JUSTUS-LIEBIG(1) UNIVERSITAT

Study of $\mathbf{c} \bar{c} c \bar{c}$ and $\mathbf{c c} s \bar{s}$ at Belle

Dmytro Meleshko (on behalf of Belle collab.)
21.02.2024

Justus-Liebig-Universitaet, Giessen, Germany
53. Arbeitstreffen Kernphysik, Schleching, Deutschland

Quarkonium(-like) mess

- Impressive legacy
- Below $D \bar{D} / B \bar{B}$ thresholds $c \bar{c}$ and $b \bar{b}$ match QCD;
- Many exotic states observed in the past decade are hard to fit these spectra.

From Belle to Belle II: experiment overview

What data samples are available today?

20.02.2024 21:12 JST First recorded collisions of Run 2

The puzzle of $Y(4260)$

- A plethora of Y states $\left(J^{P C}=1^{--}\right)$has been observed by B-factories while in parallel being extensively studied by theorists:
- A $Y(4260)$ state with mass of $\left(4259 \pm 8_{-6}^{+2}\right) \mathrm{MeV}$ was observed in $e^{+} e^{-} \rightarrow \gamma_{I S R} \pi^{+} \pi^{-} J / \psi$ by BaBar (confirmed by Belle and CLEO); Phys. Rev. Lett. 95, 142001 (2005) Phys. Rev. D 74, 091104 (2006) Phys. Rev. Lett. 99, 182004 (2007)
- Lattice QCD calculation predicts $Y(4230)$ predicts it to have a mass of (4238 ± 31) MeV by treating it as a molecule. It also predicts existence of two additional states: $c s \bar{s} \bar{s}$ around $(4450 \pm 100) \mathrm{MeV}$ and $c c \bar{c} \bar{c}$ around $(6400 \pm 50) \mathrm{MeV}$. Phys. Rev. D 73, 094510 (2006)
- BESIII study has shown that the s.c. $Y(4260)$ is not a simply a resonance, but two:
- The $Y(4230)$ with the mass of $(4222.0 \pm 3.1 \pm 1.4) \mathrm{MeV}$ and width of $(44.1 \pm 4.3 \pm 2.0) \mathrm{MeV}$ Phys. Rev. Lett. 118, 092001 (2017) Phys. Rev. Lett. 118, 092002 (2017) Phys. C 38, 043001 (2014) Phys. Rev. D 99, 091103 (2019) Phys. Rev. Lett. 122, 102002 (2019)
- The $Y(4360)$ with the mass of $(4320.0 \pm 10.4 \pm 7.0) \mathrm{MeV}$ and width of $\left(101.4_{-19.7}^{+25.3} \pm 10.2\right) \mathrm{MeV}$

Phys. Rev. Lett. 118, 092001 (2017)

Introduction

- BESIII: observation of a structure with the mass of $(4487.7 \pm 13.3 \pm 24.1) \mathrm{MeV}$ in the cross-section measurements of $e^{+} e^{-} \rightarrow K^{+} K^{-} J / \psi$ (matches css̄s̄ lattice QCD prediction);

```
Phys. Rev. D 97, 071101 (2018)
```

- Belle: observation of a structures with the masses of $\left(4625.9_{-6.0}^{+6.2} \pm 0.4\right) \mathrm{MeV}$ and $\left(4619.8_{-8.0}^{+8.9} \pm 2.3\right) \mathrm{MeV}$ in the cross-section measurements of $e^{+} e^{-} \rightarrow D_{s}^{+} D_{s 1}(2536)^{-}$and $e^{+} e^{-} \rightarrow D_{s}^{+} D_{s 2}^{*}(2573)^{-}$respectively Phys. Rev. D 100, no.11, 111103 (2019) Phys. Rev. D 101, no.9, 091101 (2020)
- LHCb: a narrow peak near the double- J / ψ threshold (dubbed $X(6900)$, also confirmed by ATLAS and CMS $)-[Q Q][\bar{Q} \bar{Q}]$?
Phys. Rev. Lett. 127, no.8, 082001 (2021) Rept. Prog. Phys. 86 (2023) no.2, 026201

Search for the double-charmonium state with $\eta_{c} J / \psi$ at Belle
J.HighEnerg.Phys.2023, 121(2023)

Search for the double-charmonium state with $\eta_{c} J / \psi$ at Belle

Motivation: $\eta_{c} J / \psi$ is the lowest mass combination of charmonia that a vector $c c \bar{c} \bar{c}$ can decay into. Might have large BF.

Data: $980 \mathrm{fb}^{-1}(\Upsilon(n S)$ and continuum $)$

Strategy:

- ISR allows searching for $c c \bar{c} \bar{c}$ in the near-threshold region.
- Cross-section of $e^{+} e^{-} \rightarrow \eta_{c} J / \psi$ is first scanned on the $\Upsilon(n S)$ energy points:
- analysis validation
- NNLO nonrelativistic QCD approach check.
- Search for $\eta_{c} J / \psi$ and $Y_{c c}$ is performed in the near-threshold region.
- Measured cross-sections are then extrapolated to the near-threshold region to the near-threshold region to check if potential signals are coming from continuum.

