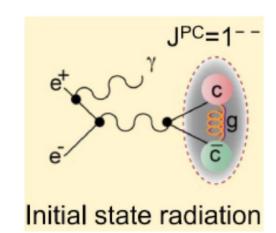
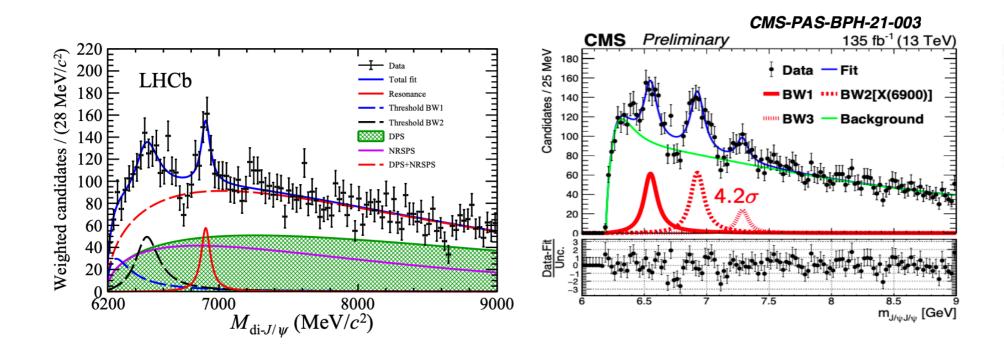


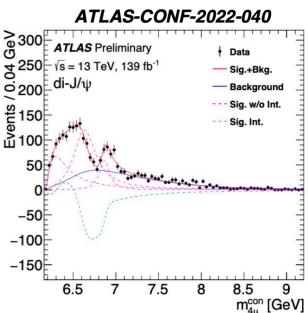
Recent Spectroscopy results from Belle

Jitendra Kumar IIT Jodhpur

2 Two-photon decay width of $\chi_{c2}(1P)$ [JHEP 01 2023, 160 (2023)]

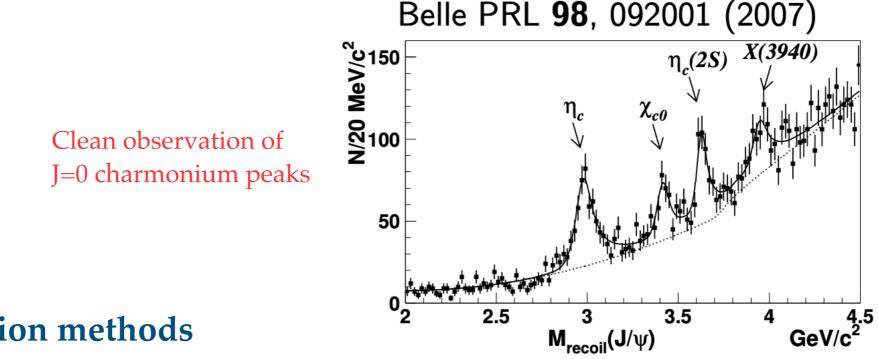

3 Scan of $e^+e^- \rightarrow B^0_s \bar{B}^0_s X$ cross section [JHEP 08 2023, 131 (2023)]


Outline


- Understanding of Quarkonium physics;
 - new exotic states, checking agreement with the predictions from theoretical quark model (testing theory)
- Belle (B-factory experiment) offer several advantages in searching for new states and rare decays:
 - full-event reconstruction and offered a clean event environment
 - also complimentary tool for the search for exotic states performed at proton-proton experiments (e.g. LHCb)

Goal

- Search for exotic state ($cc\bar{c}\bar{c}$)
- Theory: molecule? bound state? tetra-quark?
 - mass predictions are model dependent..
- Experiment:
 - LHCb (in 2020) reported structures in prompt double J/ψ production.
 - an enhancement seen near J/ψ pairs threshold region from 6.2 to 6.8 GeV
 - ...also a narrow peak around 6.9 GeV X(6900)
 - .. seen at CMS as well.
 - Belle attempt (this paper)
 - Search for double charmonium state in $e^+e^- \rightarrow \eta_c J/\psi$
 - via Initial State Radiation (ISR) near the threshold region 6 to 8.5 GeV



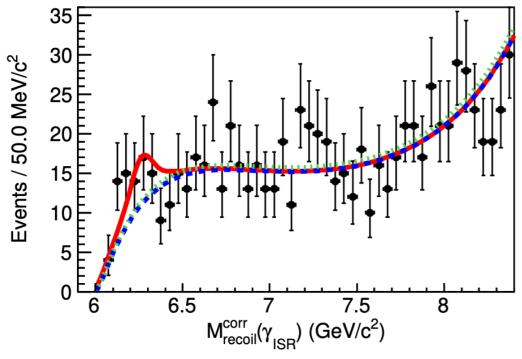
Analysis Method

- Search for lowest mass combination of charmonia state decay $\eta_c J/\psi$
 - might have larger branching fraction

Two reconstruction methods

- **Inclusive reconstruction** of J/ψ and γ_{ISR} • selection of mass recoiling against $J/\psi \gamma_{ISR}$ in the η_c region
- Exclusive reconstruction of $\eta_c J/\psi$

• in 6 decay modes of η_c : *pp*, *pp* π^0 , $K_S^0 K^{\pm} \pi^{\mp}$, $K^+ K^- \pi^0$, $K^+ K^- K^+ K^-$, $2(\pi^+ \pi^- \pi^0)$

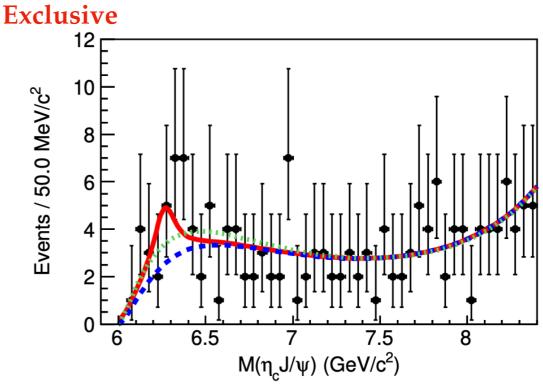

Data Sample and other details

- Data: 980 fb⁻¹ full data set for $\Upsilon(nS)$ n=1-5 on/off resonance or near threshold data
- MC: Signal: PHOKHARA and EVTGEN for ISR processes, η_c and J/ψ decays (EVTGEN for continuum background)

$e^+e^- \rightarrow \eta_c J/\psi$ near threshold

- **Inclusive reconstruction** of J/ψ and $J/\psi\gamma_{ISR}$
 - $$\begin{split} \bullet \, M_{recoil}^{corr}(\gamma_{ISR}) &= M_{recoil}(\gamma_{ISR}) M_{recoil}(J/\psi\gamma_{ISR}) + m(\eta_c) \\ \bullet \, M_{recoil}(J/\psi) &= |p_{e^-e^+} p_{\eta_c J/\psi}|^2/c^4 \end{split}$$
 - Double counting from exclusive is removed

Inclusive



- No evidence of threshold enhancement.
- Expected revisit at Belle II with larger statistics

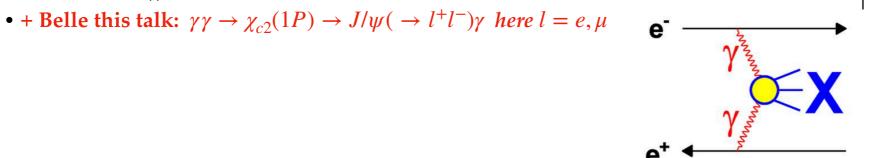
Signal extraction

- Signal are described Breit-Wigner function (see fits in backup)
 - Mass $6267 \pm 43 \text{ GeV}/c^2$ and Width $121 \pm 72 \text{ GeV}$
 - Signal events for exclusive (inclusive) = $9 \pm 4 (23 \pm 11)$

