Energy scan results from Belle II

Alex Bondar
BINP, Novosibirsk
On behalf of Belle II Collaboration

Belle II and Super KEKB resumed data taken

- The main goal to achieve the luminosity $10^{35} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$
- Integrated luminosity $1 a^{-1}$

02/23 15:15:33-02/24 15:15:33, 2024 JST

$r(10753)$

- Scan points: ~1 fb-1 each
- 1 point "on-peak"
- 2-3 points in the region of interest
- Total significance: 5.2σ
- S-D mixing Zi-Yue Bai PRD 105 (2022) 074007 $b \bar{b}$ state Yu-Shuai Li PRD 105 (2022) 114041 Shi-Dong Liu Arxiv:2312.02761
- Hybrid J.T.Castella, E.Passemar PRD 104 (2021) 034014
- Tetraquark A.Ali et al PLB 802 (2020) 135217 Zhi-Gang Wang Chin.Phys.C 43 (2019)123102

	$\Upsilon(10860)$	$\Upsilon(11020)$	New structure
$\mathrm{M}\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$10885.3 \pm 1.5_{-0.9}^{+2.2}$	$11000.0_{-4.5}^{+4.0+1.3}$	$10752.7 \pm 5.9_{-1.1}^{+0.7}$
$\Gamma(\mathrm{MeV})$	$36.6_{-3.9}^{+4.5}{ }_{-1.1}^{+0.5}$	$23.8_{-6.8}^{+8.0}{ }_{-1.8}^{+0.7}$	$35.5_{-11.3}^{+17.3_{-3.3}^{+3.9}}$

Belle's experience showed that the data collected above $\mathrm{Y}(4 \mathrm{~S})$ is important not only for the study of highly excited bottomonium, but also for the search for exotic states and states of ordinary bottomonium that have not been observed before.

Energy scan above $\Upsilon(4 S)$ with main goal to confirm $\Upsilon(10753)$ and study it's properties.

Energy scan took place Nov. 10 -29, 2021

Event Selections

- The full reconstruction is used: $e^{+} e^{-} \rightarrow\left[\Upsilon(n S) \rightarrow \mu^{+} \mu^{-}\right] \pi^{+} \pi^{-}$
- Plot $\Delta M=M\left(\pi^{+} \pi^{-} \mu^{+} \mu^{-}\right)-M\left(\mu^{+} \mu^{-}\right) v s M\left(\mu^{+} \mu^{-}\right)$: clear signals $\Upsilon(1 S) \pi^{+} \pi^{-}, \Upsilon(2 S) \pi^{+} \pi^{-}$

Belle-II preliminary, arxiv:2401.12021

ISR $\Upsilon(2 S, 3 S) \rightarrow \Upsilon(1 S) \pi^{+} \pi^{-}$

Signal $e^{+} e^{-} \rightarrow\left[Y(n S) \rightarrow \mu^{+} \mu^{-}\right] \pi^{+} \pi^{-}$

Energy dependence of $e^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{\Upsilon}(\boldsymbol{n S}) \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$ cross section

Belle-Il preliminary, arxiv:2401.12021

- New measurement confirms previous Belle result
- Fit: use coherent sum of Breit-Wigner amplitudes, convolve with a Gaussian to account for energy spread
$M_{Y(10753)}=\left(10756.3 \pm 2.7_{\text {stat }} \pm 0.6_{\text {syst }}\right) M e V / c^{2}$ $\Gamma_{Y_{(10753)}}=\left(29.8 \pm 8.5_{\text {stat }} \pm 1.1_{\text {syst }}\right) \mathrm{MeV}$

$M\left(\pi^{+} \pi^{-}\right)$Distribution vs Expectation for Hybrid

Belle-Il preliminary, arxiv:2401.12021

Hybrid J.T.Castella, E.Passemar, PRD 104, 034014

$M\left(\pi^{+} \pi^{-}\right)$Distribution vs Expectation for S-D mixing

Belle-Il preliminary, arxiv:2401.12021

S-D mixing b \bar{b} state Zi-Yue Bai, PRD 105, 074007

$M\left(\pi^{+} \pi^{-}\right)$Distribution vs Expectation for Tetraquark

Belle-Il preliminary, arxiv:2401.12021

Tetraquark
A.Ali et al, PLB 802, 135217

$\Upsilon(10753) \rightarrow \chi_{b J} \omega$

Belle-II, PRL 130, 9, 091902, (2023)

