p \overline{n} \pi^0$	2211.11251	Belle
Determination of the CKM angle ϕ_3 from		Belle + Belle II
a combination of Belle + Belle II results		
BF and CP violation in $B^+ \rightarrow D_D K^+$ with $D \rightarrow K^0_S K^+ \pi^-$	JHEP 09 2023, 146 (2023)	Belle + Belle II
BF and CP violation in $B^+ o D_{CP\pm} K^+$	2308.05048	Belle + Belle II
Precise measurement of the D_s^+ lifetime	PRL 131, 171803 (2023)	Belle II
BF and CP violation for $B \rightarrow K\pi$ and $B \rightarrow \pi\pi$	PRD 109, 012001 (2024)	Belle II
Observation of $B \rightarrow D^{(*)}K^-K_S^0$	2305.01321	Belle II
Novel method for charm flavor tagging	PRD 107, 112010 (2023)	Belle II

Disclaimer

Too many results to fit all into this presentation Japanese dish: *Okonomiyaki*; *okonomi* "as you wish"

Presenting my own heavily biased okonomiyaki of charm and beauty results

jskorupa@mpp.mpg.de

Outline

Charm Decays:

- CP violation in charm
- Charm flavor tagging

Hadronic B Decays:

- ▶ Hadronic B decays as tools for Semileptonic B decays
- ▶ Determination of CKM angle ϕ_3/γ and ϕ_2/α
- SM null tests

CP violation in charm

Triple product asymmetries

B Factories are also charm factories 1.3 M $c\overline{c}$ events per 1 fb⁻¹ (1.1 M for $B\overline{B}$) Search for *CP* violation in $D^+_{(s)} \to K^+ K^0_S h^+ h^-$ at Belle

Measure asymmetry in triple products $C_T = v_1 \cdot (v_2 \times v_3)$

$$\mathsf{A}_{\mathcal{T}} = \frac{\Gamma(C_{\mathcal{T}} > 0) - \Gamma(C_{\mathcal{T}} < 0)}{\Gamma(C_{\mathcal{T}} > 0) + \Gamma(C_{\mathcal{T}} < 0)}; \ \overline{\mathsf{A}}_{\mathcal{T}} = \frac{\Gamma(-\overline{C}_{\mathcal{T}} > 0) - \Gamma(-\overline{C}_{\mathcal{T}} < 0)}{\Gamma(-\overline{C}_{\mathcal{T}} > 0) + \Gamma(-\overline{C}_{\mathcal{T}} < 0)}$$

 $\begin{array}{l} A_{T} \neq 0 \text{ also due to final state interaction} \\ \text{Define } \frac{a_{CP}^{T\text{-odd}}}{a_{CP}^{T}} = 0.5(A_{T}-\overline{A}_{T}) \text{ to remove this effect} \\ \frac{\text{Mode}}{D^{+} \rightarrow K^{+}K_{S}^{0}\pi^{+}\pi^{-}} \quad 18632 \pm 214 \quad (0.34 \pm 0.87 \pm 0.32) \\ D_{s}^{+} \rightarrow K^{+}K_{S}^{0}\pi^{+}\pi^{-} \quad 70080 \pm 676 \quad (-0.46 \pm 0.63 \pm 0.38) \\ D^{+} \rightarrow K^{+}K^{-}K_{S}^{0}\pi^{+} \quad 1425 \pm 44 \quad (-3.34 \pm 2.66 \pm 0.35) \end{array}$

 \Rightarrow All results consistent with no CP violation

PRD 108, L111102 (2023)

Triple product asymmetries

Using same approach as before: Search for *CP* violation in $D^+_{(s)} \to K^+ K^- \pi^+ \pi^0$,

 $D^+_{(\rm s)} o K^+\pi^-\pi^+\pi^0$, and $D^+ o K^-\pi^+\pi^+\pi^0$ decays at Belle