- Exclusive Reconstruction of $\eta_c J/\psi$
 - Invariant mass of $M(\eta_c J/\psi)$
 - Event/track selections + recoil mass squared of $\eta_c J/\psi = |p_{e^-e^+} p_{\eta_c J/\psi}|^2/c^2$ in [-1, 2] GeV²/c⁴

- 3.3 σ evidence of threshold enhancement.
- Expected revisit at Belle II with larger statistics

Jitendra Kumar

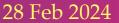

Goal

- Decay width is fundamental and direct observable for probing internal structure of meson $(q\bar{q})$
- $\chi_{c2}(1P)$ (p-wave charmonium) is even special for probing QCD vs pQCD scenario
 - Theory models predict $\chi_{c2}(1P)$ mass in wide range 280-930 eV
 - Previous measurements by Belle (2002), CLEO (2006, 2008) and BESIII (2017)

Method

- Two approach for $\Gamma_{\gamma\gamma}(\chi_{c2}(1P))$
 - Study of $\chi_{c2}(1P) \rightarrow \gamma \gamma$ decay
 - Adopted by CLEO-c (2008: $\Gamma_{\gamma\gamma}(\chi_{c2}(1P)) = 555 \pm 58 \pm 32 \pm 28 \text{ eV})^{**}$ *Phys. Rev. D 78, 091501(R) (2008).*
 - BES III (2017: $\Gamma_{\gamma\gamma}(\chi_{c2}(1P)) = 586 \pm 16 \pm 13 \pm 29 \text{ eV})^{**}$ Phys. Rev. D 96, 092007 (2017).
 - Study of $\gamma \gamma \rightarrow \chi_{c2}(1P)$ collisions
 - Adopted by BELLE (2002: $\Gamma_{\gamma\gamma}(\chi_{c2}(1P)) = 596 \pm 58 \pm 48 \pm 16 \text{ eV})^*$ Phys. Lett. B 540, 33 (2002).
 - CLEO (2006: $\Gamma_{\gamma\gamma}(\chi_{c2}(1P)) = 582 \pm 59 \pm 50 \pm 15 \text{ eV})^*$ Phys. Rev. D 73, 071101(R) (2006).

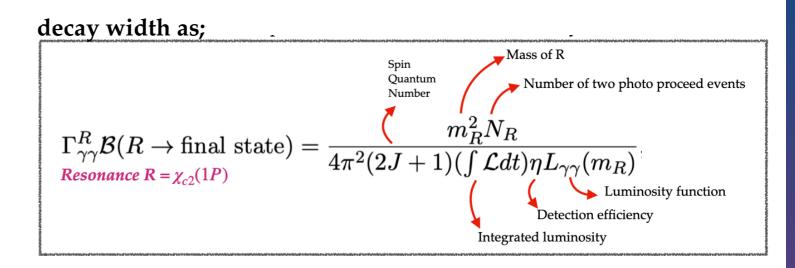
Less precise



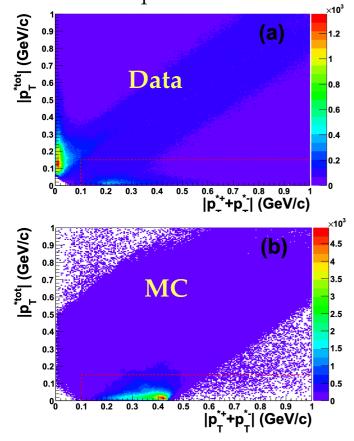
Data Sample and other details

- Data: 971 fb⁻¹ collected at or near $\Upsilon(nS)$ n = 1-5.
 - ~30x statistics in compare to last 2002 measurement 32.6 fb⁻¹
- MC: TREPS Generator for two photon process and radiative decay of J/ψ through PHOTOS

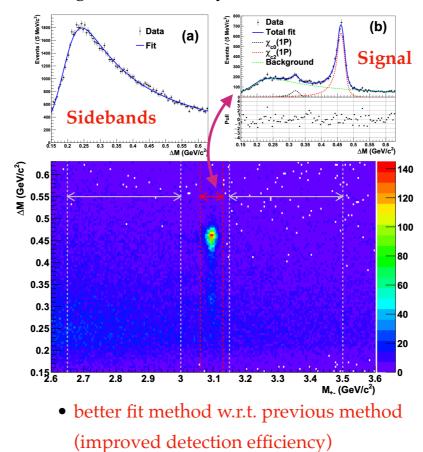
*Recalculated $\mathscr{B}(\chi_{C2}(1P) \rightarrow J/\psi\gamma)$ for = (19.0 ± 0.5)% and $\mathscr{B}(J/\psi \rightarrow l^+l^-)$ = 11.93 ± 0.05 MeV from PDG **Recalculated $\mathscr{B}(\psi(2S) \rightarrow \chi_{C2}(1P)\gamma)$ for = (9.52 ± 0.20)% and $\Gamma_{\gamma\gamma}(\chi_{C2}(1P))$ = 1.97 ± 0.09 MeV from PDG


Jitendra Kumar

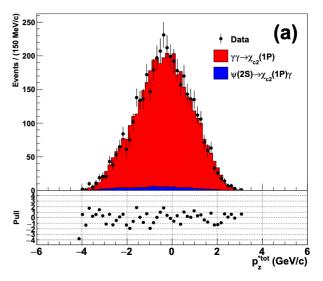
2 Two-photon decay width of $\chi_{c2}(1P)$ [JHEP 01 2023, 160 (2023)]

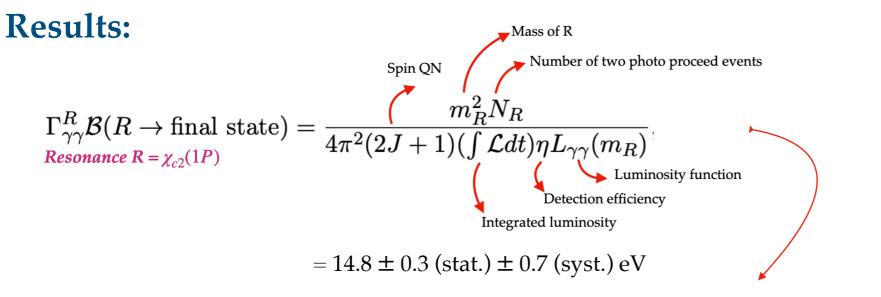

Analysis Method

- Approach #2: Study of $\gamma \gamma \rightarrow \chi_{c2}(1P)$ collisions
 - $\gamma \gamma \rightarrow \chi_{c2}(1P) \rightarrow J/\psi(\rightarrow l^+l^-)\gamma;$
 - zero-tag mode $\sum |p_T^*| \sim 0$
 - events from quasi-real two-photon collisions
 - strategy: similar to previous Belle measurement

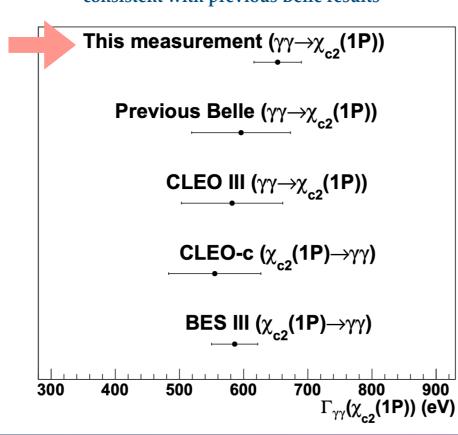


• Signal extraction strategy (highlights)


• a clear separated cluster from p_T^* -balance requirements:


• background component is removed using side bands (asymmetric)

• peaking background from ISR $\psi(2S)$ production is also treated (MC Based)



