

Sensitivity of Magnetic Monopoles Detection at the Belle II PXD

¹**Matthäus Krein**, ¹Katharina Dort, ¹Sören Lange DPG-Frühjahrstagung Karlsruhe, 8th of March, 2024

¹Justus-Liebig-Universitat, Giessen, Germany

This research is supported by BMBF (05H21RGKB1) and Horizon2020 European Union Marie Slodowska Curie Action in the RISE program (n.822070).

Introduction

www.symmetrymagazine.org/image/physics-quiz-magnetic-monopoles

- Monopoles are particles with isolated magnetic charge
- Gauss' Law for magnetism: $\nabla \cdot B = 0 \rightarrow \nabla \cdot B = \mu_0 \rho_m$
- In 1931 Paul Dirac presented the first modern theory of magnetic monopoles

Paul Dirac en.wikipedia.org/wiki/Paul_Dirac

The Dirac Monopole

- For the monopole to exits, the Dirac string has to be non-physical
- Monopoles are quantized in quantities of the Dirac charge: $g_{\rm D}=68.5\,{\rm e}$
- From the existence of magnetic monopoles follows that the electric charge has to be quantized

Energy loss in matter

Energy loss for monopoles. Cecchini, S. et al. (2016). Energy Losse of Magnetic Monopoles in Aluminum, Iron and Copper. arXiv. https://doi.org/10.48550/arXiv.1606.01220

Energy loss for μ^+ .

https://www.researchgate.net/figure/The-Bethe-Bloch-forumula-for-positivemuons-in-copper-as-a-function-of-bg2-shown_fig7_48410683

The energy loss for monopoles are much higher than for electrically charged particles

- The simulation is done with Belle II Software Framework (basf2)
- A monopole anti-monopole pair is created at the interaction point with opposite momenta
- The monopoles do not decay, they rather just stop in matter

- The flight length of monopoles is limited to inner most subdetector, the pixel detector (PXD)
- Indirect detection of monopoles via the signal of secondary particles (delta-electrons)

Structure of the PXD and $\ensuremath{\mathsf{SVD}}$

Stopping vertex of monopoles

Production vertex of secondary particles

Trigger Efficiency

- Secondary particles are the signal and generate a level 1 trigger
- Trigger bit 46 is defined as:
 - Back to back energy deposition in the electromagnetic calorimeter (ECL)
 - Each ECL cluster fulfills E < 1 GeV
- The efficiency for this trigger bit is between 0.01% ($m_{\rm D}=0.3~{\rm GeV}$) and 3% ($m_{\rm D}=0.1~{\rm GeV}$)
- Background in this trigger line:
 - Muons from $e^+e^-
 ightarrow \mu^+\mu^-$
 - Beam background
- The background can be reduced with a neuronal network, an autoencoder

Trigger lines of secondary particles for $m_{\rm D}=0.1\,{\rm GeV}$

Autoencoder

- The autoencoder (AE) is a multi level perceptron with bottleneck
- The AE extracts the main features of the input
- The monopole is considered an anomaly and the AE fails to recreate the input
- We assume that we can reject the background by a factor of 10⁻⁶ while still keeping 24% of monopoles

Results

Rajantie, A. (2016). The search for magnetic monopoles. Physics Today. 69 (10): 40-46. https://doi.org/10.1063/PT.3.3328

- The expected exclusion limits can be calculated with the Bayes or Feldman-Cousins approach $CL = \frac{s_{up}}{L_{int}e_{triesun}}$
- The expected exclusion limits are competitive to the established limits

9

Summary

- Belle II is sensitive to Dirac monopoles
- Monopoles can be detected via secondary particles (delta-electrons)
- Using a neuronal network the background can be suppressed while keeping a large section of the signal
- The expected exclusion limits are competitive to other experiments, extending the sensitivity to lower energies by two orders of magnitude