- Cross sections show a peak in the $\mathrm{Y}(10753)$ region
- Confirmation of $\mathrm{Y}(10753)$ and observation of its new decay channel
- $\frac{\chi_{b 1} \omega}{Y(n S) \pi^{+} \pi^{-}}$ratio one order higher at $\Upsilon(10753)$ than at $\curlyvee(5 S)$

$\Upsilon(10753) \rightarrow \chi_{b 0} \omega / \eta_{b} \omega$

Tetraquark (diquark-antidiquark) interpretation of this state predicts enhancement of $\Upsilon(10753) \rightarrow \omega \eta_{b}(1 S)$ transition (Zhi-Gang Wang Chin.Phys.C 432019 123102)

$$
\frac{\Gamma\left(\omega \eta_{b}\right)}{\Gamma\left(\Upsilon \pi^{+} \pi^{-}\right)} \sim 30
$$

We first reconstructed $\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$, since $\eta_{b}(1 S)$ does not have convenient for reconstruction decay channels, and than use its recoil mass to identify the signal

$$
M_{\text {recoil }}(\omega)=\sqrt{\left(E_{C M}-E_{\omega}\right)^{2}-p_{\omega}{ }^{2}}
$$

$e^{+} e^{-} \rightarrow \omega \chi_{b 0}(1 P)$ transition was not observed using full reconstruction due to low decay probability $\chi_{b 0}$ to $\Upsilon(1 S) \gamma$. But in charmonium $Y(4220) \rightarrow$ $\omega \chi_{c 0}$ decay was found to be enhanced compare to $Y(4220) \rightarrow \omega \chi_{c 1,2}$ by BES III

Upper limits on $\Upsilon(10753) \rightarrow \chi_{b 0} \omega / \eta_{b} \omega$ decays

Belle-II preliminary, arxiv:2312.13043

- $\quad \sigma\left[\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \omega \chi_{b 0}{ }^{1}\right]<8.7 \mathrm{pb}$

$\square \quad \sigma\left[\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \omega \eta_{\mathrm{b}}(1 \mathrm{~S})\right]<2.5 \mathrm{pb}$
- c.f. $\sigma\left[\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Y}(\mathrm{nS}) \pi^{+} \pi^{-}\right] \sim 2.0 \mathrm{pb}$ (JHEP 10 (2019) 220)

This result does not support the prediction of the tetraquark model in CPC 43 (2019) 12, 123102

Belle measurement of $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \longrightarrow \boldsymbol{B}^{(*)} \overline{\boldsymbol{B}}^{(*)}$

- Oscillatory behavior
- Positions of minima roughly coincide with Unitarized Quark Model prediction: Ono,Sanda,Tornqvist PRD34,186 (1986)
- Peaks not coincide with $\Upsilon(5 S), \Upsilon(6 S)$ mass positions
$\Upsilon(10753)$?

Combined analysis of Belle scan data

Hüsken, Mitchell and Swanson, Phys.Rev.D 106 (2022) 9, 094013
Channels considered: $B \bar{B}, B \bar{B}^{*}, B^{*} \bar{B}^{*}, B_{s}^{*} \bar{B}_{s}^{*}, \Upsilon(1 S) \pi^{+} \pi^{-}$, $\Upsilon(2 S) \pi^{+} \pi^{-}, \Upsilon(3 S) \pi^{+} \pi^{-}, h_{b}(1 P) \pi^{+} \pi^{-}, h_{b}(2 P) \pi^{+} \pi^{-}, b \bar{b}$.

 Need 4 poles to describe data: $\Upsilon(4 S), \Upsilon(10753), \Upsilon(5 S), \Upsilon(6 S)$. Determine

- Pole positions
- Branching fractions
- Electron widths
- Energy dependence of all scattering amplitudes
(- - PDG)

Belle II measurement of $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{B}^{(*)} \overline{\boldsymbol{B}}^{(*)}$

Method

- Reconstruct B mesons in many hadronic final states
- Use M_{bc} distributions to identify signals
E_{b} - Beam energy
P_{B}-Measured B meson momentum
$\Delta E^{\prime}=\Delta E+M_{b c}-5.28(\mathrm{GeV})$
ω - Energy of γ in $B^{*} \rightarrow B \gamma$
$\sigma\left(M_{b c}\right)=\frac{P_{B}}{M_{b c}} \sigma\left(P_{B}\right) \otimes \frac{P_{B}}{M_{b c}} \omega \otimes \sigma\left(E_{b}\right)$