2 Two-photon decay width of $\chi_{c2}(1P)$ [JHEP 01 2023, 160 (2023)]

- Number of signal: 4960.3 ± 97.9
- $m_R = 3.556 \text{ GeV} / c^2 \text{ PDG}$
- $\int \mathscr{L}dt = 971 \text{ fb}^{-1}$
- $\eta = 7.36\%$
- $L_{\gamma\gamma}(m_R) = 7.70 \times 10^{-4} \text{ GeV}^{-1}$
- $\mathscr{B}(\chi_{c2}(1P) \rightarrow J/\psi\gamma) = 19.0 \pm 0.5 \%$ PDG
- $\mathscr{B}(J/\psi \to l^+ l^-) = 11.93 \pm 0.5 \%$ **PDG**

Most precise measurement

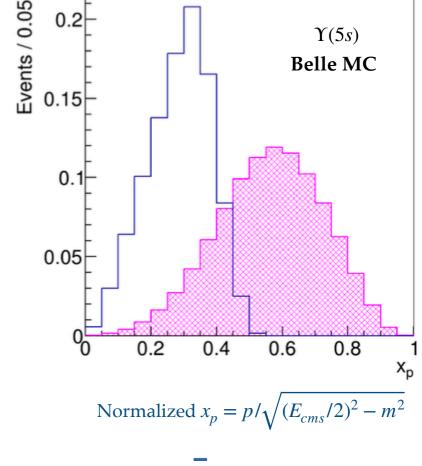
Model predictions

	-	
Reference	Model	$\Gamma_{\gamma\gamma}(\chi_{c2}(1P)) \text{ (keV)}$
Barbieri [9]	Nonrelativistic approximation	0.93
Münz [10]	Bethe-Salpeter equation with relativistic corrections	0.44 ± 0.14
Godfrey [11]	Relativistic quark model	0.46
Gupta $[12]$	Relativistic quark model	0.57
Ebert $[13]$	Relativistic quark model	0.50
Bodwin [14]	Rigorous QCD prediction	0.81 ± 0.29
Huang $[15]$	Rigorous QCD prediction	0.49 ± 0.15
Schuler [16]	Nonrelativistic QCD factorization framework	0.28
Crater [17]	Two-body Dirac equations of constraint dynamics	0.743
Lansberg [18]	Effective Lagrangian	0.70
Hwang $[19]$	Light-Front Quantization	$0.346\substack{+0.009\\-0.011}$

Spectroscopy results from Belle

3 Scan of $e^+e^- \rightarrow B_s^0 \bar{B}_s^0 X$ cross section measurement

Inclusive approach


• Open bottom threshold cross section

• $\sigma(e^+e^- \rightarrow B_s^0 \bar{B_s^0} X)$ in 10.63 to 11.02 GeV range

- = $\sigma(e^+e^- \rightarrow B_s^{(*)}B_s^{(*)})$ up to $B_s^0\bar{B}_s^0\pi^0\pi^0$ threshold 11.004 GeV
- $\sigma(e^+e^- \rightarrow B\bar{B}X)$ in 10.63 to 11.02 GeV range
- D^0 (Ds) mesons as proxy for a B^0 (B^0s)
 - reconstructed through $D_s^+ \to \phi \pi^+$ and $D^0 \to K^- \pi^+$ in bins of x_p
 - their momentum to identify the quark-level process
 - cross section from solving equations below

$$\begin{aligned} \sigma(e^+e^- \to b\bar{b} \to D_s^{\pm} X) &= 2\,\sigma(e^+e^- \to B_s^0\bar{B}_s^0 X)\mathcal{B}(B_s^0 \to D_s^{\pm} X) \\ &+ 2\,\sigma(e^+e^- \to B\bar{B} X)\mathcal{B}(B \to D_s^{\pm} X), \end{aligned}$$

 $\begin{aligned} \sigma(e^+e^- \to b\bar{b} \to D^0/\bar{D}^0 X) &= 2\,\sigma(e^+e^- \to B^0_s\bar{B}^0_s X)\mathcal{B}(B^0_s \to D^0/\bar{D}^0 X) \\ &+ 2\,\sigma(e^+e^- \to B\bar{B} X)\mathcal{B}(B \to D^0/\bar{D}^0 X). \end{aligned}$

$$e^{+}e^{-} \rightarrow b\overline{b} \rightarrow D_{(s)} + X$$

$$e^{+}e^{-} \rightarrow uu, dd, ss, cc \rightarrow D_{(s)} + X$$

• e.g. $\sigma(e^+e^- \to b\bar{b} \to D_s^{\pm}X)$ is calculated from subtraction of $\sigma(e^+e^- \to D_s^{\pm}X)$ - continuum

Data Sample and other details

- Energy scan data + 121 fb⁻¹ $\Upsilon(5s)$ + 571 fb⁻¹ $\Upsilon(4s)$ + 74 fb⁻¹ below $B\bar{B}$ threshold (10.52 GeV)
- 23 data points across energy range
- Analysis method is same as used in CLEO analysis Phys. Rev. Lett. 95 (2005) 261801

Jitendra Kumar

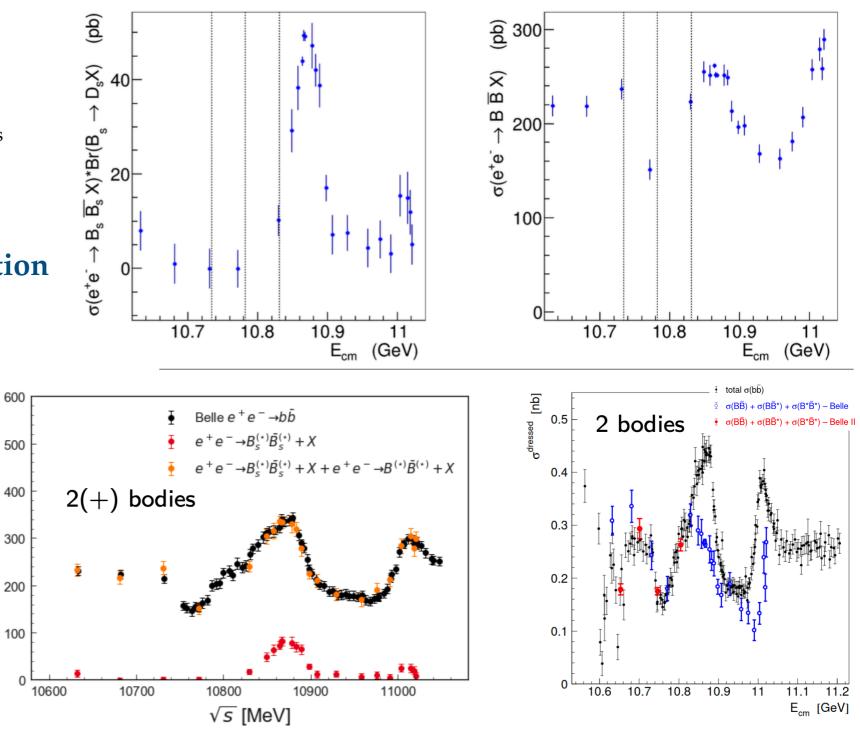
3 Scan of $e^+e^- \rightarrow B_s^0 \bar{B}_s^0 X$ cross section

Results

Production fraction of $B_s^0 \bar{B}_s^0 X$ **:** f_s

 $f_{\rm s} = (22.0^{+2.0}_{-2.1})\%$

w/ constraint $f_s + f_{B\bar{B}X} + f_{B\bar{B}X} = 1$


• supersedes previous Belle measurements $f_s = 28.5 \pm 4.99 \%$

Energy dependence of cross section

→ bĒ)