Search for the double-charmonium state with $\eta_{c} J / \psi$ at Belle

Exclusive reconstruction

Cross-section calculation:

$$
\begin{equation*}
\sigma=\frac{N_{\text {sig }}}{\epsilon \mathcal{L B}\left(J / \psi \rightarrow \ell^{+} \ell^{-}\right) \mathcal{B}\left(\eta_{c} \rightarrow 6 \text { channels }\right)} \tag{1}
\end{equation*}
$$

Search for the double-charmonium state with $\eta_{c} J / \psi$ at Belle

Inclusive reconstruction

- J / ψ recoil mass is studied: $M_{\text {recoil }}(J / \psi) \equiv \sqrt{\left|p_{e^{+} e^{-}}-p_{J / \psi}\right|^{2}}$
- $M_{\text {recoil }}(J / \psi)+M(J / \psi)-m(J / \psi)$ distribution is studied to achieve better resolution

Search for the double-charmonium state with $\eta_{c} J / \psi$ at Belle

Continuum production fractions for $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$are about $5 / 6$ and $4.5 / 4.75$ for $\Upsilon(1 S)$ and $\Upsilon(2 S)$ datasets, respectively. For the other $\Upsilon(n S)$ they are taken as 1 .

Fit function:

$$
\sigma=A \frac{\sqrt{2 \mu \Delta M}}{\left(\frac{s}{s_{0}}\right)^{n}}
$$

	$\Upsilon(1 S)$	$\Upsilon(2 S)$	$\Upsilon(3 S)$	10.52 GeV	$\Upsilon(4 S)$	$\Upsilon(5 S)$
$\mathcal{L}\left[\mathrm{fb}^{-1}\right]$	5.7	24.9	2.9	89.4	711.0	121.4
$N^{\text {exc }}$	$0.7_{-0.9}^{+1.5}$	$6.2_{-2.3}^{+3.1}$	<1.9	$2.6_{-2.5}^{+3.5}$	$45.0_{-8.9}^{+8.9}$	$6.5_{-2.7}^{+3.4}$
$\epsilon^{\text {exc }}$	8.3%	6.9%	5.7%	5.6%	5.6%	5.4%
$\sigma^{\text {exc }}[\mathrm{fb}]$	$57_{-73}^{+222} \pm 6$	$140_{-52}^{+70} \pm 14$	<442	$20_{-19}^{+27} \pm 6$	$44_{-8}^{+9} \pm 5$	$39_{-14}^{+20} \pm 7$
$N^{\text {inc }}$	23.7 ± 12.3	62.0 ± 17.9	8.5 ± 5.2	94.7 ± 23.8	1116.2 ± 62.9	91.1 ± 21.5
$\epsilon^{\text {inc }}$	38.6%	29.6%	26.4%	26.1%	25.4%	24.7%
$\sigma^{\text {inc }}[\mathrm{fb}]$	$89.1_{ \pm 20.5}^{ \pm 46.2}$	$70.1_{ \pm 8.9}^{ \pm 20.2}$	$91.8_{ \pm 52.3}^{ \pm 56.2}$	$33.8_{ \pm 2.8}^{ \pm 8.5}$	$52.1_{ \pm 5.0}^{ \pm 2.9}$	$25.4_{ \pm 2.8}^{ \pm 6.0}$
$\sigma^{\text {comb }}[\mathrm{fb}]$	$78.3_{-43.0}^{+47.5}$	80.2 ± 20.4	$87.0_{-59.0}^{+71.0}$	32.5 ± 8.5	50.2 ± 5.0	27.5 ± 6.1

Search for the double-charmonium state with $\eta_{c} J / \psi$ at Belle

$$
e^{+} e^{-} \rightarrow \eta_{c} J / \psi \text { near threshold }
$$

- Common events are removed from the inclusive reconstruction
- Signal count is 9 ± 4 and 23 ± 11 for exclusive and inclusive reconstructions
- The enhancement has a 2.1σ significance, located at (6267 ± 43) MeV mass and has a width of (121 ± 72) MeV)

Search for the double-charmonium state with $\eta_{c} J / \psi$ at Belle

- The effective luminosity is calculated in each region Phys. Lett. B 241, 278 (1990)
- $\pm 1 \sigma$ area of the cross-section lineshape extrapolation is consistent with the threshold enhancement.

regions $\left[\mathrm{GeV} / \mathrm{c}^{2}\right]$	$N_{\text {prod }}\left[\times 10^{2}\right]$	$\sigma[\mathrm{pb}]$
$[6.0,6.4]$	13.1 ± 3.6	$3.3 \pm 0.9 \pm 0.8$
$[6.4,6.8]$	<8.2	<1.7
$[6.8,7.2]$	<3.9	<0.7
$[7.2,7.6]$	<2.7	<0.4
$[7.6,8.0]$	<2.1	<0.3
$[8.0,8.4]$	<10.4	<1.0
$[6.0,6.5]$	13.4 ± 4.0	$2.7 \pm 0.8 \pm 0.2$
$[6.5,7.0]$	<6.1	<1.0
$[7.0,7.5]$	<1.9	<0.2
$[7.5,8.0]$	<3.8	<0.4
$[8.0,8.5]$	<9.9	<0.7
$[6.0,6.6]$	13.3 ± 4.2	$2.1 \pm 0.7 \pm 0.2$
$[6.6,7.2]$	<5.0	<0.6
$[7.2,7.8]$	<2.3	<0.2
$[7.8,8.4]$	<7.4	<0.5

Observation of charmed strange mesons pair production in $\Upsilon(2 S)$ decays and in $e^{+} e^{-}$annihilation at 10.52 GeV

Phys.Rev.D108, 112015(2023)

Observation of $c \bar{s}+\bar{c} s$ in $\Upsilon(2 S)$ decays and at 10.52 GeV

Motivation:

- Study of the "off-resonance" data allows excluding QCD component and study QED-ruled production standalone.