 \Rightarrow First measurements for these decays; All results consistent with no CP-violation

jskorupa@mpp.mpg.de

2305.12806

Charm flavor tagging

Charm flavor tagging

PRD 107, 112010 (2023)

Need to know D⁰ flavor for CP violation measurements

Since 1977, at B factories mainly achieved reconstructing ${\it D}^{*+}
ightarrow {\it D}^0 \pi^+$

- \Rightarrow Clean sample but low efficiency
- **New approach**: Train BDT based on kinematic and particle identification information from opposite side *c* (inspired by *b* flavor tagging)

$$\epsilon = (47.91 \pm 0.07(ext{stat}) \pm 0.51(ext{syst}))\%$$

 Doubles sample size compared to old method

Hadronic *B* decays as tool for semileptonic *B* decays

Measurement of $B \rightarrow D^{(*)} K^- K_S^0$

 $\mathcal{B}(B^- \to D^0 K^- K_{\varsigma}^0) = (1.89 \pm 0.16 \pm 0.10) \times 10^{-4}$

 $\mathcal{B}(\overline{B}^0 \to D^+ K^- K_S^0) = (0.85 \pm 0.11 \pm 0.05) \times 10^{-4}$

 $\mathcal{B}(B^- \to D^{*0}K^-K^0_S) = (1.57 \pm 0.27 \pm 0.12) \times 10^{-4}$

 $\mathcal{B}(\overline{B}^0 \to D^{*+} K^- K_s^0) = (0.96 \pm 0.18 \pm 0.06) \times 10^{-4}$

3 first observations

Roughly 30% of B \rightarrow hadron decays are not measured

 \Rightarrow Limits performance of the hadronic tag

Total BF of $B \rightarrow D^{(*)} K^{(*)} K^{(*)}$ could be up to 6%, but only 0.3% is known + High purity

Oe €0

50

40

30

20

10

Weighted events/0.125

Belle II preliminary

 $B^{-} \rightarrow D^{0} K^{-} K^{0}$

1.5

2 2.5

 \Rightarrow Candidates to be included in hadronic tag

Determination of CKM angle ϕ_3/γ and ϕ_2/α

Determination of CKM angle $\phi_{\rm 3}/\gamma$

phase between $b \rightarrow u$ and $b \rightarrow c$ transitions

tree level only, negligible theory uncertainty

Several Belle + Belle II measurements:

▶ $D \to K_S^0 hh$ [JHEP 02 (2022) 063] ▶ $D \to K_S^0 K \pi$ [JHEP09(2023)146] ▶ $D \to K_S^0 \pi^0$, *KK* [2308.05048]

New determination of γ using only Belle and Belle II measurements: $\gamma = (78.6 \pm 7.3)^{\circ}$

Towards CKM angle ϕ_2/α

Least well known angle of CKM triangle

Accessible in tree level $B^0 \rightarrow \pi^+\pi^-$ transitions but sizable loop level contribution introduces shift

Remove shift using ${\cal B}$ and ${\cal A}^{\rm CP}$ of isospin related ${\cal B}^+ \to \pi^+ \pi^0$ and ${\cal B}^0 \to \pi^0 \pi^0$

Belle II is a unique place to measure all involved decays!

Towards CKM angle ϕ_2/α PRD 109, 012001 (2024) $B^+ \rightarrow \pi^+ \pi^0$ $B^0 \rightarrow \pi^+ \pi^-$ 250 Belle II $B^+ \rightarrow \pi^+ \pi^0 + c_{\rm e} c_{\rm e}$ 800 Belle II $B^0 \rightarrow \pi^+\pi^- + c.c.$ $\int L dt = 362 \text{ fb}^{-1}$ $B^+ \rightarrow K^+ \pi^0 + c.c.$ $\int L dt = 362 \text{ fb}^{-1}$ $B^0 \rightarrow K^+ \pi^- + c.c.$ 200 10 MeV BB background Cand. / 10 MeV 600 Background Continuum background 150 Cand. / 400 100 200 50 11 2.5 -2.5 10 -2.5 -0.3-0.2-0.10.0 0.1 0.2 0.3 -0.10-0.05 0.00 0.05 0.10 0.15 0.20 $\Delta E [GeV]$ $\Delta E [GeV]$ $A^{CP} = 0.081 \pm 0.54$ (stat) ± 0.008 (svst) $\mathcal{B} = (5.83 \pm 0.33 \text{(stat)} \pm 0.17 \text{(syst)}) \times 10^{-6}$ $= (5.10 \pm 0.29 (\text{stat}) \pm 0.32 (\text{syst})) \times 10^{-6}$ ĸ