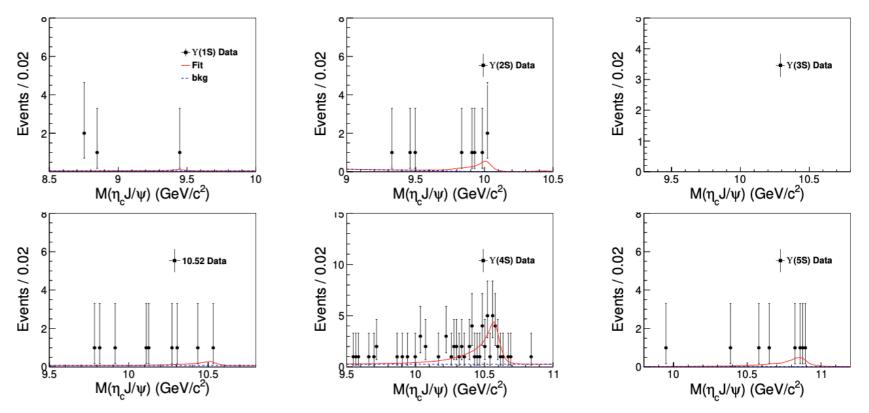
σ_{vis}(e⁺e⁻

- •measured with high precision
- provides good grounds for Belle II

See more in talk by Alexander E. Bondar Energy scan results from Belle II

- **1. Double charmonium state:** No significant signal of the double charmonium state is found for $\eta_c J/\psi$ (for exclusive reconstruction) and the recoil mass of γ_{ISR} (for inclusive reconstruction). The cross sections for $e^+e^- \rightarrow \eta_c J/\psi$ near the threshold are significantly larger (w/ 3.3 σ). **Expected to be revisited Belle II** [JHEP 08 2023, 121 (2023)]
- 2. Two-photon decay width: Most precise measurement for two-photon decay width of $\chi_{c2}(1P)$ is obtained with improved techniques and full dataset of Belle. [JHEP 01 2023, 160 (2023)] and has a compatible precision with that from previous BES III results [Phys. Rev. D 96 (2017) 092007].
- 3. The $e^+e^- \rightarrow B_s^0 \bar{B}_s^0 X$ cross section: energy dependent cross sections measured with relatively high precision and shows a clear peak near the $\Upsilon(5S)$ energy and a hint of a peak near the $\Upsilon(6S)$. It can be used by the **Belle II experiment** for exploratory studies of various energy regions of interest. [JHEP 08 2023, 131 (2023)]

Thanks

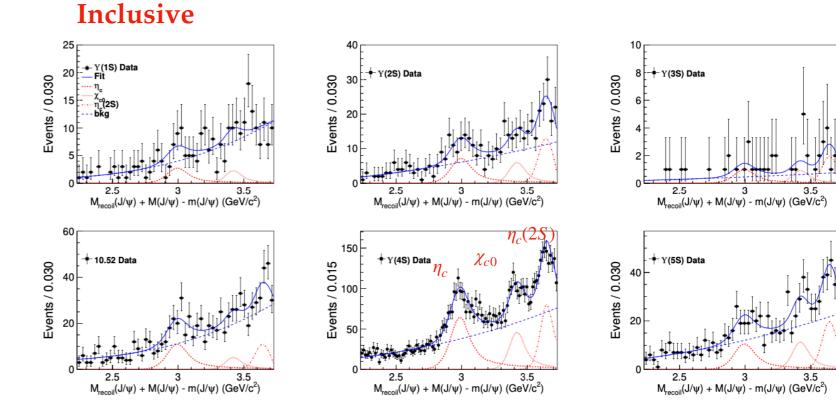


Double charmonium at $\Upsilon(4S)$ **and** $\Upsilon(5S)$

• Exclusive Reconstruction of $\eta_c J/\psi$

- Invariant mass of $M(\eta_c J/\psi)$
 - Event/track selections + recoil mass squared of $\eta_c J/\psi = |p_{e^-e^+} p_{\eta_c J/\psi}|^2/c^2$ in [-0.05, 0.08] GeV²/c⁴
- Background mainly from combinatorial of η_c and J/ψ reconstruction and no peaking expected
- Unbanned extended maximum likelihood fits are performed (except $\Upsilon(3S)$)
- Signal component are described using shapes derived from MC study and smoothed using kernel estimation
- Background: first order polynomial

$\Upsilon(1S)$ 5.7	$\Upsilon(2S)$	$\Upsilon(3S)$	$10.52{ m GeV}$	$\Upsilon(4S)$	$\Upsilon(5S)$
5.7	24.0				. /
	24.9	2.9	89.4	711.0	121.4
$0.7^{+1.5}_{-0.9}$	$6.2\substack{+3.1 \\ -2.3}$	< 1.9	$2.6\substack{+3.5 \\ -2.5}$	$45.0^{+8.9}_{-8.2}$	$6.5^{+3.4}_{-2.7}$
8.3%	6.9%	5.7%	5.6%	5.6%	5.4%
$57^{+122}_{-73}\pm 6$	$140^{+70}_{-52}\pm14$	< 442	$20^{+27}_{-19}\pm 6$	$44^{+9}_{-8}\pm 5$	$39^{+20}_{-14}\pm7$
23.7 ± 12.3	62.0 ± 17.9	8.5 ± 5.2	94.7 ± 23.8	1116.2 ± 62.9	91.1 ± 21.5
38.6%	29.6%	26.4%	26.1%	25.4%	24.7%
$89.1 \pm 46.2 \pm 20.5$	$70.1 \pm 20.2 \pm 8.9$	$91.8 \pm 56.2 \pm 52.3$	$33.8\pm8.5\pm2.8$	$52.1\pm2.9\pm5.0$	$25.4\pm6.0\pm2.8$
$78.3\substack{+47.5 \\ -43.0}$	80.2 ± 20.4	$87.0\substack{+71.0\\-59.0}$	32.5 ± 8.5	50.2 ± 5.0	27.5 ± 6.1
	8.3% $57^{+122}_{-73} \pm 6$ 23.7 ± 12.3 38.6% $89.1 \pm 46.2 \pm 20.5$	8.3% 6.9% $57^{+122}_{-73} \pm 6$ $140^{+70}_{-52} \pm 14$ 23.7 ± 12.3 62.0 ± 17.9 38.6% 29.6% $89.1 \pm 46.2 \pm 20.5$ $70.1 \pm 20.2 \pm 8.9$	8.3% 6.9% 5.7% $57^{+122}_{-73} \pm 6$ $140^{+70}_{-52} \pm 14$ < 442 23.7 ± 12.3 62.0 ± 17.9 8.5 ± 5.2 38.6% 29.6% 26.4% $89.1 \pm 46.2 \pm 20.5$ $70.1 \pm 20.2 \pm 8.9$ $91.8 \pm 56.2 \pm 52.3$	8.3% 6.9% 5.7% 5.6% $57^{+122}_{-73} \pm 6$ $140^{+70}_{-52} \pm 14$ < 442 $20^{+27}_{-19} \pm 6$ 23.7 ± 12.3 62.0 ± 17.9 8.5 ± 5.2 94.7 ± 23.8 38.6% 29.6% 26.4% 26.1% $89.1 \pm 46.2 \pm 20.5$ $70.1 \pm 20.2 \pm 8.9$ $91.8 \pm 56.2 \pm 52.3$ $33.8 \pm 8.5 \pm 2.8$	8.3% 6.9% 5.7% 5.6% 5.6% $57^{+122}_{-73} \pm 6$ $140^{+70}_{-52} \pm 14$ <442 $20^{+27}_{-19} \pm 6$ $44^{+9}_{-8} \pm 5$ 23.7 ± 12.3 62.0 ± 17.9 8.5 ± 5.2 94.7 ± 23.8 1116.2 ± 62.9 38.6% 29.6% 26.4% 26.1% 25.4% $89.1 \pm 46.2 \pm 20.5$ $70.1 \pm 20.2 \pm 8.9$ $91.8 \pm 56.2 \pm 52.3$ $33.8 \pm 8.5 \pm 2.8$ $52.1 \pm 2.9 \pm 5.0$