Background knowledge:

- $c \bar{c}$ constitutes about 40% of total hadronic production in continuum;
- Hadronic decays of $\Upsilon(n S)$ are OZI suppressed \rightarrow study is scarce;
- BaBar reports $\mathcal{B}\left[\Upsilon(1 S) \rightarrow D^{* \pm} X\right]=(2.52 \pm 0.13 \pm 1.15) \%$ at $(98.9 \pm 0.9) \times 10^{6} \Upsilon(1 S)$ events (Th: $\left.\mathcal{B}\left[\Upsilon(1 S) \rightarrow D^{+} D^{-}\right]=10^{-4}-10^{-5}\right)$. Phys. Rev. D 81 (2010) $011102 \quad$ Phys. Rev. D 74 (2006) 094016
- Theoretical predictions:
- Splitting of a virtual gluon Phys. Lett. B 77 (1978) 299
- Annihilation into an octet state Phys. Rev. D 76 (2007) 051105
- NP process with exotic couplings to heavy quarks Phys. Rev. D 81 (2010) 075017

Observation of $c \bar{s}+\bar{c} s$ in $\Upsilon(2 S)$ decays and at 10.52 GeV

Data:

- $24.7 \mathrm{fb}^{-1}$ at $\Upsilon(2 S) \sim(158 \pm 4) \times 10^{6}$ events
- $89.5 \mathrm{fb}^{-1}$ at $\sqrt{s}=10.52 \mathrm{GeV}$

${ }^{*} D_{s J}^{(*)}=D_{s 1}(2536)$ or $D_{s 2}^{*}(2573)$

Analysis strategy:

- Full reconstruction of $D_{s}^{(*)}$
- D_{s} decays into $\phi\left(\rightarrow K^{+} K^{-}\right) \pi^{+}, K_{S}^{0}\left(\rightarrow \pi^{+} \pi^{-}\right) K^{+}, \bar{K}^{*}(892)^{0}\left(\rightarrow K^{-} \pi^{+}\right) K^{+}$, $\rho\left(\rightarrow \pi^{+} \pi^{0}\right) \phi \eta \pi^{+}$and $\eta^{\prime} \pi^{+}$are reconstructed.
- Partial reconstruction for the $\boldsymbol{D}_{s J}^{-}$final state:
- The flavor is determined with the produced K
- The remaining $\bar{D}^{(*)}$ is observed indirectly through its recoil against the $D_{s}^{(*)}$ - K system using the known kinematics.
- Simulated $\bar{D}_{s J}^{-}$decay modes: $\boldsymbol{K}^{-} \overline{\boldsymbol{D}^{0}}, K_{S}^{0} \boldsymbol{D}^{-}, K^{-} \overline{\boldsymbol{D}}^{*}(\mathbf{2 0 0 7})^{0}$ and $\boldsymbol{K}_{S}^{0} \boldsymbol{D}^{*}(\mathbf{2 0 1 0})^{-}$

Observation of $c \bar{s}+\bar{c} s$ in $\Upsilon(2 S)$ decays and at 10.52 GeV

$\bar{D}^{(*)}$ is determined through the recoil of $D_{s}^{(*)+} \bar{K}$:

$$
\begin{equation*}
M_{\bar{D}^{(*)}}=M_{D_{s}^{(*)+}}^{\text {recoil }} \equiv \sqrt{\left(E_{c . m .}-E_{D_{s}^{(*)+}}-E_{\bar{K}}\right)^{2}-\left(\vec{p}_{c . m .}-\vec{p}_{D_{s}^{(*)+}}-\vec{p}_{\bar{K}}\right)^{2}} \tag{2}
\end{equation*}
$$

And isolate production of $D_{s J}^{-}$in the $\bar{K} \bar{D}^{(*)}$ final state through recoil defined as:

$$
\begin{equation*}
M_{\bar{K} \bar{D}^{(*)}}=M_{D_{s}^{(*)+}}^{\text {recoil }} \equiv \sqrt{\left(E_{c . m .}-E_{D_{s}^{(*)+}}\right)^{2}-\left(\vec{p}_{c . m .}-\vec{p}_{D_{s}^{(*)+}}\right)^{2}} \tag{3}
\end{equation*}
$$

Observation of $c \bar{s}+\bar{c} s$ in $\Upsilon(2 S)$ decays and at 10.52 GeV

Large mass resolutions (due to the common variables in Eq. 2 and Eq. 3) can be cured by substituting Eq. 3 with:

$$
\begin{equation*}
M_{\bar{K} \bar{D}^{(*)}}=M_{D_{s}^{(*)+}}^{\text {recoil }}-M_{D_{s}^{(*)+}}^{\text {recoil }}+m_{\bar{D}^{(*)}} \tag{4}
\end{equation*}
$$

$\mathbf{N}_{\Upsilon(2 S)}^{s i g}$ and $\boldsymbol{N}_{\text {cort }}^{\text {sig }}$ for DsJ^{-}are estimated by fitting $M_{\bar{K} \bar{D}^{(*)}}$ distributions simultaneously with the common ratios $\mathcal{B}\left(D_{s J}^{-} \rightarrow K_{S}^{0} D^{(*)-}\right) /\left(D_{s J}^{-} \rightarrow K^{-} D^{(*) 0}\right)$ between the final states.

