

Study of cccc and ccss at Belle

Dmytro Meleshko *(on behalf of Belle collab.)* 21.02.2024

Justus-Liebig-Universitaet, Giessen, Germany

53. Arbeitstreffen Kernphysik, Schleching, Deutschland.

Quarkonium(-like) mess

Y(4660)

((4390)

v(2D)

-

v(35)

ψ(1D)

v(25

Impressive legacy

Mass [MeV]

4800

4600

4400

4200

4000 X(3940)

3800

3600

3400

3200

3000

0

- Below $D\bar{D}/B\bar{B}$ thresholds $c\bar{c}$ and bb match QCD;
- Many exotic states observed in the . past decade are hard to fit these spectra.

Z*(44)

X(4500)

X(4274)

X(4140)

From Belle to Belle II: experiment overview

SuperKEKB:

- Asymmetric e⁺e⁻ collider at KEK (Tsukuba, Japan);
- Energy adjustment: 3.5/8.0 GeV (Belle) \rightarrow 7.0/4.0 GeV (Belle II);
- "Nano-beams" × current increase (x2) = x40 inst. luminosity increase;

Belle II detector upgrade:

- Higher background:
 - Radiation damage;
 - Detector readout;
- Higher event rate (\sim 30 kHz):
 - Trigger, DAQ, computing;
- Boost change:
 - Vertexing improvement;

What data samples are available today?

Provense and set of the set of th

20.02.2024 21:12 JST

First recorded collisions of Run 2

The puzzle of Y(4260)

- A plethora of Y states (J^{PC} = 1⁻⁻) has been observed by B-factories while in parallel being extensively studied by theorists:
 - A Y(4260) state with mass of $(4259 \pm 8^{+2}_{-6})$ MeV was observed in $e^+e^- \rightarrow \gamma_{ISR}\pi^+\pi^-J/\psi$ by BaBar (confirmed by Belle and CLEO); Phys. Rev. Lett. 95, 142001 (2005) Phys. Rev. D 74, 091104 (2006) Phys. Rev. Lett. 99, 182004 (2007)
 - Lattice QCD calculation predicts Y(4230) predicts it to have a mass of (4238 ± 31) MeV by treating it as a molecule. It also predicts existence of two additional states: $cs\bar{cs}$ around (4450 ± 100) MeV and $cc\bar{cc}$ around (6400 ± 50) MeV.

Phys. Rev. D 73, 094510 (2006)

- BESIII study has shown that the s.c. Y(4260) is not a simply a resonance, but two:
 - $\label{eq:started_st$
 - The Y(4360) with the mass of (4320.0 \pm 10.4 \pm 7.0) MeV and width of (101.4 $^{\pm 25.3}_{-10.7} \pm$ 10.2) MeV

Phys. Rev. Lett. 118, 092001 (2017)

Introduction

 BESIII: observation of a structure with the mass of (4487.7 ± 13.3 ± 24.1) MeV in the cross-section measurements of e⁺e⁻ → K⁺K⁻J/ψ (matches cs35 lattice QCD prediction);

Phys. Rev. D 97, 071101 (2018)

• Belle: observation of a structures with the masses of $(4625.9^{+6.2}_{-6.0} \pm 0.4)$ MeV and $(4619.8^{+8.9}_{-8.0} \pm 2.3)$ MeV in the cross-section measurements of $e^+e^- \rightarrow D_s^+ D_{s1}(2536)^-$ and $e^+e^- \rightarrow D_s^+ D_{s2}^*(2573)^-$ respectively

Phys. Rev. D 100, no.11, 111103 (2019) Phys. Rev. D 101, no.9, 091101 (2020)

 LHCb: a narrow peak near the double-J/ψ threshold (dubbed X(6900), also confirmed by ATLAS and CMS) - [QQ][QQ]?

Phys. Rev. Lett. 127, no.8, 082001 (2021) Rept. Prog. Phys. 86 (2023) no.2, 026201

Search for the double-charmonium state with $\eta_c J/\psi$ at Belle

J.HighEnerg.Phys.2023, 121(2023)

Search for the double-charmonium state with $\eta_c J/\psi$ at Belle

Motivation: $\eta_c J/\psi$ is the lowest mass combination of charmonia that a vector $cc\bar{c}\bar{c}$ can decay into. Might have large BF.