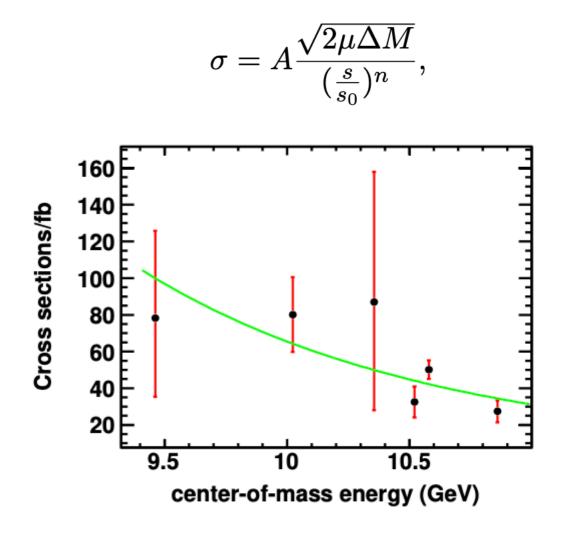

M' is used to improve the resolution on recoil mass, background is third order polynomial (inclusive)

Double charmonium at $\Upsilon(4S)$ **and** $\Upsilon(5S)$

• **Inclusive reconstruction** of J/ψ recoil-mass

- $M'_{recoil}(J/\psi) = M_{recoil}(J/\psi) + M(J/\psi) m(J/\psi)$
 - To improve the resolution of recoil mass
 - $M_{recoil}(J/\psi) = \sqrt{|p_{e^+e^-} p_{J/\psi}|^2}/c$
- Clear peaks for η_c , χ_{c0} and $\eta_c(2S)$ are visible and in agreement with previous Belle results
- Unbinned extended maximum likelihood fits
- Signal component are described using shapes derived from MC study and smoothed using kernel estimation
- Background: third order polynomial

	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	$10.52{ m GeV}$	$\Upsilon(4S)$	$\Upsilon(5S)$
$\mathcal{L} [\mathrm{fb}^{-1}]$	5.7	24.9	2.9	89.4	711.0	121.4
$N^{ m exc}$	$0.7^{+1.5}_{-0.9}$	$6.2^{+3.1}_{-2.3}$	< 1.9	$2.6\substack{+3.5 \\ -2.5}$	$45.0^{+8.9}_{-8.2}$	$6.5^{+3.4}_{-2.7}$
$\epsilon^{ m exc}$	8.3%	6.9%	5.7%	5.6%	5.6%	5.4%
$\sigma^{ m exc}$ [fb]	$57^{+122}_{-73}\pm6$	$140^{+70}_{-52}\pm14$	< 442	$20^{+27}_{-19}\pm 6$	$44^{+9}_{-8}\pm 5$	$39^{+20}_{-14}\pm7$
N^{inc}	23.7 ± 12.3	62.0 ± 17.9	8.5 ± 5.2	94.7 ± 23.8	1116.2 ± 62.9	91.1 ± 21.5
$\epsilon^{ m inc}$	38.6%	29.6%	26.4%	26.1%	25.4%	24.7%
$\sigma^{ m inc}~[{ m fb}]$	$89.1 \pm 46.2 \pm 20.5$	$70.1 \pm 20.2 \pm 8.9$	$91.8 \pm 56.2 \pm 52.3$	$33.8\pm8.5\pm2.8$	$52.1\pm2.9\pm5.0$	$25.4 \pm 6.0 \pm 2.8$
$\tau^{\rm comb}$ [fb]	$78.3^{+47.5}_{-43.0}$	80.2 ± 20.4	$87.0^{+71.0}_{-59.0}$	32.5 ± 8.5	50.2 ± 5.0	27.5 ± 6.1


Spectroscopy results from Belle

Jitendra Kumar

28 Feb 2024

Double charmonium at $\Upsilon(4S)$ **and** $\Upsilon(5S)$ **: Cross section**

- Combined from both methods (detailed table in the backup)
 - Extract cross section-dependent likelihood distribution from both methods
 - Cross section dependent joint probability density function (PDF) is obtained
- fit with $\propto 1/s^n$ + extrapolate for the threshold region to check continuum contribution
 - from $e^+e^- \to \gamma^* \to \eta_c J\psi$ OR $e^+e^- \to \Upsilon(nS) \to \gamma^* \to \eta_c J\psi$)

M' is used to improve the resolution on recoil mass, background is third order polynomial (inclusive)

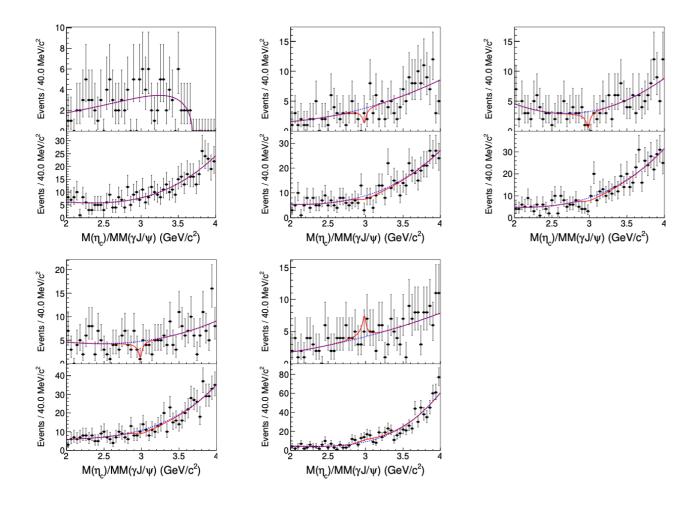
Belle (this talk)

• Systematics (except fitting below)

source	exclusive reconstruction	inclusive reconstruction
Tracking	1.4	0.7
Photon detection	0.0	2.0(0.0)
PID	9.2	7.2
K_S selection	0.3	0.0
π^0 selection	3.5	0.0
η_c decays	0.9	0.0
J/ψ decays	0	.5
Luminosity	1	.4
Generator	1.0	
Sum	8.1	(7.8)

• Fitting Systematics: cross sections for different datasets

dataset	inclusive	exclusive
$\Upsilon(1S)$	21.5	
$\Upsilon(2S)$	9.8	2.2
$\Upsilon(3S)$	56.4	
$\operatorname{continuum}$	8.8	25.4
$\Upsilon(4S)$	3.4	4.0
$\Upsilon(5S)$	13.5	16.2


• Fitting Systematics: cross sections for different mass

regions (GeV/c^2)	systematic uncertainty
$[6.0, \ 6.4]$	23.9
$[6.0, \ 6.5]$	6.0
$[6.0, \ 6.6]$	7.0

Belle (this talk)

• Exclusive/Inclusive Reconstruction Cross section

A.1 Step size $400 \,\mathrm{MeV}/c$

- Exclusive Reconstruction of $\eta_c J/\psi$
 - Possible background from $\Upsilon(4S) \rightarrow B\overline{B}$ is removed with demanding the ratio of the second to the zeroth order Fox-Wolfram moments⁴ is required to be > 0.13

