The Belle II Experiment

James Kahn

Ludwig Maximilians Universität München
DFG cluster of excellence
“Origin and Structure of the Universe”

2016-08-21
Outline

- Motivation
- SuperKEKB
- Detector
- Software
- Milestones
Collaboration formed in 2009 following success of Belle experiment:
Collaboration formed in 2009 following success of Belle experiment:

Collaboration formed in 2009 following success of Belle experiment:

- UT parameters, heavy flavour spectroscopy, CPV, rare B decays, etc.
Motivation

- Collaboration formed in 2009 following success of Belle experiment:
 - UT parameters, heavy flavour spectroscopy, CPV, rare B decays, etc.

- New physics searches (Sources of CPV, (semi–)leptonic decay, LFV, etc.)
Collaboration formed in 2009 following success of Belle experiment:
- UT parameters, heavy flavour spectroscopy, CPV, rare B decays, etc.

New physics searches (Sources of CPV, (semi–)leptonic decay, LFV, etc.)

Unique advantages of B–factory:
Collaboration formed in 2009 following success of Belle experiment:
 - UT parameters, heavy flavour spectroscopy, CPV, rare B decays, etc.

New physics searches (Sources of CPV, (semi–)leptonic decay, LFV, etc.)

Unique advantages of B–factory:
 - Experimentally clean.
Collaboration formed in 2009 following success of Belle experiment:
- UT parameters, heavy flavour spectroscopy, CPV, rare B decays, etc.

New physics searches (Sources of CPV, (semi--)leptonic decay, LFV, etc.)

Unique advantages of B–factory:
- Experimentally clean.
- Full event reconstruction/tagging.
Collaboration formed in 2009 following success of Belle experiment:
- UT parameters, heavy flavour spectroscopy, CPV, rare B decays, etc.

New physics searches (Sources of CPV, (semi–)leptonic decay, LFV, etc.)

Unique advantages of B–factory:
- Experimentally clean.
- Full event reconstruction/tagging.
- Missing particles, inclusive measurements, unique phase space.
Collaboration formed in 2009 following success of Belle experiment:
- UT parameters, heavy flavour spectroscopy, CPV, rare B decays, etc.

New physics searches (Sources of CPV, (semi–)leptonic decay, LFV, etc.)

Unique advantages of B–factory:
- Experimentally clean.
- Full event reconstruction/tagging.
- Missing particles, inclusive measurements, unique phase space.
- Sensitive to mass ranges above direct production.

Nobel prize to KM /
Decisive confirmation of CKM picture

Evidence for direct CP violation in \(B \rightarrow \pi^\pm \pi^- \)

Evidence for \(D^0 \) mixing

Observation of direct CP violation in \(B \rightarrow \pi^\pm \pi^- \)

Observation of \(B \rightarrow K^{(*)} \ell\ell \)

Observation of \(B \rightarrow K^{(*)} \ell\ell \)

Excess in \(B \rightarrow D^{(*)} \tau\nu \)

Observation of \(B \rightarrow \tau\nu \)

Observation of \(b \rightarrow d \gamma \)
Collaboration formed in 2009 following success of Belle experiment:

- UT parameters, heavy flavour spectroscopy, CPV, rare B decays, etc.

New physics searches (Sources of CPV, (semi–)leptonic decay, LFV, etc.)

Unique advantages of B–factory:

- Experimentally clean.
- Full event reconstruction/tagging.
- Missing particles, inclusive measurements, unique phase space.
- Sensitive to mass ranges above direct production.

Current standing:

- 649 Members, 99 institutes, 22 countries (Aug 2016)
- First data: 2018
SuperKEKB

- **e+ 4 GeV 3.6 A**
- **e- 7 GeV 2.6 A**

- Belle II
- New IR

- New beam pipe & bellows
- Low emittance positrons to inject
- Damping ring
- Low emittance gun
- Low emittance electrons to inject
- Add / modify RF systems for higher beam current

- Positron source
- New positron target / capture section

James Kahn

2016-08-21

The Belle II Experiment
SuperKEKB

- **e+ 4 GeV 3.6 A**
- **e- 7 GeV 2.6 A**
- **Belle II**
- **New IR**
- **New beam pipe & bellows**
- **Add / modify RF systems for higher beam current**
- **Low emittance positrons to inject**
- **Damping ring**
- **Positron source**
- **New positron target / capture section**
- **Low emittance gun**
- **Low emittance electrons to inject**
Peak instantaneous luminosity:
\[8 \times 10^{35} \text{cm}^{-2}\text{s}^{-1} \]
(Belle: \(2.11 \times 10^{34} \text{cm}^{-2}\text{s}^{-1} \))

Total integrated luminosity:
\[50 \text{ab}^{-1} \]
(Belle: \(1 \text{ab}^{-1} \))