Data: 980 fb⁻¹ ($\Upsilon(nS)$ and continuum)

Strategy:

- ISR allows searching for cccc in the near-threshold region.
- Cross-section of $e^+e^- \rightarrow \eta_c J/\psi$ is first scanned on the $\Upsilon(nS)$ energy points:
 - analysis validation
 - NNLO nonrelativistic QCD approach check.
- Search for $\eta_c J/\psi$ and Y_{cc} is performed in the near-threshold region.
- Measured cross-sections are then extrapolated to the near-threshold region to the near-threshold region to check if potential signals are coming from continuum.

Exclusive reconstruction

Cross-section calculation:

$$\sigma = \frac{N_{sig}}{\epsilon \mathcal{LB}(J/\psi \to \ell^+ \ell^-) \mathcal{B}(\eta_c \to 6 \text{ channels})}$$
(1)

Inclusive reconstruction

- J/ψ recoil mass is studied: $M_{recoil}(J/\psi)\equiv \sqrt{|p_{e^+e^-}-p_{J/\psi}|^2}$
- $M_{recoil}(J/\psi) + M(J/\psi) m(J/\psi)$ distribution is studied to achieve better resolution

Continuum production fractions for $e^+e^- \rightarrow \mu^+\mu^-$ are about 5/6 and 4.5/4.75 for $\Upsilon(1S)$ and $\Upsilon(2S)$ datasets, respectively. For the other $\Upsilon(nS)$ they are taken as 1.

Fit function:

$$\sigma = A \frac{\sqrt{2\mu\Delta M}}{(\frac{s}{s_0})^n}$$

	$\Upsilon(1S)$	$\Upsilon(2S)$	Ƴ(3 <i>S</i>)	$10.52 \mathrm{GeV}$	$\Upsilon(4S)$	Υ(5 <i>S</i>)
$\mathcal{L}[\text{fb}^{-1}]$	5.7	24.9	2.9	89.4	711.0	121.4
N ^{exc}	$0.7^{+1.5}_{-0.9}$	$6.2^{+3.1}_{-2.3}$	< 1.9	$2.6^{+3.5}_{-2.5}$	$45.0^{+8.9}_{-8.2}$	$6.5^{+3.4}_{-2.7}$
ϵ^{exc}	8.3%	6.9%	5.7%	5.6%	5.6%	5.4%
$\sigma^{exc}[\mathbf{fb}]$	$57^{+122}_{-73}\pm 6$	$140^{+70}_{-52}\pm14$	< 442	$20^{+27}_{-19}\pm 6$	$44^{+9}_{-8}\pm 5$	$39^{+20}_{-14}\pm7$
N ^{inc}	23.7 ± 12.3	62.0 ± 17.9	8.5 ± 5.2	94.7 ± 23.8	1116.2 ± 62.9	91.1 ± 21.5
ϵ^{inc}	38.6%	29.6%	26.4%	26.1%	25.4%	24.7%
$\sigma^{\rm inc}$ [fb]	$89.1_{\pm 20.5}^{\pm 46.2}$	$70.1_{\pm 8.9}^{\pm 20.2}$	$91.8^{\pm 56.2}_{\pm 52.3}$	$33.8^{\pm 8.5}_{\pm 2.8}$	$52.1_{\pm 5.0}^{\pm 2.9}$	$25.4_{\pm 2.8}^{\pm 6.0}$
σ^{comb} [fb]	$78.3^{+47.5}_{-43.0}$	80.2 ± 20.4	$87.0^{+71.0}_{-59.0}$	32.5 ± 8.5	50.2 ± 5.0	27.5 ± 6.1

$e^+e^- ightarrow \eta_c {m J}/\psi$ near threshold

- Common events are removed from the inclusive reconstruction
- Signal count is 9 \pm 4 and 23 \pm 11 for exclusive and inclusive reconstructions
- The enhancement has a 2.1 σ significance, located at (6267 ± 43) MeV mass and has a width of (121±72) MeV)

- The effective luminosity is calculated in each region
 Phys. Lett. B 241, 278 (1990)
- $\pm 1\sigma$ area of the cross-section lineshape extrapolation is consistent with the threshold enhancement.

regions $[\text{GeV}/c^2]$	$N_{\rm prod}$ [×10 ²]	$\sigma[\text{pb}]$
[6.0, 6.4]	13.1 ± 3.6	$3.3\pm0.9\pm0.8$
[6.4, 6.8]	< 8.2	< 1.7
[6.8, 7.2]	< 3.9	< 0.7
[7.2, 7.6]	< 2.7	< 0.4
[7.6, 8.0]	< 2.1	< 0.3
[8.0, 8.4]	< 10.4	< 1.0
[6.0, 6.5]	13.4 ± 4.0	$2.7\pm0.8\pm0.2$
[6.5, 7.0]	< 6.1	< 1.0
[7.0, 7.5]	< 1.9	< 0.2
[7.5, 8.0]	< 3.8	< 0.4
[8.0, 8.5]	< 9.9	< 0.7
[6.0, 6.6]	13.3 ± 4.2	$2.1\pm0.7\pm0.2$
[6.6, 7.2]	< 5.0	< 0.6
[7.2, 7.8]	< 2.3	< 0.2
[7.8, 8.4]	< 7.4	< 0.5