• Inclusive + Exclusive simultaneous fits

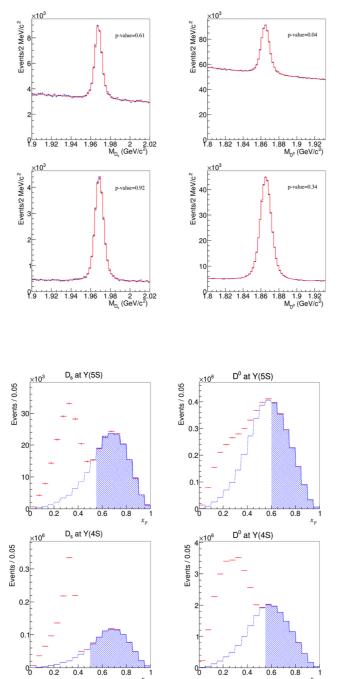
- A simultaneous unbinned maximum likelihood fit for the η_J/ψ invariant mass and γ_{ISR} recoil mass is performed.
- The signal-yield fractions from the two reconstruction methods are fixed to the corresponding branching fractions and reconstruction efficiencies
- The background shapes are parameterized with the ARGUS function, whose parameters are obtained from the fit to the η_c and J/ψ sideband events
- Singal are described w/ Breit-Wigner function with free mass and width convolved with the Gaussian functions from the resolution study

• Systematic Uncertainties

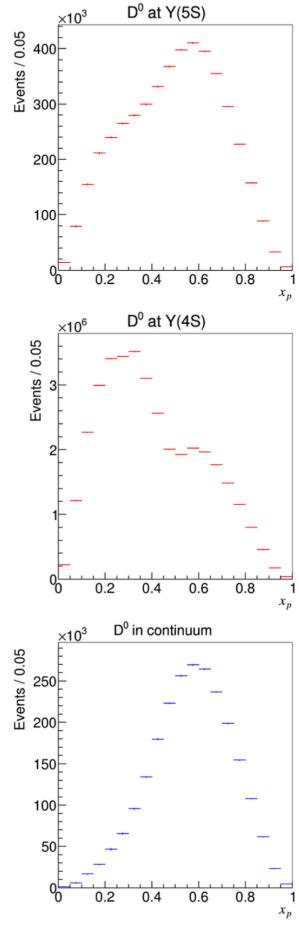
Source	Systematic uncertainty
Lepton ID efficiency correction	0.8%
Angular distribution	1.2%
Tracking efficiency	0.6%
J/ψ detection efficiency	2.4%
Photon detection efficiency	2.0%
Inefficiency due to extra photons	1.0%
Trigger efficiency	0.9%
Different e^+e^- beam energies	0.1%
Neglecting total width	0.4%
Fit method	0.6%
Luminosity function	2.3%
Integrated luminosity	1.4%
Total	4.7%

Table 2. Summary of experimental results for $\Gamma_{\gamma\gamma}(\chi_{c2}(1P))$, where $\mathcal{B}_1 \equiv \mathcal{B}(\chi_{c2}(1P) \rightarrow J/\psi\gamma), \mathcal{B}_2 \equiv$ $\mathcal{B}(J/\psi \to \ell^+ \ell^-), \ \mathcal{B}_3 \equiv \mathcal{B}(\psi(2S) \to \chi_{c2}(1P)\gamma), \ \mathcal{B}_4 \equiv \mathcal{B}(\chi_{c2}(1P) \to \gamma\gamma).$

Experiment [Ref.]	Measured value	$\Gamma_{\gamma\gamma}(\chi_{c2}(1P)) \text{ (eV)}$
This measurement	$\Gamma_{\gamma\gamma}(\chi_{c2}(1P)) \times \mathcal{B}_1 \times \mathcal{B}_2 = 14.8 \pm 0.3 \pm 0.7 \text{ eV}$	$653 \pm 13 \pm 31 \pm 17^{\rm a}$
Previous Belle [14]	$\Gamma_{\gamma\gamma}(\chi_{c2}(1P)) imes \mathcal{B}_1 imes \mathcal{B}_2 = 13.5 \pm 1.3 \pm 1.1 ext{ eV}$	$596 \pm 58 \pm 48 \pm 16^{ m a,b}$
CLEO III [15]	$\Gamma_{\gamma\gamma}(\chi_{c2}(1P)) imes \mathcal{B}_1 imes \mathcal{B}_2 = 13.2 \pm 1.4 \pm 1.1 \text{ eV}$	$582 \pm 59 \pm 50 \pm 15^{ m a,b}$
CLEO-c $[12]$	${\cal B}_3 imes {\cal B}_4 imes 10^5 = 2.68 \pm 0.28 \pm 0.15$	$555 \pm 58 \pm 32 \pm 28^{ m c,d}$
BES III [13]	${\cal B}_3 imes {\cal B}_4 imes 10^5 = 2.83 \pm 0.08 \pm 0.06$	$586 \pm 16 \pm 13 \pm 29^{ m c,d}$

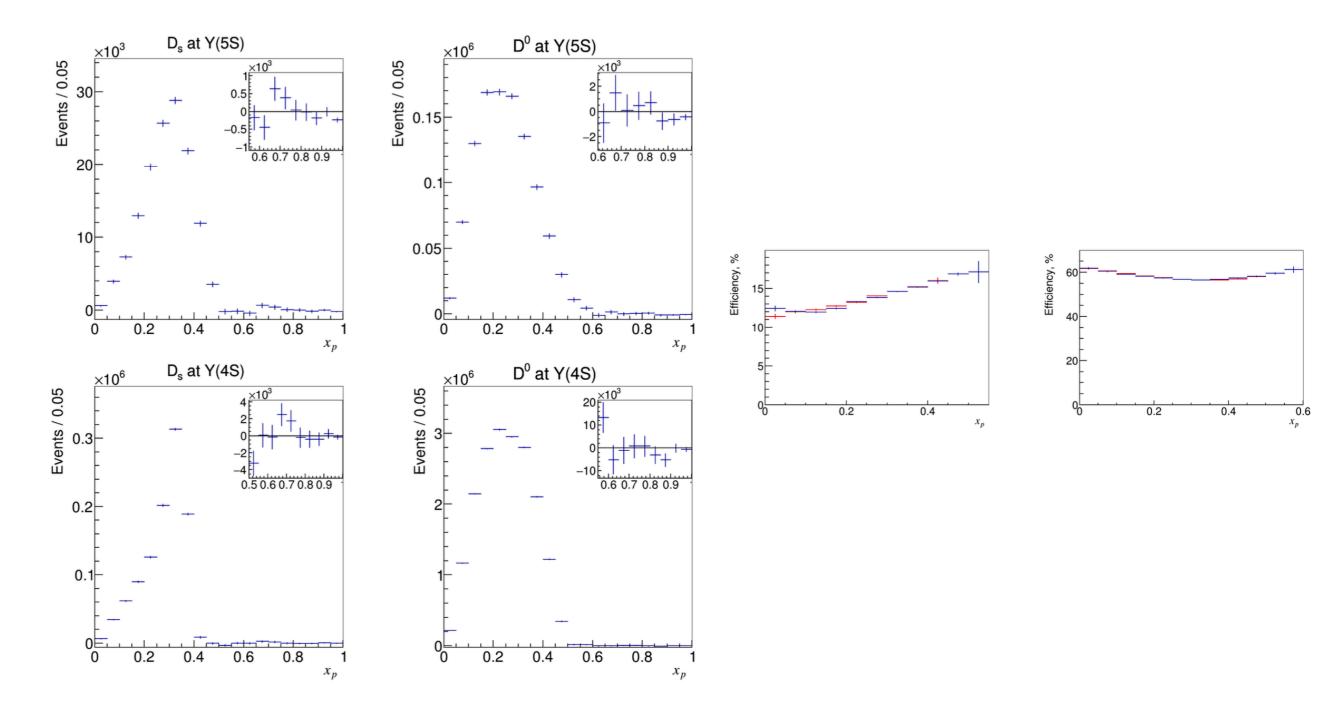

^a Third uncertainty is associated with the uncertainties of $\mathcal{B}(\chi_{c2}(1P) \to J/\psi \gamma)$ and $\mathcal{B}(J/\psi \to J/\psi \gamma)$ $\ell^+\ell^-$).

