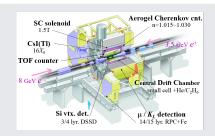
Search for charged-lepton flavor violation in $\Upsilon(2S) \to \ell^\mp \tau^\pm (\ell=e,\mu)$ decays at Belle

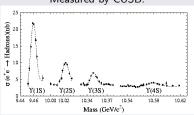
Rashmi Dhamija (On behalf of Belle & Belle II collaboration)

16th International Workshop on Heavy Quarkonium (QWG 2024)

March 1, 2024


Outline of the talk

arxiv:2309.02739


- 1 The Belle experiment
- Motivation
- Results

The Belle experiment


Well known to measure the CP-violation in the B-meson decays.

Measured by CUSB.

Integrated luminosity of B factories

- KEKB: An asymmetric-energy $e^{-}(8 \text{ GeV})e^{+}(3.5 \text{ GeV})$ collider, collided at the center-of-mass energy of $10.58~{\rm GeV}$.
- Belle detector was placed at the interaction point (IP) of KEKB.
- Collected most of the data at Υ(4S) resonance, however it also collected data at $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$, and so on.

Motivation

- The lepton flavor conservation is an intrinsic property of the Standard Model (SM).
- The experimental evidence of lepton flavor violation has already been observed in neutrino oscillation.
- The transitions involving charged-lepton flavor violation (CLFV) are mediated by W[±] bosons and massive neutrinos to account for neutrino oscillation.
- In consequence, the CLFV transitions \Rightarrow significantly suppressed $\sim m_{\nu}^2/m_W^2$. For e.g., $\mathcal{B}(\mu \to e \gamma) \sim 10^{-54}$
- Several new physics models (for e.g. leptoquarks) predict the enhanced BF for such transitions

 high luminosity experiments.
- With the current statistics, CLFV cannot be seen in Υ(4S); it decays immediately to pair of B mesons. So, CLFV in Υ(nS) (n=1,2,3) is a good probe for the physics beyond the SM.
- ullet Any observation of CLFV \Rightarrow clearest evidence of the new physics.

CLFV in $\Upsilon(nS)$ decays

• BaBar, CLEO, and recently Belle searched for CLFV in $\Upsilon(nS) \to \ell \tau$ (n=1,2,3) decays.

Table: Experimental results on $\Upsilon(nS)$ CLFV transitions

Decay modes	Upper limits	Experiments	References
$B(\Upsilon(1S) \to \mu \tau)$	$< 6 \times 10^{-6}$	CLEO	PRL 101, 201601 (2008)
$B(\Upsilon(1S) o e au)$	$< 2.7 \times 10^{-6}$	Belle	JHEP 05 2022, 095 (2022)
$B(\Upsilon(1S) \to \mu \tau)$	$< 2.7 \times 10^{-6}$	Belle	JHEP 05 2022, 095 (2022)
$B(\Upsilon(2S) \to \mu \tau)$	$< 14.4 \times 10^{-6}$	CLEO	PRL 101, 201601 (2008)
$B(\Upsilon(2S) \to e\tau)$	$< 3.2 \times 10^{-6}$	BaBar	PRL 104, 151802 (2010)
$B(\Upsilon(2S) \to \mu \tau)$	$< 3.3 \times 10^{-6}$	BaBar	PRL 104, 151802 (2010)
$B(\Upsilon(3S) \to \mu \tau)$	$< 26.3 \times 10^{-6}$	CLEO	PRL 101, 201601 (2008)
$B(\Upsilon(3S) \rightarrow e\tau)$	$< 4.2 \times 10^{-6}$	BaBar	PRL 104, 151802 (2010)
$B(\Upsilon(3S) \to \mu \tau)$	$< 3.1 \times 10^{-6}$	BaBar	PRL 104, 151802 (2010)

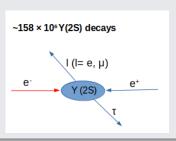

No signal observed yet!

