

$B ightarrow D^{**} \ell u$ Analysis at Belle II Prospects for Measuring the q^2 Spectrum and Branching Franctions

•Eylül Ünlü, Thomas Lück and Thomas Kuhr

LMU Munich

DPG-Frühjahrstagungen, Karlsruhe, 2024

Bundesministerium für Bildung und Forschung

- ▶ The modelling of mesons with one light and one heavy quark (e.g. B,D) is simplified by taking the heavy quark limit $(m_Q \rightarrow \infty)$.
- Then the D^{**}s are the P-wave (L = 1) excitations of the D meson.
- They form two doublets under the angular momentum of the lighter quark $(j_q = L + s_q)$:

$$j_q=3/2:\{D_1(2420),\ D_2^*(2460)\}:\Gamma=\mathcal{O}(10)$$
 MeV

$$j_q = 1/2: \{D_1'(2430), \ D_0^*(2300)\}: \Gamma = \mathcal{O}(100) \ {
m MeV}$$

Motivation

	$\mathcal{B}(B^- o D^{**} \ \ell \ \overline{ u}) imes \mathcal{B}(D^{**} o D^{(*)} \pi) \ (\%)$	
	$BaBar\ (2009)^1$	Belle (2008) ²
D_1	$0.29 \pm 0.03 \pm 0.03$	$0.42\pm0.07\pm0.07$
D_2	$0.15\pm0.02\pm0.01$	$0.18 \pm 0.06 \pm 0.03$
$D_{1}^{'}$	$0.27\pm0.04\pm0.05$	<mark>< 0.07 @90% C.L.</mark>
D_0^*	$0.26\pm0.05\pm0.04$	$0.24 \pm 0.04 \pm 0.06$

¹arXiv:0808.0333v2 ²arXiv:0711.3252v2

Discrepancy between two previous measurements.

• The decay into the narrow modes are predicted to dominate, this has been contradicted by measurements to date: "The 1/2 - 3/2 puzzle".

Motivation

	$\mathcal{B}(B^- o D^{**} \ \ell \ \overline{ u}) imes \mathcal{B}(D^{**} o D^{(*)} \pi) \ (\%)$	
	BaBar (2009) ¹	Belle (2008) ²
D_1	$0.29\pm0.03\pm0.03$	$0.42 \pm 0.07 \pm 0.07$
D_2	$0.15\pm0.02\pm0.01$	$0.18 \pm 0.06 \pm 0.03$
D_1	$0.27 \pm 0.04 \pm 0.05$	< 0.07 @90% C.L.
D_0^*	$0.26\pm0.05\pm0.04$	$0.24 \pm 0.04 \pm 0.06$
	1 arXiv:0808.0333v2	² arXiv:0711 3252v2

• Discrepancy between two previous measurements.

• The decay into the narrow modes are predicted to dominate, this has been contradicted by measurements to date: "The 1/2 - 3/2 puzzle".

• The branching fraction of $B \to D^{**}\ell\nu$ is a significant systematic uncertainty to the $R(D^*) = \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(B \to D^* \ell \nu)}$ measurement

Motivation

	$\mathcal{B}(B^- o D^{**} \ \ell \ \overline{ u}) imes \mathcal{B}(D^{**} o D^{(*)} \pi) \ (\%)$	
	$BaBar\ (2009)^1$	Belle (2008) ²
D_1	$0.29 \pm 0.03 \pm 0.03$	$0.42\pm0.07\pm0.07$
D_2	$0.15\pm0.02\pm0.01$	$0.18 \pm 0.06 \pm 0.03$
D_1	$0.27 \pm 0.04 \pm 0.05$	<mark>< 0.07 @90% C.L.</mark>
D_0^*	$0.26\pm0.05\pm0.04$	$0.24 \pm 0.04 \pm 0.06$
	¹ arXiv:0808.0333v2	² arXiv:0711.3252v2

• Discrepancy between two previous measurements.

• The decay into the narrow modes are predicted to dominate, this has been contradicted by measurements to date: "The 1/2 - 3/2 puzzle".

• The branching fraction of $B \to D^{**} \ell \nu$ is a significant systematic uncertainty to the $R(D^*) = \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(B \to D^* \ell \nu)}$ measurement

Reconstruction Strategy

One of the B mesons was reconstructed in various hadronic decay channels.

Only the D_1, D'_1 , and D_2 modes which decay into the reconstructed signal channel are included in the analysis.

Eylül Ünlü (LMU)

Selection

u variable

Since there is one ν in the events with a signal decay, a cut on $u = (E_{miss} - p_{miss}c)/c^2$ is applied.