^b The results is recalculated by using $\mathcal{B}(\chi_{c2}(1P) \rightarrow J/\psi\gamma) = (19.0 \pm 0.5)\%$ and $\mathcal{B}(J/\psi \rightarrow$ $\ell^+\ell^-$) = (11.93 ± 0.05)% from PDG [16].


- ^c Third uncertainty is associated with the uncertainties of $\mathcal{B}(\psi(2S) \to \chi_{c2}(1P)\gamma)$ and the total width of $\chi_{c2}(1P)$.
- ^d The results is recalculated by using $\mathcal{B}(\psi(2S) \to \chi_{c2}(1P)\gamma) = (9.52 \pm 0.20)\%$ and $\Gamma_{\chi_{c2}(1P)} =$ 1.97 ± 0.09 MeV from PDG [16].

2 Two-photon decay width of $\chi_{c2}(1P)$ [JHEP 01 2023, 160 (2023)]

- The signals are described by a sum of four Gaussians with parameters determined from the MC simulation.
- The background is described by a second-order polynomial.



Spectroscopy results from Belle

3 Scan of $e^+e^- \rightarrow B_s^0 \bar{B}_s^0 X$ cross section

3 Scan of $e^+e^- \rightarrow B_s^0 \bar{B}_s^0 X$ cross section

• Cross section results $\sigma(e^+e^- \rightarrow b\bar{b} \rightarrow DX)$

Systematic uncertainty sources

Source	D_s^+ at $\Upsilon(5S)$	D^0 at $\Upsilon(5S)$	D_s^+ at $\Upsilon(4S)$	D^0 at $\Upsilon(4S)$
Fit model	0.6	0.3	1.0	1.1
Cont. x_p spectrum stat. unc.	0.6	0.4	0.4	0.1
Cont. x_p spectrum correction	0.3	1.3		—
MC statistical unc.	0.2	0.1	0.1	0.0
r_{ϕ}	0.6		0.6	—
Tracking	1.1	0.7	1.1	0.7
K/π identification	2.3	1.4	2.3	1.4
Integrated luminosity	1.4	1.4	1.4	1.4
Branching fraction	1.9	0.8	1.9	0.8
Total	3.6	2.6	3.7	2.5

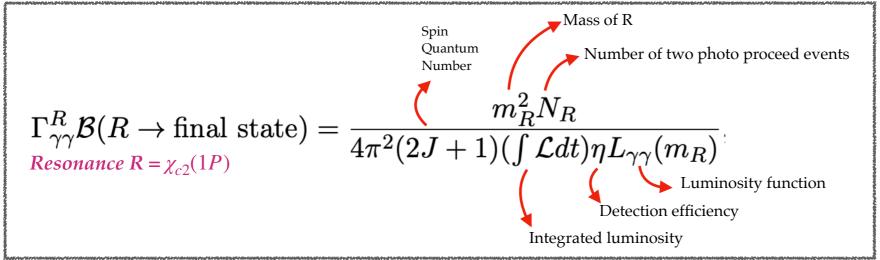

Source	Systematic uncertainty $(\%)$
$\sigma(e^+e^- \to b\bar{b} \to D_s^{\pm} X) _{\Upsilon(5S)}$	1.4
$\sigma(e^+e^- \to b\bar{b} \to D_s^\pm X) _{\Upsilon(4S)}$	0.7
$\sigma(e^+e^- \to B\bar{B} X) _{\Upsilon(5S)}$	1.4
$\mathcal{B}(B^0_s \to D^\pm_s X)$	10.5
$\sigma(e^+e^- ightarrow bar{b}) _{\Upsilon(5S)}$	4.5
Correlated contributions	
- tracking	1.1
— K/π identification	2.3
$-r_{\phi}$	0.6
$- \ \mathcal{B}(D_s^+ \to K^+ K^- \pi^+)$	1.9
Total	12.0

Table 4. Systematic uncertainty in f_s .

2 Two-photon decay width of $\chi_{c2}(1P)$

Analysis Method

- Approach #2: Study of $\gamma \gamma \rightarrow \chi_{c2}(1P)$ collisions
 - $\gamma \gamma \rightarrow \chi_{c2}(1P) \rightarrow J/\psi(\rightarrow l^+l^-)\gamma$; zero-tag mode
 - Event selections: similar to previous Belle measurement and decay width as;

Signal extraction analysis strategy

- p_T^* -balance requirements: a clear, separated cluster for $\chi_{c2}(1P)$
- background component is removed using side bands (asymmetric)
 - better fit method w.r.t. previous method (improved detection efficiency)
- peaking background from ISR $\psi(2S)$ production is also treated (MC Based)

• Theory models

[9] R. Barbier, R. Gatto, and R. Kögerler, Phys. Lett. 60B, 183 (1976), and references therein.
 [10] C.R.Münz, Nucl. Phys. A609, 364 (1996).

- [11] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
- [12] S. N. Gupta, J. M. Johnson, and W. W. Repko, Phys. Rev. D 54, 2075 (1996).
- [13] D. Ebert, R. N. Faustov, and V. O. Galkin, Mod. Phys. Lett. A 18, 601 (2003).
- [14] G. T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. D 46, R1914 (1992).
- [15] H. W. Huang and K. T. Chao, Phys. Rev. D 54, 6850 (1996); 56, 1821(E) (1997).
- [16] G. A. Schuler, F. A. Berends, and R. van Gulik, Nucl. Phys. B523, 423 (1998).
- [17] H. W. Crater, C. Y. Wong, and P. VanAlstine, Phys. Rev. D 74, 054028 (2006).
- [18] J. P. Lansberg and T. N. Pham, Phys. Rev. D 79, 094016 (2009).
- [19] C. W. Hwang and R. S. Guo, Phys. Rev. D 82, 034021 (2010).

3 Scan of $e^+e^- \rightarrow B_s^0 \bar{B}_s^0 X$ cross section measurement

Results

• Cross section (in pb) results $\sigma(e^+e^- \rightarrow b\bar{b} \rightarrow DX)$	

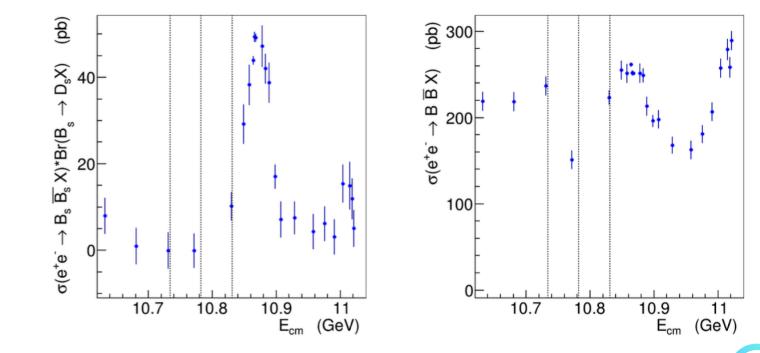
	$\sigma(e^+e^- \to b\bar{b} \to D_s^\pm X)$	$\sigma(e^+e^- \to b\bar{b} \to D^0\!/\bar{D}^0 X)$
$\Upsilon(5S)$	$151.8 \pm 1.0 \pm 5.5$	$379.7 \pm 1.6 \pm 10.0$
$\Upsilon(4S)$	$248.6 \pm 0.6 \pm 9.2$	$1468.5 \pm 0.9 \pm 36.6$