Table: Data sample and the number of $\Upsilon(nS)$ at B-factories and CLEO

Experiment	$\Upsilon(1S)$ data $(N_{\Upsilon(1S)})$	$\Upsilon(2S)$ data $(N_{\Upsilon(2S)})$	$\Upsilon(3S)$ data $(N_{\Upsilon(3S)})$
CLEO	$1.1~{\rm fb}^{-1}$ (20.8 M)	$1.3~{\rm fb}^{-1}~(9.3~{\rm M})$	$1.4~{\rm fb}^{-1}~(5.9~{\rm M})$
Belle	$6 \text{ fb}^{-1} \text{ (119 M)}$	$25 \text{ fb}^{-1} (158 \text{ M})$	$3 \text{ fb}^{-1} (11 \text{ M})$
BaBar	-	$14 \text{ fb}^{-1} (98.6 \text{ M})$	$30 \text{ fb}^{-1} (116.7 \text{ M})$

$$\Upsilon(2S)
ightarrow \ell^\mp au^\pm (\ell=e,\mu)$$
 decays at Belle

- We search for decays $\Upsilon(2S) \to \ell_1^{\mp} \tau^{\pm}$ with $\tau^+ \to \ell_2^+ \nu_{\ell_2} \overline{\nu}_{\tau}$ or $\tau^+ \to \pi^+ \pi^0 \overline{\nu}_{\tau}$. Charge conjugation is applied.
- We don't consider the combination of the same flavored ℓ_1 and ℓ_2 . For e.g. $\Upsilon(2S) \to \mu^\mp \tau^\pm (\tau^+ \to \mu^+ \nu_\mu \overline{\nu}_\tau)$ to avoid the background contribution from $e^+ e^- \to \mu^+ \mu^-$ events.
- We also don't use this mode, $\tau^+ \to \pi^+ \overline{\nu}_{\tau}$ since π^+ can fake as $\mu/{\rm e}$ and can contribute to the background.
- Reconstruct: $\Upsilon(2S)$ from ℓ_1 and τ ; τ from ℓ_2 or $\pi^+\pi^0$. $\Upsilon(2S)$ cannot be fully reconstructed!
- Decay modes in study:
 - $\Upsilon(2S) \rightarrow \mu^{\mp} \tau^{\pm} (\tau^{+} \rightarrow e^{+} \nu_{e} \bar{\nu}_{\tau}) [\mu e]$
 - $\Upsilon(2S) \rightarrow e^{\mp} \tau^{\pm} (\tau^+ \rightarrow \mu^+ \nu_{\mu} \bar{\nu}_{\tau}) [e \mu]$
 - $\Upsilon(2S) \to \mu^{\mp} \tau^{\pm} (\tau^{+} \to \pi^{+} \pi^{0} \bar{\nu}_{\tau}) [\mu \pi \pi^{0}]$
 - $\Upsilon(2S) \rightarrow e^{\mp} \tau^{\pm} (\tau^+ \rightarrow \pi^+ \pi^0 \bar{\nu}_{\tau}) [e \pi \pi^0]$
- Trigger simulation is done to simulate the trigger effect.

$$\Upsilon(2S)
ightarrow \ell^{\mp} au^{\pm} (\ell=e,\mu)$$
 decays at Belle

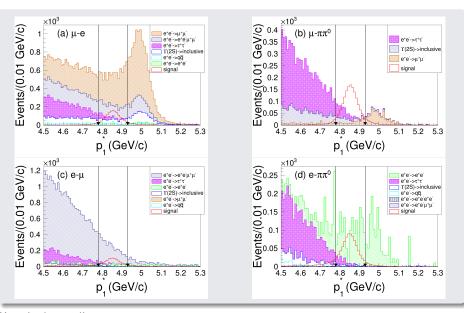
- Signal MC: 5 million signal MC events of $\Upsilon(2S) \to \ell^{\mp} \tau^{\pm}$, where τ can decay to anything are generated with EVTGEN.
- Background MC:

•
$$e^{+}e^{-} \rightarrow e^{+}e^{-}$$
 $e^{+}e^{-} \rightarrow u^{+}u^{-}$ $e^{+}e^{-} \rightarrow \tau^{+}\tau^{-}$

- Inclusive $\Upsilon(2S)$ decays.
- $e^+e^- \to q\bar{q}$ (q=u,d,s,c) processes generated with an initial state radiation (ISR) photon.

Most of the background samples $\approx 25 \text{ fb}^{-1}$.

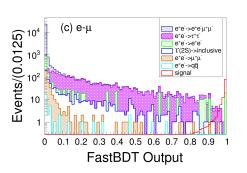
Signal signature of $\Upsilon(2S) \to \ell_1^{\mp} \tau^{\pm}$ is a monochromatic momentum of primary lepton (ρ_1^*) with,

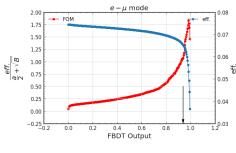

$$p_1^* = \sqrt{rac{(m_{\Upsilon(2S)}^2 - m_{\ell_1}^2 - m_{\tau}^2)^2 - 4m_{\ell_1}^2 m_{\tau}^2}{4m_{\Upsilon(2S)}^2}};$$

peaks around 4.85 GeV/c in the c.m. frame.