Fit function:

$$
\begin{align*}
P D F & =N_{1} \cdot G\left(\mu_{D_{s J}^{-}}^{P D G}, 2.4 / 6.5 \mathrm{MeV}\right) \\
& +N_{2} \cdot B W\left(\mu_{D_{s J}^{-}}^{P D G}, \sigma_{D_{s J}^{-j}}^{P D G}\right) \tag{5}
\end{align*}
$$

Observation of $c \bar{s}+\bar{c} s$ in $\Upsilon(2 S)$ decays and at 10.52 GeV

The yield acquired on $\Upsilon(2 S)$ can be interpreted as:

$$
\begin{equation*}
N_{\text {tot }}^{\text {sig }}=N_{\Upsilon(2 S)}^{\text {sig }}+N_{\text {cont }}^{\text {sig }} \times \frac{\mathcal{L}_{\Upsilon(2 S)} \cdot s_{\text {cont }}}{\mathcal{L}_{\text {conr }} \cdot s_{\Upsilon(2 S)}} \tag{6}
\end{equation*}
$$

Branching fractions and Born cross-sections calculation:

$$
\begin{align*}
\mathcal{B}\left(\Upsilon(2 S) \rightarrow D_{s}^{(*)+} D_{s J}^{-}\right) \mathcal{B}\left(D_{s J}^{-} \rightarrow \bar{K} \bar{D}^{(*)}\right) & =\frac{N_{\Upsilon(2 S)}^{\text {sig }}-f_{\text {scale }} \cdot N_{\text {cont }}^{\text {sig }}}{N_{\Upsilon(2 S)} \times \sum \varepsilon_{i} \mathcal{B}_{i}} \tag{7}\\
\sigma^{\mathrm{B}}\left(e^{+} e^{-} \rightarrow D_{s}^{(*)+} D_{s J}^{-}\right) \mathcal{B}\left(D_{s J}^{-} \rightarrow \bar{K} \bar{D}^{(*)}\right) & =\frac{N_{\text {cont }}^{\text {sig }} \times|1-\Pi|^{2}}{\mathcal{L}_{\text {cont }} \times \sum \varepsilon_{i} \mathcal{B}_{i} \times\left(1+\delta_{\text {ISR }}\right)}
\end{align*}
$$

Final state (f)	$N_{\Upsilon(2 S)}^{K^{-}}$	$\mathcal{B}_{\Upsilon(2 S)^{f}}^{f} \mathcal{B}_{D_{s J}^{K}}^{K^{-} \bar{D}^{(*) 0}}\left(\times 10^{-5}\right)$	$s^{\Upsilon(2 S)}$
$D_{s}^{+} D_{s 1}(2536)^{-}$	$43 \pm 9 \pm 2$	$1.4 \pm 0.3 \pm 0.1$	5.3
$D_{s}^{*+} D_{s 1}(2536){ }^{-}$	$31 \pm 8 \pm 2$	$2.0 \pm 0.5 \pm 0.1$	4.3
$D_{s}^{+} D_{s 2}^{*}(2573)^{-}$	$51 \pm 15 \pm 5$	$1.6 \pm 0.5 \pm 0.1$	3.8
$D_{s}^{*+} D_{s 2}^{*}(2573)^{-}$	$20 \pm 12 \pm 2$	$1.3 \pm 0.8 \pm 0.1$	1.6
Final state (f)	$N_{\text {cont }}^{K^{-}}$	$\begin{gathered} \hline \sigma^{\text {Born }} \mathcal{B}_{D_{s j}}^{K^{-} \bar{D}^{(*) 0}}(\mathrm{fb}) \\ \hline \end{gathered}$	$S^{\text {cont }}$
$D_{s}^{+} D_{s 1}(2536)^{-}$	$86 \pm 10 \pm 2$	$58 \pm 7 \pm 1$	13.9
$D_{s}^{*+} D_{s 1}(2536){ }^{-}$	$79 \pm 10 \pm 2$	$101 \pm 13 \pm 2$	11.8
$D_{s}^{+} D_{s 2}^{*}(2573)^{-}$	$102 \pm 17 \pm 21$	$67 \pm 11 \pm 14$	7.1
$D_{s}^{*+} D_{s 2}^{*}(2573)^{-}$	$102 \pm 16 \pm 6$	$126 \pm 20 \pm 7$	7.6

Observation of $c \bar{s}+\bar{c} s$ in $\Upsilon(2 S)$ decays and at 10.52 GeV

Curious takeaways:

1. The strong decay is expected to dominate in $\Upsilon(2 S) \rightarrow D_{s}^{(*)+} D_{s J}^{-}$process:

$$
\begin{aligned}
R_{1} & \equiv \mathcal{B}\left(\Upsilon(2 S) \rightarrow D_{s}^{(*)+} D_{s J}^{-}\right) / \mathcal{B}\left(\Upsilon(2 S) \rightarrow \mu^{+} \mu^{-}\right) \\
R_{2} & \equiv \sigma^{\text {Born }}\left(e^{+} e^{-} \rightarrow D_{s}^{(*)+} D_{s J}^{-}\right) / \sigma^{\text {Born }}\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right) \\
R_{1} / R_{2} & =9.8 \pm 2.5,8.0 \pm 2.4,9.7 \pm 3.0 \text { and } 4.4 \pm 2.8 \\
& \left(\text { for } D_{s}^{+} D_{s 1}(2536)^{-}, D_{s}^{*+} D_{s 1}(2536)^{-}, D_{s}^{+} D_{s 2}^{*}(2573)^{-} \text {and } D_{s}^{+} D_{s 2}^{*}(2573)^{-}\right)
\end{aligned}
$$