Observation of charmed strange mesons pair production in $\Upsilon(2S)$ decays and in e^+e^- annihilation at 10.52 GeV

Phys.Rev.D108, 112015(2023)

Motivation:

 Study of the "off-resonance" data allows excluding QCD component and study QED-ruled production standalone.

Background knowledge:

- cc̄ constitutes about 40% of total hadronic production in continuum;
- Hadronic decays of $\Upsilon(nS)$ are OZI suppressed \rightarrow study is scarce;
 - BaBar reports $\mathcal{B}[\Upsilon(1S) \to D^{*\pm}X] = (2.52 \pm 0.13 \pm 1.15)\%$ at $(98.9 \pm 0.9) \times 10^6 \Upsilon(1S)$ events (Th: $\mathcal{B}[\Upsilon(1S) \to D^+D^-] = 10^{-4} - 10^{-5})$. Phys. Rev. D 81 (2010) 011102 Phys. Rev. D 74 (2006) 094016
 - Theoretical predictions:
 - Splitting of a virtual gluon Phys. Lett. B 77 (1978) 299
 - Annihilation into an octet state Phys. Rev. D 76 (2007) 051105
 - NP process with exotic couplings to heavy quarks Phys. Rev. D 81 (2010) 075017

Data:

- 24.7 fb $^{-1}$ at $\Upsilon(2S) \sim (158 \pm 4) \times 10^6$ events
- 89.5 fb $^{-1}$ at $\sqrt{s} = 10.52$ GeV

 $^{*}D_{sJ}^{(*)} = D_{s1}(2536)$ or $D_{s2}^{*}(2573)$

Analysis strategy:

- Full reconstruction of $D_s^{(*)}$
- D_s decays into $\phi(\rightarrow K^+K^-)\pi^+$, $K_S^0(\rightarrow \pi^+\pi^-)K^+$, $\bar{K}^*(892)^0(\rightarrow K^-\pi^+)K^+$, $\rho(\rightarrow \pi^+\pi^0)\phi \ \eta\pi^+$ and $\eta'\pi^+$ are reconstructed.
- Partial reconstruction for the D⁻_{s1} final state:
 - The flavor is determined with the produced K
 - The remaining $\bar{D}^{(*)}$ is observed indirectly through its recoil against the $D_s^{(*)}$ K system using the known kinematics.
- Simulated D_{sJ}^- decay modes: $K^- \bar{D^0}$, $K_S^0 D^-$, $K^- \bar{D}^* (2007)^0$ and $K_S^0 D^* (2010)^-$

$$\bar{D}^{(*)} \text{ is determined through the recoil of } D_s^{(*)+}\bar{K}:$$

$$M_{\bar{D}^{(*)}} = M_{D_s^{(*)+}\bar{K}}^{recoil} \equiv \sqrt{(E_{c.m.} - E_{D_s^{(*)+}} - E_{\bar{K}})^2 - (\vec{p}_{c.m.} - \vec{p}_{D_s^{(*)+}} - \vec{p}_{\bar{K}})^2} \quad (2)$$

And isolate production of D_{sl}^- in the $\bar{K}\bar{D}^{(*)}$ final state through recoil defined as:

$$M_{\tilde{K}\tilde{D}^{(*)}} = M_{D_{s}^{(*)+}}^{recoil} \equiv \sqrt{(E_{c.m.} - E_{D_{s}^{(*)+}})^{2} - (\vec{p}_{c.m.} - \vec{p}_{D_{s}^{(*)+}})^{2}}$$
(3)

Large mass resolutions (due to the common variables in Eq. 2 and Eq. 3) can be cured by substituting Eq. 3 with:

$$M_{\bar{K}\bar{D}^{(*)}} = M_{D_{s}^{(*)+}}^{recoil} - M_{D_{s}^{(*)+}\bar{K}}^{recoil} + m_{\bar{D}^{(*)}}$$

 $N^{sig}_{\Upsilon(2S)}$ and N^{sig}_{cont} for DsJ^- are estimated by fitting $M_{\bar{K}\bar{D}^{(*)}}$ distributions simultaneously with the common ratios $\mathcal{B}(D^{-}_{sJ} \to K^0_S D^{(*)-})/(D^-_{sJ} \to K^- D^{(*)0})$ between the final states.