Signal window: $4.78 < p_1^* < 4.93 \text{ GeV}/c$ (2σ around the expected p_1^*).

Sideband region: $p_1^* \notin [4.7, 5.0]$.


Distribution of p_1^* in MC



Huge background!

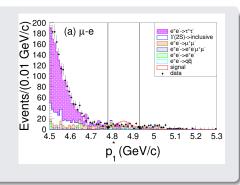
Background suppression

- We use the multi-variate analysis (MVA) to further suppress the background.
- Classifier: FastBDT (trained on MC-simulated events).
- Input variable are: $E_{\rm ECL}$, $E_{\rm vis}^*$, $M_{\rm miss}^{*2}$, $\cos\theta_{12}^*$, $\cos\theta_{\rm miss}^*$ based on energy of cluster, missing momentum, and the cosine angles.

We choose $\mathcal{O}_{\mathrm{FBDT}} > 0.94$, which rejects more than 99% of the background events for all the modes while retaining 86%, 66%, 89%, and 66% of the signal events for the μ -e, μ - $\pi\pi^0$, e- μ , and e- $\pi\pi^0$ modes.

Background estimation

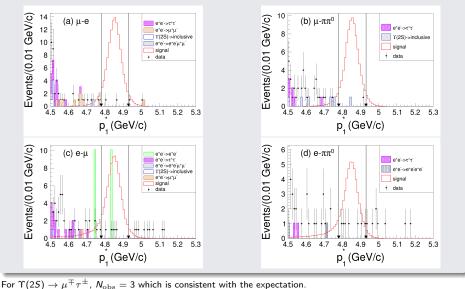
The expected number of background events $(N_{\rm exp}^{\rm bkg})$ is calulated from,


$$N_{\rm exp}^{\rm bkg} = N_{\rm data}^{\rm SB}({\sf BDT}) \times \left(\frac{N_{\rm MC}}{N_{\rm MC}^{\rm SB}}\right) ({\sf loose~BDT})$$

where.

 $N_{
m data}^{
m SB}$ - number of data events in the sideband region

 $N_{\rm MC}^{\rm SB}$ - numbers of MC events in the sideband region


 $N_{\rm MC}$ - number of MC events in the signal region.

We estimate N_{exp}^{bkg} with $\mathcal{O}_{FBDT} > 0.4$ as a nominal value and take the difference of the central value from $0.2 < \mathcal{O}_{\mathrm{FBDT}} < 0.4$ as a systematic error due to background estimation.

For
$$\Upsilon(2S) \to \mu^\mp \tau^\pm$$
, $N_{\mathrm{exp}}^{\mathrm{bkg}} = 3.9 \pm 1.8$
For $\Upsilon(2S) \to e^\mp \tau^\pm$, $N_{\mathrm{exp}}^{\mathrm{bkg}} = 5.9 \pm 2.6$

Distribution of p_1^* in MC and data with $\mathcal{O}_{\mathrm{FBDT}} > 0.94$

For $\Upsilon(2S) \to \mu^{+\gamma}$, $N_{\rm obs} = 3$ which is consistent with the expectation. For $\Upsilon(2S) \to e^{\mp} \tau^{\pm}$, $N_{\rm obs} = 12$ which is larger than the expectation; the probability of obtaining 12 or more events with $N_{\rm exp}^{\rm bkg} = 5.9 \pm 2.6$ is 8%.

Systematic Uncertainties

Table: Summary of systematic uncertainties.

Source	Systematic uncertainty (%)		
	$\Upsilon(2S) \to \mu^{\mp} \tau^{\pm}$	$\Upsilon(2S) ightarrow e^{\mp} au^{\pm}$	
Number of $\Upsilon(2S)$	2.3	2.3	
Tracking	0.7	0.7	
Particle identification and π^0 reconstruction	3.4	3.3	
au branching fraction	0.2	0.2	
MVA selection	5.1	5.0	
Trigger	2.3	11.9	
Total	7.0	13.5	

Results

We use the Feldman-Cousins method to set the upper limits on ${\cal B}$ @ 90% CL.

$$\mathcal{B} = rac{ extstyle N_{
m obs} - extstyle N_{
m exp}^{
m bkg}}{\epsilon_{
m sig} imes extstyle N_{\Upsilon(2S)}}$$

 $\epsilon_{
m sig}$ - signal reconstruction efficiency.