$M_{b c}$ fit at scan energies

- Good description of the $M_{b c}$ in data
- Contribution of $\Upsilon(4 S) \rightarrow$ $B \bar{B}$ production via ISR is reasonably described by the fit.
- At lowest energy point (3 MeV higher than the threshold) the signal of $B^{*} \bar{B}^{*}$ production is clearly seen.
- This phenomenon can be explained by the presence of a $B^{*} \bar{B}^{*}$ molecular state near the threshold (Nucl.Phys.A 1041 (2024) 122764)

Energy dependence of the $\left.\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{B}^{(*)} \overline{\boldsymbol{B}}^{(}\right)$

To verify the existence of a $B^{*} \bar{B}^{*}$ bound state near the threshold, a detailed scan must be performed in this energy region. We can also expect a significant violation of isospin in the near-threshold region.

Dong et al. CPC44, 083001 (2020)

Conclusion

The understanding of the physics of highly excited heavy quarkonium is very incomplete.

First energy scan results from Belle II are quite interesting, but not conclusive.

New data are needed to search for patterns that may indicate possible theoretical solutions.

Highly Excited Bottomonium is a good object for detailed study and tests of different theoretical models.

Super KEKB is a unique experimental facility in which the phenomena discussed can be studied under well controlled conditions.

Thank you for your attention!

State	Channels	This work		Expt. [52]		GI [26]		Ref. [27]	
		Width	$\mathcal{B}(\%)$	Width	$\mathcal{B}(\%)$	Width	$\mathcal{B}(\%)$	Width	$\mathcal{B}(\%)$
$\Upsilon(10860)$	$\ell^{+} \ell^{-}$	0.348	7.63×10^{-4}	0.31 ± 0.07	$\left(5.7_{-1.5}^{+1.5}\right) \times 10^{-4}$	0.33	1.2×10^{-3}	0.18	3.27×10^{-4}
	$B B$	13.7 MeV	30.0	\ldots	5.5 ± 1.0	5.35 MeV	19.5	6.22 MeV	22.29
	$B B^{*}$	26.5 MeV	58.1	\cdots	13.7 ± 1.6	16.6 MeV	60.6	11.83 MeV	42.41
	$B^{*} B^{*}$	2.58 MeV	5.66	-	38.1 ± 3.4	2.42 MeV	8.83	0.09 MeV	0.32
	$B_{s} B_{s}$	0.484 MeV	1.06	\cdots	0.5 ± 0.5	0.157 MeV	0.573	0.96 MeV	3.45
	$B_{s} B_{s}^{*}$	1.49 MeV	3.28	\cdots	1.35 ± 0.32	0.833 MeV	3.04	1.15 MeV	4.11
	$B_{s}^{*} B_{s}^{*}$	0.872 MeV	1.91	\cdots	17.6 ± 2.7	2.00 MeV	7.30	7.65 MeV	27.42
	Total	45.6 MeV	100	$48.5_{-1.8-2.8}^{+1.9+2.0} \mathrm{MeV}$		27.4 MeV	100	27.89 MeV	
$\Upsilon(11020)$		0.286	7.47×10^{-4}	0.130 ± 0.03	$\left(2.1_{-0.6}^{+1.1}\right) \times 10^{-4}$	0.27	8.0×10^{-4}	0.15	1.90×10^{-4}
	$B B$	7.81 MeV	20.4	\cdots	\cdots	1.32 MeV	3.89	4.18 MeV	5.28
	$B B^{*}$	16.5 MeV	43.0	\cdots	\cdots	7.59 MeV	22.4	15.49 MeV	19.57
	$B B\left(1 P_{1}\right)$	8.27 MeV	21.6	\cdots	\cdots	7.81 MeV	23.0	40.08 MeV	50.64
	$B B\left(1 P_{1}^{\prime}\right)$	Below threshold	...	\cdots	\cdots	10.8 MeV	31.8	3.95 MeV	4.98
	$B^{*} B^{*}$	4.43 MeV	11.5	\cdots	\cdots	5.89 MeV	17.4	11.87 MeV	14.99
	$B_{s} B_{s}$	0.101 MeV	0.263	\cdots	\cdots	1.31	3.86×10^{-3}	0.07 MeV	0.09
	$B_{s} B_{s}^{*}$	0.780 MeV	2.04	\cdots	\cdots	0.136 MeV	0.401	1.50 MeV	1.89
	$B_{s}^{*} B_{s}^{*}$	0.448 MeV	1.17	\cdots	\cdots	0.310 MeV	0.914	2.02 MeV	2.56
	Total	38.3 MeV	100	$39.3{ }_{-1.6-2.4}^{+1.7+1.3} \mathrm{MeV}$		33.9 MeV	100	79.16 MeV	