Fit function:

$$PDF = N_1 \cdot G(\mu_{D_{sJ}^-}^{PDG}, 2.4/6.5 \text{ MeV}) + N_2 \cdot BW(\mu_{D_{sJ}^-}^{PDG}, \sigma_{D_{sJ}^-}^{PDG})$$
(5)

The yield acquired on $\Upsilon(2S)$ can be interpreted as:

$$N_{tot}^{sig} = N_{\Upsilon(2S)}^{sig} + N_{cont}^{sig} \times \frac{\mathcal{L}_{\Upsilon(2S)} \cdot s_{cont}}{\mathcal{L}_{conr} \cdot s_{\Upsilon(2S)}}$$
(6)

Branching fractions and Born cross-sections calculation:

$$\mathcal{B}\left(\Upsilon(2S) \to D_{s}^{(*)+}D_{sJ}^{-}\right)\mathcal{B}\left(D_{sJ}^{-} \to \bar{K}\bar{D}^{(*)}\right) = \frac{N_{\Upsilon(2S)}^{\text{sig}} - f_{\text{scale}} \cdot N_{\text{soft}}^{\text{soft}}}{N_{\Upsilon(2S)} \times \sum \varepsilon_{i}\mathcal{B}_{i}}$$

$$\sigma^{\text{B}}\left(e^{+}e^{-} \to D_{s}^{(*)+}D_{sJ}^{-}\right)\mathcal{B}\left(D_{sJ}^{-} \to \bar{K}\bar{D}^{(*)}\right) = \frac{N_{\text{soft}}^{\text{sig}} \times |1-\Pi|^{2}}{\mathcal{L}_{\text{cont}} \times \sum \varepsilon_{i}\mathcal{B}_{i} \times (1+\delta_{\text{ISR}})}$$

$$(7)$$

Final state (f)	$N_{\Upsilon(2S)}^{K^-}$	$\mathcal{B}_{\Upsilon(2S)^{f}}^{f}\mathcal{B}_{D_{sJ}^{-}}^{K^{-}\bar{D}(*)0}\left(\times10^{-5}\right)$	$S^{\Upsilon(2S)}$
$D_s^+ D_{s1}(2536)^-$	$43\pm9\pm2$	$1.4\pm0.3\pm0.1$	5.3
$D_s^{*+}D_{s1}(2536)^-$	$31\pm8\pm2$	$2.0\pm0.5\pm0.1$	4.3
$D_s^+ D_{s2}^* (2573)^-$	$51\pm15\pm5$	$1.6\pm0.5\pm0.1$	3.8
$D_s^{*+} \bar{D_{s2}^{*}} (2573)^{-}$	$20\pm12\pm2$	$1.3\pm0.8\pm0.1$	1.6
Final state (f)	$N_{cont}^{K^-}$	$\sigma^{Born} \mathcal{B}_{D_{s,l}^{-}}^{K^{-}\bar{D}(*)0}(\mathrm{fb})$	S ^{cont}
$D_{s}^{+}D_{s1}(2536)^{-}$	$86\pm10\pm2$	$58\pm7\pm1$	13.9
$D_{s}^{*+}D_{s1}(2536)^{-}$	$79\pm10\pm2$	$101\pm13\pm2$	11.8
$D_s^+ D_{s2}^* (2573)^-$	$102\pm17\pm21$	$67\pm11\pm14$	7.1
$D_s^{*+} \overline{D_{s2}^{*}} (2573)^{-}$	$102\pm16\pm6$	$126\pm20\pm7$	7.6

Curious takeaways:

1. The strong decay is expected to dominate in $\Upsilon(2S) \to D_s^{(*)+} D_{sJ}^-$ process:

$$\begin{split} R_1 &\equiv \mathcal{B}(\Upsilon(2S) \to D_s^{(*)+} D_{sJ}^-) / \mathcal{B}(\Upsilon(2S) \to \mu^+ \mu^-) \\ R_2 &\equiv \sigma^{Born} (e^+ e^- \to D_s^{(*)+} D_{sJ}^-) / \sigma^{Born} (e^+ e^- \to \mu^+ \mu^-) \\ R_1 / R_2 &= 9.8 \pm 2.5, \ 8.0 \pm 2.4, \ 9.7 \pm 3.0 \ \text{and} \ 4.4 \pm 2.8 \\ \text{(for } D_s^+ D_{s1}(2536)^-, \ D_s^{*+} D_{s1}(2536)^-, \ D_s^+ D_{s2}^*(2573)^- \ \text{and} \ D_s^+ D_{s2}^*(2573)^-) \end{split}$$