Fit Variable

- The D^{**} △M = (M_D^{**} − M_D^{*}) was used as the fitting variable to extract signal yields.
- ► Δ*M* is determined with better resolution than the mass of *D*^{**}
- The PDFs for each category were created by Kernel
 Density Estimation using 2.4 ab⁻¹ signal and 600 fb⁻¹ background MC.

Fitting

The PDFs were fitted to the 400 fb⁻¹ MC sample using an unbinned extended maximum likelihood (ML) fit.

07.03.2023 9 / 18

Branching Fractions

Comparison of statistical uncertainties to previous results

Babar measurement was made on 417 ${\rm fb}^{-1}$ of data

- \blacktriangleright $D_1: 9.2\% < 10.34\%$
- ▶ D'_1 : 12.5% < 14.89%
- ▶ D_2 : 15.32% > 13.33%

Belle measurement was made on 657 $\times \, 10^6 B\overline{B}$ events.

▶ D_1 : 5.4% < 16.67%

$$\blacktriangleright D_2: 13.30\% < 33.33\%$$

q^2 Study

$$w = rac{m_B^2 + {m_{D^{**}}}^2 - q^2}{2m_Bm_{D^{**}}} \ \ \, ext{and} \ \ \, q^2 = (p_B - p_{D^{**}})^2$$

• The ML fit to the ΔM distribution was repeated in three bins of w to obtain the w shape.

 $B \rightarrow D^{**} \ell \nu$

Fit Results

Unfolding

Migration Matrix

There was non-negligible amount of bin migrations in the reconstructed w distribution due to finite detector resolution.

$$M_{ij} = rac{N_{rec}^{(ij)}}{N_{gen}^{j}}$$

The distribution is corrected for this effect by unfolding:

$$egin{aligned} & \mathcal{N}_{rec}^{i} = \sum_{j=1}^{N_{bins}} \mathcal{M}_{ij} \mathcal{N}_{gen}^{j} \ & \iff ec{v}_{rec} = \mathcal{M} ec{v}_{gen} \ & \iff ec{v}_{gen} = \mathcal{M}^{-1} ec{v}_{rec} \end{aligned}$$

$d\Gamma/dw$ Fit and Systematics

The Bernlochner, Ligeti and Robinson(BLR)(2018) differential decay amplitude (dΓ/dw) was fitted (χ²-fit) to obtain τ', with other parameters fixed.

- Fit result $au' = -1.738 \pm 0.166$ (9.6%)
- MC value: $\tau' = -1.6$
- [Belle result $au' = -1.8 \pm 0.3(16.67\%)$]

Systematic Uncertainty on au'

	Absolute	Relative (%)
PDF Creation	0.0280	1.611
LeptonID Efficiency	0.0020	0.108
Slow π Efficiency	0.0004	0.026
$\Delta M_{D^{**}}$ Fit Bias	0.0121	0.696
Total	0.0306	1.759

Summary and Outlook

Summary

- ► I have studied the semileptonic B meson decays into the D^{**}s which are orbital excitations of the D meson.
- The measurements on their branching fractions to this date show large uncertainties and some unresolved questions, hence I worked towards obtaining a measurement of these at Belle II.
- ► I have attempted fitting a form factor variable to the *w* distribution of the $B \rightarrow D^{**} \ell \nu$ decay. Outlook
 - Eventually performing the measurement on data.

Thank you for your attention

Some Selection Variables

Tag Side

•
$$-0.1 \,\mathrm{GeV} < \Delta E = E_B - \frac{1}{2} E_{CMS} < 0.1 \,\mathrm{GeV}$$
 • $5.27 \,\mathrm{GeV}^2 < M_{bc} = \sqrt{\frac{1}{4} E_{CMS}^2 - |p_B|^2} < 5.29 \,\mathrm{GeV/c^2}$

► The branching fractions were calculated using:

$$\mathcal{B}(B^- \to D^{**}\ell^-\nu) \times \mathcal{B}(D^{**} \to D^{*+}\pi^-) = \frac{N_{D^{**}}}{N_{B^-B^+} \times \epsilon_{rec} \times \mathcal{B}(D^{*+} \to D^0\pi^+) \times \sum \mathcal{B}(D^0 decays)}$$

	${\cal B}(B^- o D^{**} \ell^- u) imes {\cal B}(D^{**} o D^{*+} \pi^-)$	
D^{**}	MC (%)	Fit (%)
D_1	0.3023	$0.2555 \pm 0.0240 (9.40\%)$
D_2^*	0.0996	$0.0953 \pm 0.0221 (23.20\%)$
D_1'	0.2873	$0.3155\pm 0.0402(12.73\%)$