2. The ratios

$$
\begin{aligned}
\frac{\mathcal{B}\left(D_{s 1}(2536)^{-} \rightarrow K_{S}^{0} D^{*}(2010)^{-}\right)}{\mathcal{B}\left(D_{s 1}(2536)^{-} \rightarrow K^{-} D^{*}(2007)^{0}\right)} & =0.59 \pm 0.08 \pm 0.02 \\
\frac{\mathcal{B}\left(D_{s 2}^{*}(2573)^{-} \rightarrow K_{S}^{0} D^{-}\right)}{\mathcal{B}\left(D_{s 2}^{*}(2573)^{-} \rightarrow K^{-} D^{0}\right)} & =0.64 \pm 0.12 \pm 0.04
\end{aligned}
$$

are in good agreement with the expectation from isospin symmetry (with K_{S}^{0} only half of the neutral kaons can be reconstructed).

Study of
$e^{+} e^{-} \rightarrow D_{s}^{+} D_{s 0}^{*}(2317)^{-} A+c . c$. and $e^{+} e^{-} \rightarrow D_{s}^{+} D_{s 1}(2460)^{-} A+$ c.c at Belle

PRELIMINARY

Study of $e^{+} e^{-} \rightarrow D_{s}^{+} D_{s j}^{-} A+$ c.c. at Belle

Study of $e^{+} e^{-} \rightarrow D_{s}^{+} D_{s j}^{-} A+$ c.c. at Belle

First $e^{+} e^{-} \rightarrow D_{s} \pi^{0} X$ process studies:

- BaBar: 1267 yield on $91 \mathrm{fb}^{-1}$
- Belle: 761 yield on $87 \mathrm{fb}^{-1}$

Extrapolation from the old analysis with D_{s}^{*} (2317) only, but to the whole data set:

- Belle @r(4S): 6226 Only $D_{s}^{*}(2317)$!

With one extra D_{s} (e.g. +3 charged tracks), efficiency is expected to drop ($<1 \%$). Around 100 events are expected on full Belle dataset.

Study of $e^{+} e^{-} \rightarrow D_{s}^{+} D_{s j}^{-} A+$ c.c. at Belle

Signal MC

The following peaking contributions are expected
$D_{s J}(2317)^{+}$invariant mass region:

- True $D_{s J}(2317)^{+}$peak $\sigma=(4.76 \pm 0.8) \mathrm{MeV}$
- $D_{S J}(2460)^{+}$reflection peak $\sigma=(11.8 \pm 0.3) \mathrm{MeV}$
$D_{S J}(\mathbf{2 4 6 0})^{+}$invariant mass region:
- True $D_{s J}(2460)^{+}$peak $\sigma=(5.07 \pm 0.13) \mathrm{MeV}$
- $D_{S J}(2317)^{+}$reflection peak $\sigma=(14.6 \pm 0.7) \mathrm{MeV}$
- $D_{s J}(2460)^{+}$"broken signal"
$\sigma=(16.9 \pm 1.8) \mathrm{MeV}$

Study of $e^{+} e^{-} \rightarrow D_{s}^{+} D_{s j}^{-} A+$ c.c. at Belle

$$
\begin{align*}
& \Delta M\left(D_{s} \pi^{0}\right)=N_{1} G\left(\mu_{1}, \sigma_{1}\right)+f^{\text {down }} N_{2} G\left(\mu^{\text {down }}, \sigma^{\text {down }}\right) \\
& \Delta M\left(D_{s}^{*} \pi^{0}\right)=N_{2} G\left(\mu_{2}, \sigma_{2}\right)+f^{\text {up }} N_{1} G\left(\mu^{u p}, \sigma^{u p}\right)+f^{\text {broken }} N_{2} G\left(\mu^{\text {broken }}, \sigma^{\text {broken }}\right) \tag{8}
\end{align*}
$$

ref: $N=3,843 \pm 67, \mu=348.9 \pm 0.1, \sigma=6.20 \pm 0.10$
ref: $\mathrm{N}=835 \pm 31, \mu=347.1 \pm 0.2, \sigma=5.80 \pm 0.20$

Topology type	$\mu,[\mathrm{MeV}]$	$\sigma,[\mathrm{MeV}]$	N
True $D_{s 0}^{*}(2317)$ signal	349.3 ± 0.2	5.97 ± 0.25	$3,797 \pm 137$
Feed-down background	345.1 (fixed)	13.5 (fixed)	$0.3297 \cdot N_{2}$
True $D_{s 1}(2460)$ signal	347.1 ± 0.5	5.46 ± 0.60	811 ± 155
Feed-up background	352.0 (fixed)	13.9 (fixed)	$3.042 \cdot N_{1}$
$D_{s 1}(2460)$	346.7 (fixed)	22.7 (fixed)	$1.189 \cdot N_{2}$