2. The ratios

$$\frac{\mathcal{B}(D_{s1}(2536)^- \to K_S^0 D^*(2010)^-)}{\mathcal{B}(D_{s1}(2536)^- \to K^- D^*(2007)^0)} = 0.59 \pm 0.08 \pm 0.02$$
$$\frac{\mathcal{B}(D_{s2}^*(2573)^- \to K_S^0 D^-)}{\mathcal{B}(D_{s2}^*(2573)^- \to K^- D^0)} = 0.64 \pm 0.12 \pm 0.04$$

are in good agreement with the expectation from isospin symmetry (with K_5^0 only half of the neutral kaons can be reconstructed).

```
Study of

e^+e^- \rightarrow D_s^+D_{s0}^*(2317)^-A + \text{c.c.}

and e^+e^- \rightarrow D_s^+D_{s1}(2460)^-A + \text{c.c}

at Belle
```

PRELIMINARY

Study of $e^+e^- \rightarrow D_s^+D_{sJ}^-A + c.c.$ at Belle

Study of $e^+e^- \rightarrow D_s^+ D_{sJ}^- A$ + c.c. at Belle

First $e^+e^-
ightarrow D_s \pi^0 X$ process studies:

- BaBar: 1267 yield on 91 *fb*⁻¹
- Belle: 761 yield on 87 *fb*⁻¹

Extrapolation from the old analysis with $D_s^*(2317)$ only, but to the whole data set:

Belle @↑(4S): 6226 Only D^{*}_s(2317)!

With one extra D_s (e.g. +3 charged tracks), efficiency is expected to drop (< 1%). Around 100 events are expected on full Belle dataset.

Study of $e^+e^- \rightarrow D_s^+ D_{sJ}^- A + \text{c.c.}$ at Belle

Signal MC

The following peaking contributions are expected

- $D_{sJ}(2317)^+$ invariant mass region:
 - True $D_{sJ}(2317)^+$ peak $\sigma = (4.76 \pm 0.8)$ MeV
 - $D_{sJ}(2460)^+$ reflection peak $\sigma = (11.8 \pm 0.3)$ MeV
- $D_{sJ}(2460)^+$ invariant mass region:
 - True $D_{sJ}(2460)^+$ peak $\sigma = (5.07 \pm 0.13)$ MeV
 - $D_{sJ}(2317)^+$ reflection peak $\sigma = (14.6 \pm 0.7)$ MeV
 - *D_{sJ}*(2460)⁺ "broken signal"
 σ = (16.9 ± 1.8) MeV

Study of $e^+e^- \rightarrow D_s^+D_{sJ}^-A$ + c.c. at Belle

$$\Delta M(D_s \pi^0) = N_1 G(\mu_1, \sigma_1) + f^{down} N_2 G(\mu^{down}, \sigma^{down})$$

$$\Delta M(D_s^* \pi^0) = N_2 G(\mu_2, \sigma_2) + f^{up} N_1 G(\mu^{up}, \sigma^{up}) + f^{broken} N_2 G(\mu^{broken}, \sigma^{broken})$$
(8)

ref: N = 3,843 \pm 67, μ = 348.9 \pm 0.1, σ = 6.20 \pm 0.10

ref: N = 835 \pm 31, μ = 347.1 \pm 0.2, σ = 5.80 \pm 0.20

μ , [MeV]	σ , [MeV]	N
349.3 ± 0.2	5.97 ± 0.25	$3,797 \pm 137$
345.1 (fixed)	13.5 (fixed)	$0.3297 \cdot N_2$
347.1 ± 0.5	5.46 ± 0.60	811 ± 155
352.0 (fixed)	13.9 (fixed)	$3.042 \cdot N_1$
346.7 (fixed)	22.7 (fixed)	$1.189 \cdot N_2$
	$\begin{array}{c} \mu, [{\rm MeV}] \\ \hline 349.3 \pm 0.2 \\ 345.1 ({\rm fixed}) \\ 347.1 \pm 0.5 \\ 352.0 ({\rm fixed}) \\ 346.7 ({\rm fixed}) \end{array}$	$\begin{array}{c c} \mu, [\text{MeV}] & \sigma, [\text{MeV}] \\ \hline 349.3 \pm 0.2 & 5.97 \pm 0.25 \\ \hline 345.1 (\text{fixed}) & 13.5 (\text{fixed}) \\ \hline 347.1 \pm 0.5 & 5.46 \pm 0.60 \\ \hline 352.0 (\text{fixed}) & 13.9 (\text{fixed}) \\ \hline 346.7 (\text{fixed}) & 22.7 (\text{fixed}) \end{array}$