• Production fraction of
$$B_s^0 \bar{B}_s^0 X$$
: f_s

$$f_{\rm s} = (23.0 \pm 0.2 \pm 2.8)\%.$$

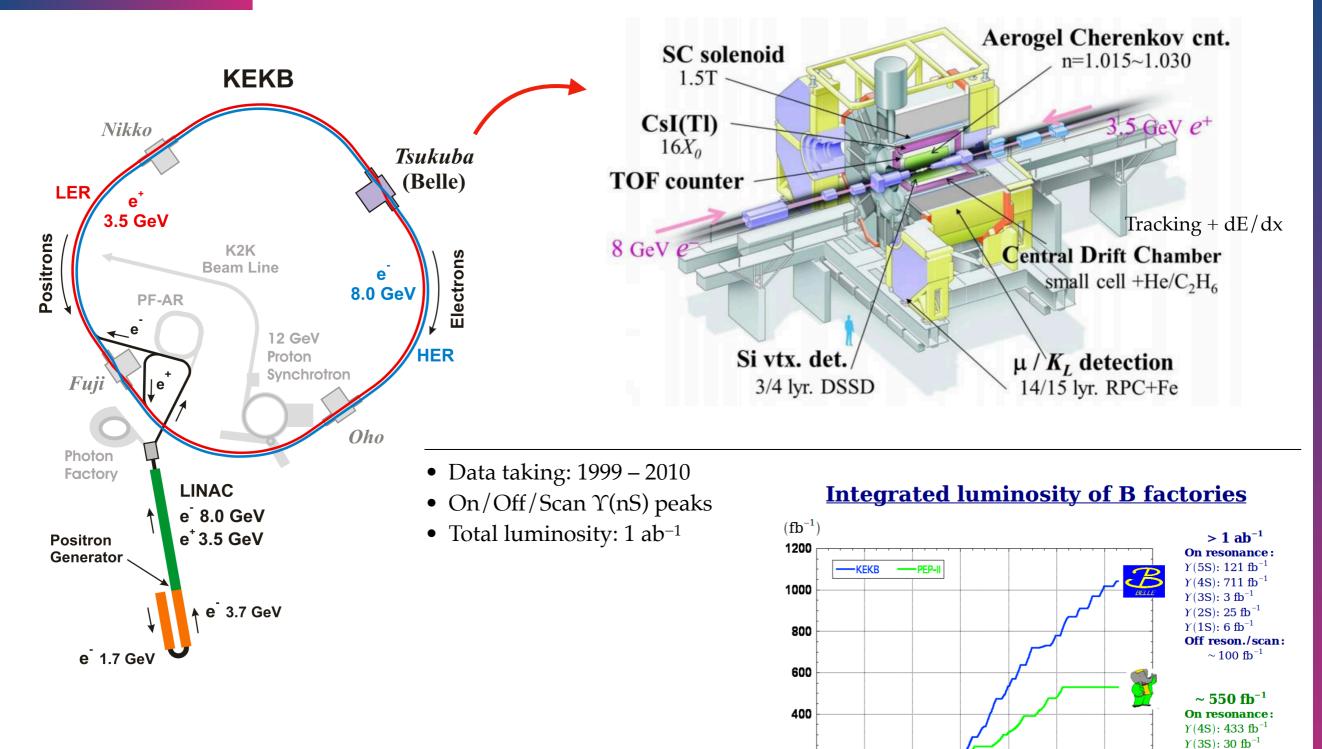
OR
$$f_s = (22.0^{+2.0}_{-2.1})\%$$
 w/ constraint $f_s + f_{B\bar{B}X} + f_{B\bar{B}X} = 1$

• supersedes previous Belle measurements


• Branching fraction $\mathscr{B}(B \to D/\bar{D}X)$ $\mathscr{B}(B \to D^0/\bar{D}^0 X) = (66.63 \pm 0.04 \pm 1.77)\%,$ $\mathscr{B}(B \to D_s^{\pm} X) = (11.28 \pm 0.03 \pm 0.43)\%.$ • lower uncertainty then world average: • 3σ tension for D_s • Ratio $\mathscr{B}(B \to D^0/\bar{D}^0 X)/\mathscr{B}(B_s^0 \to D_s^{\pm} X)$ $\frac{\mathscr{B}(B_s^0 \to D^0/\bar{D}^0 X)}{\mathscr{B}(B_s^0 \to D_s^{\pm} X)} = 0.416 \pm 0.018 \pm 0.092$

Energy Dependence of cross section

$$\begin{split} &\sigma(e^+e^- \to B^0_s \bar{B}^0_s X) \cdot \mathcal{B}(B^0_s \to D^\pm_s X) \\ &\sigma(e^+e^- \to B\bar{B} X) \end{split}$$


•now with high precision

• provides good grounds for Belle II

Belle Detector

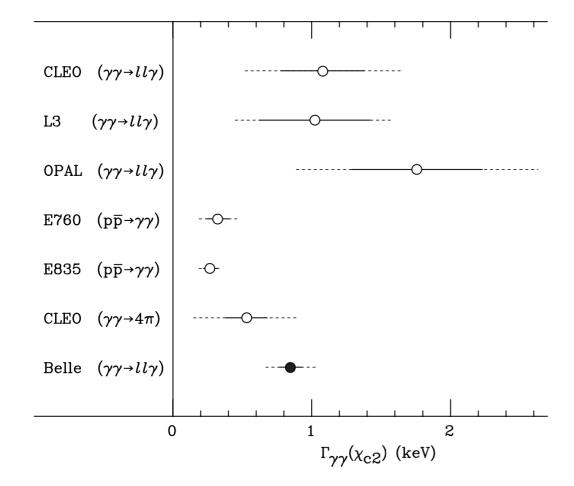
200

28 Feb 2024

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

Y(2S): 14 fb⁻¹ Off resonance: ~ 54 fb⁻¹

Goal


- Two-photon decay width provides important information on spectroscopy, exotic states as well as testing QCD models
- **Resonance production** $\gamma \gamma \rightarrow R$ (e.g. $R = \chi_{c2}(1P)$)
 - *R* comes with many fundamental constraints (e.g. quantum numbers)
 - Decay width is fundamental and direct observable for probing internal structure of meson $(q\bar{q})$
 - $\chi_{c2}(1P)$ (p-wave charmonium) is even special for probing QCD vs pQCD scenario
 - Theory models predict $\chi_{c2}(1P)$ mass in wide range 280-930 eV
 - Previous attempts by Belle (2002), CLEO (2006, 2008) and BESIII (2017)

Method

The overall signal detection efficiency in this analysis is estimated to be 7.36% using the signal MC.

*Recalculated $\mathscr{B}(\chi_{c2}(1P) \rightarrow J/\psi\gamma)$ for = (19.0 ± 0.5)% and $\mathscr{B}(J/\psi \rightarrow l^+l^-)$ = 11.93 ± 0.05 MeV from PDG **Recalculated $\mathscr{B}(\psi(2S) \rightarrow \chi_{c2}(1P)\gamma)$ for = (9.52 ± 0.20)% and $\Gamma_{\gamma\gamma}(\chi_{c2}(1P))$ = 1.97 ± 0.09 MeV from PDG

2 Two-photon decay width of $\chi_{c2}(1P)$ [JHEP 01 2023, 160 (2023)]

CLEO 2006: Systematics

TABLE IV: Sources of systematic uncertainties.

Source	Systematic uncertainty (%)
integrated luminosity, \mathcal{L}	± 3.0
trigger efficiency	± 3.0
signal yield extraction	± 1.3
J/ψ line shape modeling	± 1.6
photon resolution modeling	± 1.3
event selection	± 4.8
tracking	± 2.0
photon finding	± 2.0
$J/\psi ~({ m versus}~ ho,~\phi)~{ m in}~\gamma\gamma$	± 3.0
pure E1 (versus E1 + 10% M2)	± 3.0
overall	± 8.6