Study of $e^{+} e^{-} \rightarrow D_{s}^{+} D_{s j}^{-} A+$ c.c. at Belle

Cut-based selection \rightarrow MVA selection

Topology type	$\mu,[\mathrm{MeV}]$	$\sigma,[\mathrm{MeV}]$	N
True $D_{s 0}^{*}(2317)$	350.0 ± 0.5	6.64 ± 0.53	688 ± 62
Feed-down bkg.	344.8 (fixed)	13.1 (fixed)	$1.688 \cdot N_{2}$
True $D_{s 1}(2460)$	346.2 ± 1.7	6.27 ± 1.55	105 ± 27
Feed-up bkg.	351.9 (fixed)	14.8 (fixed)	$0.134 \cdot N_{1}$
Broken signal	351.0 (fixed)	20.4 (fixed)	$0.247 \cdot N_{2}$

Cuts: $N\left(D_{s 0}^{*}(2317)\right)=370 \pm 45 \quad N\left(D_{s 1}(2460)\right)=68 \pm 22$

Study of $e^{+} e^{-} \rightarrow D_{s}^{+} D_{s j}^{-} A+$ c.c. at Belle

Study of $e^{+} e^{-} \rightarrow D_{s}^{+} D_{s j}^{-} A+$ c.c. at Belle

$$
\begin{aligned}
& \qquad \begin{aligned}
\frac{\operatorname{Br}\left(D_{s 1}(2460) \rightarrow D_{s}^{*} \pi^{0}\right)}{\operatorname{Br}\left(D_{s 0}^{*}(2317) \rightarrow D_{s} \pi^{0}\right)} & \times \frac{\sigma\left(D_{s 1}(2460), \mathrm{MVA}\right)}{\sigma\left(D_{s 0}^{*}(2317), \mathrm{MVA}\right)}=0.26 \pm 0.07(\mathrm{stat}) \pm 0.03(\text { syst }) \\
& * T \text { he value earlier measured by Belle is } 0.29 \pm 0.06 \pm 0.03 \\
& * * \text { The value predicted by theory is } 3
\end{aligned} \\
& \left.\begin{array}{l}
\sigma\left(e^{+} e^{-} \rightarrow D_{s}^{+} D_{s J}^{(*)-} A\right) \mathcal{B}\left(D_{s}^{-}\right.
\end{array} \rightarrow 3 \text { modes }\right) \mathcal{B}\left(D_{s}^{+} \rightarrow 3 \text { modes }\right)=\frac{N^{U L} \times|1-\Pi|^{2}}{\mathcal{L} \times \sum_{i j} \varepsilon_{i j}^{*} \mathcal{B}_{i} \mathcal{B}_{j} \times(1+\delta)_{I S R}} \\
& \text { Curious takeaways: } \\
& \text { - The estimated ratio of branching fractions is consistent } \\
& \text { with earlier Belle study. }
\end{aligned}
$$

Decay chain	Total error [\%]	Estimated $N_{90}^{U L}$	$\sigma^{U L} \times \mathcal{B}\left(X \rightarrow D_{s} D_{s J}^{*}\right)\left[\mathrm{fb}^{-1}\right]$
$e^{+} e^{-} \rightarrow X(4274) A$	13.3	2.45	122.5
$e^{+} e^{-} \rightarrow X(4685) A$	14.1	2.04	101.8
$e^{+} e^{-} \rightarrow X(4630) A$	18.3	2.05	228.1
$e^{+} e^{-} \rightarrow X(4500) A$	18.0	2.34	260.1
$e^{+} e^{-} \rightarrow X(4700) A$	18.7	2.18	241.8

Summary

1. No significant signal is seen in the $e^{+} e^{-} \rightarrow \eta_{c} J / \psi$ process near threshold. The observed enhancement can be explained by continuum contribution.
2. Born cross-sections and branching fractions are measured for the $e^{+} e^{-} / \Upsilon(2 S) \rightarrow D_{s}^{(*)+} D_{s J}^{-}$processes. This allows to conclude about the intrinsic features of $\Upsilon(2 S)$ decays.
3. No significant signal is seen in the $D_{s} D_{s J}^{(*)}$ system. Upper limits on the accessible X states that were earlier reported by LHCb are set.

Backup

Observation of $c \bar{s}+\bar{c} s$ in $\Upsilon(2 S)$ decays and at 10.52 GeV

- Cut-based selection is developed for the $D_{s}^{(*)-}$ candidates;
- D_{s}^{-}invariant mass fit:

$$
\sigma_{D_{s}^{-}}=7.0 \pm 0.1 \mathrm{MeV}
$$

- BCS applied on D_{s}^{*-} candidates leads to peaking background (studied in a side-band).
Fit performed:

$$
\sigma_{D_{s}^{*-}}=6.7 \pm 0.4 \mathrm{MeV}
$$

Search for the double-charmonium state with $\eta_{c} J / \psi$ at Belle

- $M_{\text {recoil }}^{2}=\left|p_{e^{+} e^{-}}-p\left(\eta_{c}\right)-p(J / \psi)\right|^{2}$;
- At least four charged tracks are required in the inclusive reconstruction to suppress QED background;