Study of $e^+e^- \rightarrow D_s^+D_{sJ}^-A$ + c.c. at Belle

Cut-based selection \rightarrow MVA selection

Topology type	μ , [MeV]	σ , [MeV]	N
True $D_{s0}^{*}(2317)$	350.0 ± 0.5	6.64 ± 0.53	688 ± 62
Feed-down bkg.	344.8 (fixed)	13.1 (fixed)	$1.688 \cdot N_2$
True <i>D</i> _{s1} (2460)	346.2 ± 1.7	6.27 ± 1.55	105 \pm 27
Feed-up bkg.	351.9 (fixed)	14.8 (fixed)	$0.134 \cdot N_1$
Broken signal	351.0 (fixed)	20.4 (fixed)	$0.247 \cdot N_2$

Cuts: $N(D_{s0}^*(2317)) = 370 \pm 45$

 $N(D_{s1}(2460)) = 68 \pm 22$

Study of $e^+e^- \rightarrow D_s^+ D_{sl}^- A$ + c.c. at Belle

Study of $e^+e^- \rightarrow D_s^+ D_{sJ}^- A$ + c.c. at Belle

$$\frac{Br(D_{s1}(2460) \to D_s^* \pi^0)}{Br(D_{s0}^*(2317) \to D_s \pi^0)} \times \frac{\sigma(D_{s1}(2460), \text{MVA})}{\sigma(D_{s0}^*(2317), \text{MVA})} = 0.26 \pm 0.07(\text{stat}) \pm 0.03(\text{syst})$$
*The value earlier measured by Belle is $0.29 \pm 0.06 \pm 0.03$
**The value predicted by theory is 3

$$\sigma(e^+e^- \rightarrow D_s^+ D_{sJ}^{(*)-} A) \mathcal{B}(D_s^- \rightarrow 3 \text{ modes}) \mathcal{B}(D_s^+ \rightarrow 3 \text{ modes}) = \frac{N^{DL} \times |1-\Pi|^2}{\mathcal{L} \times \Sigma_{ij} \varepsilon_{ii}^* \mathcal{B}_i \mathcal{B}_j \times (1+\delta)_{ISI}}$$

Curious takeaways:

- The estimated ratio of branching fractions is consistent with earlier Belle study.
- *D_sD_{sJ}* invariant mass distributions on data appeared to be PHSP-distributed.
- Cross-section UL for the accessible X states are evaluated.

Decay chain	Total error [%]	Estimated N_{90}^{UL}	$\sigma^{UL} imes \mathcal{B}(X o D_s D_{sJ}^*) \ [fb^{-1}]$
$e^+e^- ightarrow X(4274)A$	13.3	2.45	122.5
$e^+e^- ightarrow X(4685)A$	14.1	2.04	101.8
$e^+e^- \rightarrow X(4630)A$	18.3	2.05	228.1
$e^+e^- ightarrow X(4500)A$	18.0	2.34	260.1
$e^+e^- ightarrow X(4700)A$	18.7	2.18	241.8

Summary

- 1. No significant signal is seen in the $e^+e^- \rightarrow \eta_c J/\psi$ process near threshold. The observed enhancement can be explained by continuum contribution.
- 2. Born cross-sections and branching fractions are measured for the $e^+e^-/\Upsilon(2S) \rightarrow D_s^{(*)+}D_{sJ}^-$ processes. This allows to conclude about the intrinsic features of $\Upsilon(2S)$ decays.
- 3. No significant signal is seen in the $D_s D_{sJ}^{(*)}$ system. Upper limits on the accessible X states that were earlier reported by LHCb are set.