World best result for ${\cal B}$ of ${\it B^0} ightarrow \pi^+\pi^-$

 $\begin{array}{ll} \mbox{Result for \mathcal{B} of B^+} \to \pi^+\pi^0 \mbox{ limited by π^0 systematic uncertainty} \\ \mbox{Justin Skorupa} & \mbox{jskorupa@mpp.mpg.de} \end{array}$

SM null tests

Isospin sum-rule

PRD 109, 012001 (2024)

Combination of $B \rightarrow K\pi$ decays offers SM null test [Phys.Lett.B 627 (2005) 82-88]:

$$\mathcal{A}_{\mathcal{K}^+\pi^-}^{\mathsf{CP}} + \mathcal{A}_{\mathcal{K}^0\pi^+}^{\mathsf{CP}} \frac{\mathcal{B}_{\mathcal{K}^0\pi^+}}{\mathcal{B}_{\mathcal{K}^+\pi^-}} \frac{\tau_{\mathcal{B}^0}}{\tau_{\mathcal{B}^+}} - 2\mathcal{A}_{\mathcal{K}^+\pi^0}^{\mathsf{CP}} \frac{\mathcal{B}_{\mathcal{K}^+\pi^0}}{\mathcal{B}_{\mathcal{K}^+\pi^-}} \frac{\tau_{\mathcal{B}^0}}{\tau_{\mathcal{B}^+}} - 2\mathcal{A}_{\mathcal{K}^0\pi^0}^{\mathsf{CP}} \frac{\mathcal{B}_{\mathcal{K}^0\pi^0}}{\mathcal{B}_{\mathcal{K}^+\pi^-}} \approx 0$$

Theoretical precision: $\mathcal{O}(0.01)$, Experimental precision: $\mathcal{O}(0.1)$

Justin Skorupa

jskorupa@mpp.mpg.de

Isospin sum-rule

Two analyses of $B^0 \rightarrow K_S^0 \pi^0$ one time-dependent [PRL 131, 111803 (2023)] and one time-integrated. Both are combined to enhance sensitivity. $\mathcal{A}^{CP} = -0.01 \pm 0.12 \text{ (stat) } \pm 0.05 \text{ (syst)}$

$$\begin{split} \mathcal{A}^{\mathsf{CP}} &= -0.01 \pm 0.12 \, (\mathsf{stat}) \, \pm 0.05 (\mathsf{syst}) \\ \mathcal{B} &= & (10.50 \pm 0.62 (\mathsf{stat}) \, \pm 0.67 \, (\mathsf{syst})) \! \times \! 10^{-6} \end{split}$$

World's best result on \mathcal{A}^{CP}

Putting all together for the null test:

$$-0.03 \pm 0.13 \pm 0.05$$

Competitive with world average -0.13 ± 0.11

12

PRD 109, 012001 (2024)

Conclusion

Belle is still providing exciting results both standalone and also in combined Belle + Belle II analyses

Belle II is improving its tools

- Development of new tools using novel ideas
- (Re)measurements to improve hadronic tagging

Belle II isospin sum-rule result and input measurements for ϕ_2/α already on par with world average

 \Rightarrow Sum-rule result is statistically limited, input from Belle II crucial to enhance sensitivity