Candidate	Criteria
	$d r<1.0 \mathrm{~cm}$
All tracks	$\|d z\|<4 \mathrm{~cm}$
	$p_{T}>100 \mathrm{MeV}$
K	$\mathcal{L}_{K} /\left(\mathcal{L}_{K}+\mathcal{L}_{\pi}\right)>0.6$
p	$\mathcal{L}_{p} /\left(\mathcal{L}_{p}+\mathcal{L}_{\pi}\right)>0.6$
μ	$\mathcal{L}_{p} /\left(\mathcal{L}_{p}+\mathcal{L}_{K}\right)>0.6$
μ	$\mathcal{L}_{\mu} /\left(\mathcal{L}_{\mu}+\mathcal{L}_{p}+\mathcal{L}_{K}\right)>0.6$
e	$\mathcal{L}_{e} /\left(\mathcal{L}_{e}+\mathcal{L}_{\text {non-e }}\right)>0.01$
$\gamma_{I S R}$	$E_{\gamma}>1 \mathrm{GeV}$
K_{S}^{0}	$\mathrm{NNN}^{2}>25 \mathrm{MeV}($ barel $)$
	$E_{\gamma}>50 \mathrm{MeV}($ endcap $)$
π^{0}	$155<M_{\gamma \gamma}<155 \mathrm{MeV}$
	50 mrad cone
$\gamma^{B S}$	$3<M\left(e^{+} e^{-}\right)<3.12 \mathrm{GeV}$
J / ψ	$3.075<M\left(\mu^{+} \mu^{-}\right)<3.125 \mathrm{GeV}$
η_{c}	$2.78<M\left(\eta_{c}\right)<3.08 \mathrm{GeV}$
BCS	$\min \left(M_{\eta_{c} J / \psi}^{\text {recoil }}\right)$

Observation of $c \bar{s}+\bar{c} s$ in $\Upsilon(2 S)$ decays and at 10.52 GeV

Candidate	Resolution [MeV]	Criteria
Tracks	-	$\begin{gathered} d r<1.5 \mathrm{~cm} \\ \|d z\|<5 \mathrm{~cm} \\ p_{T}>0.1 \mathrm{GeV} \\ \mathcal{L}_{K}>0.6 \\ \mathcal{L}_{\pi}>0.4 \end{gathered}$
K_{S}^{0}	≈ 5	$\begin{gathered} \left\|M_{\pi^{+} \pi^{-}}-m_{k_{S}^{0}}\right\|<3 \sigma \\ \text { NN } \end{gathered}$
ϕ	≈ 3.3	$\left\|M_{K+K}{ }^{-}-m_{\phi}\right\|<3 \sigma$
$K^{*}(892)$	$\ll 47.3$	$\left\|M_{K^{-} \pi^{+}}-m_{K^{*}(892)}\right\|<105 \mathrm{MeV}$
ρ^{+}	<<150	$\left\|M_{\pi^{+} \pi^{0}}-m_{\rho}\right\|<200 \mathrm{MeV}$
π^{0}	≈ 5	$\begin{gathered} \left\|M_{\gamma \gamma}-m_{\pi 0}\right\|<3 \sigma \mathrm{MeV} \\ E_{\gamma}>25 \mathrm{MeV} \text { (barel) } \end{gathered}$
γ	$\approx 4\left(-\pi^{+} \pi^{-} \pi^{0}\right)$	$E_{\gamma}>50 \mathrm{MeV} \text { (endcap) }$
η	$\begin{gathered} \approx 4\left(\rightarrow \pi^{+} \pi^{-} \pi^{0}\right) \\ \approx 13.4(\rightarrow \gamma \gamma) \end{gathered}$	$\begin{gathered} \left\|M_{\pi+\pi-\pi^{0}}-m_{\eta}\right\|<3 \sigma \\ \left\|M_{\gamma \gamma}-m_{\eta}\right\|<3 \sigma \\ E_{\gamma}>100 \mathrm{MeV} \end{gathered}$
η^{\prime}	≈ 5	$\left\|M_{\eta \pi^{+} \pi^{-}}-m_{\eta^{\prime}}\right\|<3 \sigma$
D_{s}	7.9 ± 0.1	$\left\|M_{h_{1} h_{2}}-m_{D_{s}}\right\|<3 \sigma$
D_{s}^{*}	6.7 ± 0.4	$\begin{gathered} \left\|M_{\gamma D_{s}}-m_{D_{s}^{*}}\right\|<50 \mathrm{MeV} \\ E_{\gamma}>50 \mathrm{MeV} \text { (barel) } \\ E_{\gamma}>100 \mathrm{MeV} \text { (endcap) } \\ \mathrm{BCS}: \min \left(\chi^{2}\right) \\ \hline \end{gathered}$

Signal MC. Optimized selection and BCS implementation.

In addition to the selection summarized on the right, the BCS selection was applied in the latest iteration of a study.

Selection optimization study has been conducted.

Figure 1: Signal MC. Event multiplicity before BCS application.

Particle	Selection criterion
Tracks	$\begin{gathered} d r<0.5 \mathrm{~cm} \\ d z<3 \mathrm{~cm} \\ P_{K_{1}}(K / \pi)>0.5 \\ P_{K_{2}}(K / \pi)>0.2 \\ P_{\pi}(K / \pi)<0.9 \\ \hline \end{gathered}$
π^{0}	$\begin{gathered} E(\gamma)>100 \mathrm{MeV} \\ p(\gamma \gamma)>150 \mathrm{MeV} / \mathrm{c} \\ \chi^{2}(\gamma \gamma)<200 \\ 122<M(\gamma \gamma)<148 \mathrm{MeV} / \mathrm{c}^{2} \\ P_{\chi^{2}}(\gamma \gamma)>1 \% \\ \hline \end{gathered}$
ϕ	$\begin{gathered} 1.010<M(K K)<1.030 \mathrm{GeV} / \mathrm{c}^{2} \\ P_{\chi^{2}}(K K)>0.1 \% \end{gathered}$
$K^{*}(892)$	$\begin{gathered} 842<M(K \pi)<942 \mathrm{MeV} / \mathrm{c}^{2} \\ P_{\chi^{2}}(K \pi)>0.1 \% \end{gathered}$
D_{s}	$\begin{gathered} 1.9585<M\left(D_{s}\right)<1.9785 \mathrm{GeV} / \mathrm{c}^{2} \\ P_{\chi^{2}}\left(D_{s}\right)>0.1 \% \end{gathered}$
$D_{s 0}^{*}(2317)$	$\begin{gathered} p^{*}\left(D_{s} \pi^{0}\right)>2.79 \mathrm{GeV} / \mathrm{c} \\ P_{\chi^{2}}\left(D_{s} \pi^{0}\right)>0.1 \% \end{gathered}$
Other	$\left\|\cos \theta_{H}\right\|>0.42$

Table 1: The summarized selection for $D_{s 1}(2460)$ reconstruction.