Dong et al. CPC44, 083001 (2020)
existence of a $B^{*} \bar{B}^{*}$ bound state near the threshold, a detailed scan must be performed in this energy region. We can also expect a significant violation of isospin in the near-threshold region.

\ddagger total $\sigma(\mathrm{b} \overline{\mathrm{b}})$
ㅎ $\quad \sigma(\mathrm{B} \overline{\mathrm{B}})+\sigma\left(\mathrm{B}^{\star}\right)+\sigma\left(\mathrm{B}^{*} \overline{\mathrm{~B}}^{\star}\right)-$ Belle
\$ $\sigma(\mathrm{B} \overline{\mathrm{B}})+\sigma\left(\mathrm{B}^{\star}\right)+\sigma\left(\mathrm{B}^{*} \overline{\mathrm{~B}}^{*}\right)-$ Belle II

Decay channels of B^{+}and B^{0} mesons used in FEI.. Decay channels of D^{0}, D^{+}and D_{s}^{+}mesons used in FEI.

$B^{+} \rightarrow$	$B^{0} \rightarrow$
$\bar{D}^{0} \pi^{+}$	$D^{-} \pi^{+}$
$\bar{D}^{0} \pi^{+} \pi^{+} \pi^{-}$	$D^{-} \pi^{+} \pi^{+} \pi^{-}$
$\bar{D}^{* 0} \pi^{+}$	$D^{*-} \pi^{+}$
$\bar{D}^{* 0} \pi^{+} \pi^{+} \pi^{-}$	$D^{*-} \pi^{+} \pi^{+} \pi^{-}$
$D_{s}^{+} \bar{D}^{0}$	$D_{s}^{+} D^{-}$
$D_{s}^{*+} \bar{D}^{0}$	$D_{s}^{*+} D^{-}$
$D_{s}^{+} \bar{D}^{* 0}$	$D_{s}^{+} D^{*-}$
$D_{s}^{*+} \bar{D}^{* 0}$	$D_{s}^{*+} D^{*-}$
$J / \psi K^{+}$	$J / \psi K_{S}$
$J / \psi K_{S} \pi^{+}$	$J / \psi K^{+} \pi^{-}$
$J / \psi K^{+} \pi^{+} \pi^{-}$	
$D^{-} \pi^{+} \pi^{+}$	$D^{*-} K^{+} K^{-} \pi^{+}$
$D^{*-} \pi^{+} \pi^{+}$	

$D^{0} \rightarrow$	$D^{+} \rightarrow$	$D_{s}^{+} \rightarrow$
$K^{-} \pi^{+}$	$K^{-} \pi^{+} \pi^{+}$	$K^{+} K^{-} \pi^{+}$
$K^{-} \pi^{+} \pi^{0}$	$K^{-} \pi^{+} \pi^{+} \pi^{0}$	$K^{+} K_{S}$
$K^{-} \pi^{+} \pi^{+} \pi^{-}$	$K_{S} \pi^{+}$	$K^{+} K^{-} \pi^{+} \pi^{0}$
$K_{S} \pi^{+} \pi^{-}$	$K_{S} \pi^{+} \pi^{0}$	$K^{+} K_{S} \pi^{+} \pi^{-}$
$K_{S} \pi^{+} \pi^{-} \pi^{0}$	$K_{S} \pi^{+} \pi^{+} \pi^{-}$	$K^{-} K_{S} \pi^{+} \pi^{+}$
$K^{+} K^{-}$	$K^{+} K^{-} \pi^{+}$	$K^{+} K^{-} \pi^{+} \pi^{+} \pi^{-}$
$K^{+} K^{-} K_{S}$		$K^{+} \pi^{+} \pi^{-}$
		$\pi^{+} \pi^{+} \pi^{-}$

Unitarized Quark Model:

Ono,Sanda,Tornqvist PRD34,186 (1986) Tornqvist, Acta Phys. Polon.B 16 (1985) 503