Backup

- Cut-based selection is developed for the D_s^{(*)-} candidates;
- D_s⁻ invariant mass fit:

 $\sigma_{D_s^-}=7.0\pm0.1~{\rm MeV}$

 BCS applied on D^{*-}_s candidates leads to peaking background (studied in a side-band).
 Fit performed:

$$\sigma_{D_s^{*-}}=6.7\pm0.4~{\rm MeV}$$

•
$$M^2_{recoil} = |p_{e^+e^-} - p(\eta_c) - p(J/\psi)|^2;$$

 At least four charged tracks are required in the inclusive reconstruction to suppress QED background;

Candidate	Criteria
	dr < 1.0 cm
All tracks	dz < 4 cm
	$p_T > 100 { m MeV}$
K	$\mathcal{L}_{K}/(\mathcal{L}_{K}+\mathcal{L}_{\pi})>0.6$
	$\mathcal{L}_{ ho}/(\mathcal{L}_{ ho}+\mathcal{L}_{\pi})>0.6$
ρ	$\mathcal{L}_{ ho}/(\mathcal{L}_{ ho}+\mathcal{L}_{ m K})>0.6$
μ	$\mathcal{L}_{\mu}/(\mathcal{L}_{\mu}+\mathcal{L}_{p}+\mathcal{L}_{K})>0.6$
е	$\mathcal{L}_e/(\mathcal{L}_e+\mathcal{L}_{non-e})>0.01$
γ_{ISR}	$E_{\gamma} > 1$ GeV
K_S^0	NN
	E_γ $>$ 25 MeV (barel)
π^0	$E_{\gamma} >$ 50 MeV (endcap)
	$155 < M_{\gamma\gamma} < 155$ MeV
γ^{BS}	50 mrad cone
1/0/2	$3 < M(e^+e^-) < 3.12 \; { m GeV}$
J/ψ	$3.075 < M(\mu^+\mu^-) < 3.125$ GeV
η_c	$2.78 < M(\eta_c) < 3.08$ GeV
BCS	$\min(M^{ ext{recoil}}_{\eta_{c}J/\psi})$

Candidate	Resolution [MeV]	Criteria	
		dr < 1.5 cm	
		dz < 5 cm	
Tracks	-	$p_T > 0.1 { m GeV}$	
		$\mathcal{L}_{\mathcal{K}} > 0.6$	
		$\mathcal{L}_{\pi} > 0.4$	
K_c^0	≈ 5	$ M_{\pi^+\pi^-} - m_{K^0_S} < 3\sigma$	
3		NN	
ϕ	≈3.3	$ M_{K+K^-} - m_{\phi} < 3\sigma$	
K*(892)	<< 47.3	$ M_{K^-\pi^+} - m_{K^*(892)} < 105 \text{ MeV}$	
ρ^+	<< 150	$ M_{\pi^+\pi^0} - m_ ho < 200 \; { m MeV}$	
π^0	≈ 5	$ M_{\gamma\gamma} - m_{\pi^0} < 3\sigma$ MeV	
21	_	$E_{\gamma} > 25$ MeV (barel)	
1	-	$E_\gamma >$ 50 MeV (endcap)	
	$pprox$ 4 ($ ightarrow \pi^+\pi^-\pi^0$)	$ M_{\pi^+\pi^-\pi^0} - m_\eta < 3\sigma$	
η	$\approx 134 (\rightarrow \gamma \gamma)$	$ M_{\gamma\gamma} - m_{\eta} < 3\sigma$	
	(, , , ,)	$E_{\gamma} > 100$ MeV	
η'	≈ 5	$ M_{\eta\pi^+\pi^-} - m_{\eta'} < 3\sigma$	
D_s	7.9 ± 0.1	$ M_{h_1h_2} - m_{D_s} < 3\sigma$	
		$ M_{\gamma D_{S}} - m_{D_{s}^{*}} < 50 { m MeV}$	
D*	D_s^* 6.7 ± 0.4	$E_{\gamma} >$ 50 MeV (barel)	
\mathcal{D}_{s}		$E_\gamma > 100$ MeV (endcap)	
		BCS: min(χ^2)	

Signal MC. Optimized selection and BCS implementation.

In addition to the selection summarized on the right, the BCS selection was applied in the latest iteration of a study.

Selection optimization study has been conducted.

Figure 1: Signal MC. Event multiplicity before BCS application.

Selection criterion		
dr < 0.5 cm		
dz < 3 cm		
$P_{K_1}(K/\pi) > 0.5$		
$P_{K_2}(K/\pi) > 0.2$		
$P_{\pi}(K/\pi) < 0.9$		
$E(\gamma) > 100$ MeV		
$p(\gamma\gamma) > 150 \; { m MeV/c}$		
$\chi^2(\gamma\gamma) < 200$		
$122 < \mathit{M}(\gamma\gamma) < 148~{ m MeV/c^2}$		
$P_{\chi^2}(\gamma\gamma) > 1\%$		
$1.010 < M(KK) < 1.030 \text{ GeV/c}^2$		
$P_{\chi^2}(KK) > 0.1\%$		
$842 < M(K\pi) < 942 \text{ MeV/c}^2$		
$P_{\chi^2}(K\pi) > 0.1\%$		
$1.9585 < M(D_s) < 1.9785 \text{ GeV/c}^2$		
$P_{\chi^2}(D_s) > 0.1\%$		
$p^*(D_s\pi^0) > 2.79 \text{ GeV/c}$		
$P_{\chi^2}(D_s \pi^0) > 0.1\%$		
$ \cos\theta_H > 0.42$		

Table 1: The summarized selection for $D_{s1}(2460)$ reconstruction.