* γ_{*} denotes the photon combined with D_{s} to create D_{s}^{*} candidate decaying into $D_{s} \gamma$.

Signal MC. $D_{s} D_{s 0}^{*}(2317)$ system study (threshold case).

$$
\varepsilon=0.22 \pm 0.02 \%
$$

Figure 2: The $D_{s} D_{s 0}^{*}(2317)$ invariant mass distribution in threshold case. The signal contribution is fitted by Voigt function, non-resonant background as approximated by the Threshold function.

MVA methods comparison

Figure 3: MVA input variables for signal (blue) and background (red) events.

Figure 5: Input parameters Correlation Matrix for signal events.

Figure 6: ROC curve.

MLP application

MLP Convergence Test

Figure 7: MLP architecture.

TMVA response for classifier: MLP

Figure 8: MLP response for classifier on training sample.

Figure 9: MLP convergence test.

Figure 10: FoM dependence on classifier cut value.

Systematic uncertainties

Systematic Contribution	$D_{s} D_{s 0}^{*}(2317) \%$	$D_{s} D_{s 1}(2460) \%$
Charged tracks identification	3.21	3.21
Track reconstruction	2.10	2.10
MC statistics	1.82	2.42
Integrated luminosity	1.40	1.40
π^{0} reconstruction	2.00	2.00
γ reconstruction	-	2.30
Secondary BF	5.83	5.62
Background fit PDF order	1.03	1.23
Mass cuts on secondary particles	5.58	7.80
TOTAL	9.50	11.22

Asymptotic method

Equation to solve:

$$
\begin{equation*}
\frac{\int_{0}^{N^{90 \%}} \mathcal{L}(x) d x}{\int_{0}^{+\infty} \mathcal{L}(x) d x}=0.9 \tag{9}
\end{equation*}
$$

$N^{90 \%}$ - wanted UL on the number of signal events.
Target dependency to study:

$$
\begin{equation*}
\Delta L=e^{\mathcal{L}\left(N_{\text {sig }}\right)-\mathcal{L}_{0}} \tag{10}
\end{equation*}
$$

Consideration of the systematic uncertainties:

$$
\begin{equation*}
\Delta(\Delta L)=\frac{\Delta \mathcal{L}_{j} \cdot \mathcal{L}_{j}}{\sqrt{2 \pi \varepsilon_{\text {syst }} N_{j}^{\text {sig }}}} \cdot e^{-\frac{1}{2}\left(\frac{\Delta N_{j}^{\text {sig }}}{\varepsilon_{\text {syst }} N_{j}^{\text {sig }}}\right)^{2}} \tag{11}
\end{equation*}
$$

Cross-section UL calculation:

$$
\begin{equation*}
\sigma^{90 \%}=\frac{N^{90 \%}}{\varepsilon^{\text {tot }} \cdot \mathcal{L}^{i n t}} \tag{12}
\end{equation*}
$$

CL method

Likelihood ratio:

$$
\begin{equation*}
\lambda(\mu)=\frac{\mathcal{L}\left(\mu, \hat{\hat{\boldsymbol{\theta}}} \mid n_{1}, \ldots, n_{N_{b}}\right)}{\mathcal{L}\left(\mu, \hat{\boldsymbol{\theta}} \mid n_{1}, \ldots, n_{N_{b}}\right)}, \tag{13}
\end{equation*}
$$

where ($\mu, \hat{\boldsymbol{\theta}}$) are the parameters that maximize the likelihood for the set of observations $n_{1}, \ldots, n_{N_{b}}$; and $\hat{\hat{\theta}}$ maximizes the likelihood for a given value of μ.

Test statistics \boldsymbol{q}_{μ} :

$$
q_{\mu}= \begin{cases}-2 \ln \lambda(\mu) & \text { if } \mu>\hat{\mu} \tag{14}\\ 0 & \text { otherwise }\end{cases}
$$

Frequentist CL Scan for workspace result_s

The level of agreement between the data and the hypothesized value of μ is quantified with the p-value:

$$
\begin{equation*}
p_{s+b}=P\left(q_{\mu}>q_{\mu, \mathrm{obs}} \mid \mu\right)=\int_{\mu, \mathrm{obs}}^{\infty} p\left(q_{\mu} \mid \mu\right) \mathrm{d} q_{\mu}, \tag{15}
\end{equation*}
$$

where $>q_{\mu, \text { obs }}$ is the observed value of q_{μ}, and $p\left(q_{\mu} \mid \mu\right)$ denotes the probability density function of q_{μ} under the assumption of a signal strength of μ.

UL on μ at $90 \% \mathrm{CL}$ is the largest value of μ such as p_{s+b} stays above 0.1