 $\textit{N}_{\Upsilon(2S)^-}$ number of $\Upsilon(2S).=(157.8\pm3.6)\times10^6.$

Recen	t results from	Belle,	arxiv:	2309.02	739.	
			1			

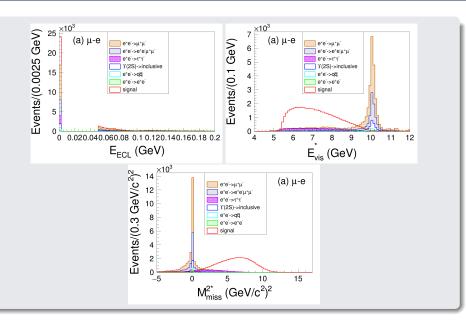
Modes	$\epsilon_{ m sig}$ (%)	$N_{ m exp}^{ m bkg}$	$N_{ m obs}$	B @ 90% CL
$\Upsilon(2S) o \mu^{\mp} au^{\pm}$	12.3 ± 0.8	3.9 ± 1.8	3	$< 0.23 imes 10^{-6}$
$\Upsilon(2S) ightarrow e^{\mp} au^{\pm}$	8.1 ± 1.1	5.9 ± 2.6	12	$< 1.12 \times 10^{-6}$

- $\mathcal{B}(\Upsilon(2S) \to \mu^{\mp} \tau^{\pm}) < 0.23 \times 10^{-6}$ @ 90% CL. $\mathcal{B}(\Upsilon(2S) \to e^{\mp} \tau^{\pm}) < 1.12 \times 10^{-6}$ @ 90% CL.
- We obtain 14 times better results for $\Upsilon(2S) \to \mu^\mp \tau^\pm$ and 3 times for $\Upsilon(2S) \to e^\mp \tau^\pm$ from the previous results from the BaBar collaboration.
- Recently published! JHEP02(2024)187

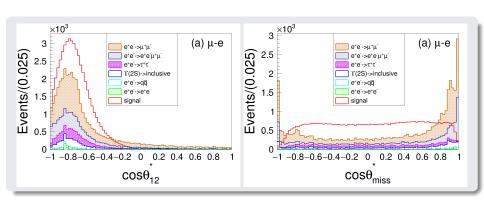
Thank You!

Back Up

Selections applied


Table: Lists of all selection criteria corresponding to the variable for each mode.

Variables	μ-е е-μ	μ - $\pi\pi^0$ e - $\pi\pi^0$	
Impact		dr < 2.0 cm	
parameters		dz < 5.0 cm	
PID	$e(\mu)ID > 0.8$		
		$\pi ID > 0.6$	
p_1^*		$> 4.5 \; \mathrm{GeV}/c$	
E_{γ}	-	$> 50/100/150 \mathrm{MeV}$	
$\frac{M_{\pi^0}^*}{p_2^*}$	-	$0.125 < M_{\pi^0}^* < 0.145 \text{ GeV}/c^2$	
<i>p</i> ₂ *	> 0.5 GeV/c	-	
$p_{\pi^+}^*$	-	$0.3 < p_{\pi^+}^* < 4.0 \; \mathrm{GeV}/c$	
$\begin{array}{c c} p_{\pi^+}^* \\ p_{\pi^0}^* \end{array}$	-	> 0.4 GeV/c	
$M_{\pi^{+}\pi^{0}}^{*}$	-	$0.5 < M_{\pi^+\pi^0}^* < 1.0 \text{ GeV}/c^2$	
E _{vis} *	< 9.8 GeV (e-mode only)		


Table: Decay modes chosen for $\boldsymbol{\tau}$ with their branching fractions (B.F.).

au decay modes	B.F. (in %)
$ au^+ ightarrow e^+ u_e ar{ u}_ au$	17.82 ± 0.04
$ au^+ o \mu^+ u_\mu ar{ u}_ au$	17.39 ± 0.04
$ au^+ o \pi^+ \pi^0 ar{ u}_ au$	25.49 ± 0.09

Distributions

Distributions

- Distinguishing variables used to classify signal and background events are:
 - E_{ECL} It is the sum of the energy of neutral ECL clusters that are related to the particles in the rest of the event in the lab frame.
 - ullet $E_{
 m vis}^*$ It is the sum of the energy of all neutral clusters and charged tracks in the c.m. frame.

 - M_{miss}^{*} It is the invariant mass squared of the missing momentum in the c.m. frame. $\cos \theta_{12}^*$ It is the cosine of the angle between p_1^* and p_2^* for μ -e and e- μ modes or between p_1^* and $p_{-+}^* + p_{-0}^*$ for μ - $\pi\pi^0$ and e- $\pi\pi^0$ modes in the c.m. frame.
 - ullet cos $heta^*_{
 m miss}$ It is the cosine of the polar angle of the missing momentum in the c.m. frame.