* γ_* denotes the photon combined with D_s to create D_s^* candidate decaying into $D_s \gamma$.

Signal MC. $D_s D_{s0}^*$ (2317) system study (threshold case).

 $\varepsilon = 0.22 \pm 0.02\%$

Figure 2: The $D_s D_{s0}^*$ (2317) invariant mass distribution in threshold case. The signal contribution is fitted by Voigt function, non-resonant background as approximated by the Threshold function.

MVA methods comparison

Figure 3: MVA input variables for signal (blue) and background (red) events.

Figure 4: MVA input variables for signal (blue) and background (red) events.

- Pre-selection is applied.
- \bullet Performances of MLP, BDT, Fisher and DNN methods are compared \rightarrow MLP is chosen
- Set of input variables is optimized with respect to correlation matrix \rightarrow redundant variables eliminated.

Figure 5: Input parameters Correlation Matrix for signal events.

MLP application

Figure 7: MLP architecture.

Figure 8: MLP response for classifier on training sample.

MLP Convergence Test

Figure 9: MLP convergence test.

Figure 10: FoM dependence on classifier cut value.

37

Systematic Contribution	$D_s D_{s0}^*(2317)$ %	$D_s D_{s1}(2460)$ %
Charged tracks identification	3.21	3.21
Track reconstruction	2.10	2.10
MC statistics	1.82	2.42
Integrated luminosity	1.40	1.40
π^0 reconstruction	2.00	2.00
γ reconstruction	-	2.30
Secondary BF	5.83	5.62
Background fit PDF order	1.03	1.23
Mass cuts on secondary particles	5.58	7.80
TOTAL	9.50	11.22

Asymptotic method

Equation to solve:

$$\frac{\int_{0}^{N^{90\%}} \mathcal{L}(x) dx}{\int_{0}^{+\infty} \mathcal{L}(x) dx} = 0.9$$
(9)

 $N^{90\%}$ - wanted UL on the number of signal events.

Target dependency to study:

$$\Delta L = e^{\mathcal{L}(N_{sig}) - \mathcal{L}_0} \tag{10}$$

Consideration of the systematic uncertainties:

$$\Delta(\Delta L) = \frac{\Delta \mathcal{L}_j \cdot \mathcal{L}_j}{\sqrt{2\pi\varepsilon_{syst}N_j^{sig}}} \cdot e^{-\frac{1}{2}\left(\frac{\Delta N_j^{sig}}{\varepsilon_{syst}N_j^{sig}}\right)^2}$$
(11)

Cross-section UL calculation:

$$\sigma^{90\%} = \frac{N^{90\%}}{\varepsilon^{tot} \cdot \mathcal{L}^{int}} \tag{12}$$

CL method

Likelihood ratio:

$$\lambda(\mu) = \frac{\mathcal{L}(\mu, \hat{\theta} | n_1, \dots, n_{N_b})}{\mathcal{L}(\mu, \hat{\theta} | n_1, \dots, n_{N_b})}, \qquad (13)$$

where $(\mu, \hat{\theta})$ are the parameters that maximize the likelihood for the set of observations $n_1, ..., n_{N_b}$; and $\hat{\theta}$ maximizes the likelihood for a given value of μ .

Test statistics q_{μ} :

$$q_{\mu} = \begin{cases} -2ln\lambda(\mu) & \text{if } \mu > \hat{\mu}, \\ 0 & \text{otherwise} \end{cases}$$
(14)

The level of agreement between the data and the hypothesized value of μ is quantified with the *p*-value:

$$p_{s+b} = P(q_{\mu} > q_{\mu,\text{obs}}|\mu) = \int_{\mu,\text{obs}}^{\infty} p(q_{\mu}|\mu) dq_{\mu},$$
 (15)

where $> q_{\mu,obs}$ is the observed value of q_{μ} , and $p(q_{\mu}|\mu)$ denotes the probability density function of q_{μ} under the assumption of a signal strength of μ .

UL on μ at 90% CL is the largest value of μ such as p_{s+b} stays above 0.1