<table>
<thead>
<tr>
<th>Process</th>
<th>(\sigma [nb])</th>
<th>No. events [(\times 10^9)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{B}B)</td>
<td>1.1</td>
<td>55</td>
</tr>
<tr>
<td>(q\bar{q})</td>
<td>2.52</td>
<td>185.45</td>
</tr>
<tr>
<td>(\tau^+\tau^-)</td>
<td>0.92</td>
<td>45.95</td>
</tr>
</tbody>
</table>
The Belle II Detector

- Electromagnetic Calorimeter: 8000 CsI crystals, 16X PMT/APD readout, Time of Propagation counter, DIRC with 20mm quartz bars, MCP-PMT readout, Aerogel RICH, Proximity focusing RICH with silica aerogel
- Central Drift Chamber: proportional wired drift chamber, 15000 sense wires in 58 layers
- Silicon Vertex Detector: 4 layer doublesided strips
- Pixel Vertex Detector: 2 layer pixel detector (8MP), DEPFET technology
Belle II Detector

The Belle II Experiment

- Electromagnetic Calorimeter with 8000 CsI crystals and PMT/APD readout
- Time of Propagation counter
- DIRC with 20 mm quartz bars
- MCP-PMT readout
- Aerogel RICH
- Proximity focusing RICH with silica aerogel
- Central Drift Chamber
 - Proportional wired drift chamber
 - 15000 sense wires in 58 layers
- Silicon Vertex Detector
 - 4 layer double sided strips
 - 20 – 50 ns shaping time
- Pixel Vertex Detector
 - 2 layer pixel detector (8MP)
 - DEPFET technology

James Kahn
2016-08-21

The Belle II Experiment
High luminosity
→ high hit-rate.

- 14 mm and 22 mm from beampipe
→ high occupancy.
High luminosity
→ high hit-rate.

14\text{mm} and 22\text{mm} from beampipe
→ high occupancy.

Ladder structure:
- Inner layer: 8 modules, 3.072M pixels.
- Outer layer: 12 modules, 4.608M pixels.
- High luminosity
 \rightarrow high hit-rate.

- 14\text{mm} and 22\text{mm} from beampipe
 \rightarrow high occupancy.

- Ladder structure:
 - Inner layer: 8 modules, 3.072M pixels.
 - Outer layer: 12 modules, 4.608M pixels.

- DEPlleted Field Effect Transistor (DEPFET):
- High luminosity
 → high hit-rate.

- 14\,mm and 22\,mm from beampipe
 → high occupancy.

- Ladder structure:
 - Inner layer: 8 modules, 3.072M pixels.
 - Outer layer: 12 modules, 4.608M pixels.

- DEPlented Field Effect Transistor (DEPFET):
 - 50\,\mu m thin.
 - Air–cooled.
 - Radiation hard.

- Still in production (lithography in progress).
- Four ladder layers: 38, 80, 115, 140 mm.

Double Sided Strip Detectors (DSSD)

- Excellent timing resolution ($\sim 2-3 \, \text{ns}$) → complements PXD.
- Undergone beam tests at DESY.
Four ladder layers: 38, 80, 115, 140 mm.

Three sizes of DSSDs used for outer, inner, forward layers.
- Four ladder layers: 38, 80, 115, 140 mm.

- Three sizes of DSSDs used for outer, inner, forward layers.

- Excellent timing resolution ($\sim 2–3 ns$) → complements PXD.
- Four ladder layers: 38, 80, 115, 140 \text{mm}.

- Three sizes of DSSDs used for outer, inner, forward layers.

- Excellent timing resolution ($\sim 2 – 3 \text{ns}$) → complements PXD.

- Undergone beam tests at DESY.
Belle II Detector

- **Electromagnetic Calorimeter**: 8000 CsI crystals, 16×0 PMT/APD readout
- **DIRC** with 20mm quartz bars, MCP-PMT readout
- **Aerogel RICH**
 - Proximity focusing RICH with silica aerogel
- **Central Drift Chamber**: Proportional wiredrift chamber, 15000 sense wires in 58 layers
- **Silicon Vertex Detector**: 4 layer double sided strips, 20 − 50 ns shaping time
- **Pixel Vertex Detector**: 2 layer pixel detector (8MP), DEPFET technology
Belle II Detector

Electromagnetic Calorimeter
- 8000 CsI crystals, 16×0
- PMT/APD readout
- Time of Propagation counter
- DIRC with 20mm quartz bars
- MCP-PMT readout

Aerogel RICH
- Proximity focusing RICH with silica aerogel

Central Drift Chamber
- Proportional wire drift chamber
- 15000 sense wires in 58 layers

Silicon Vertex Detector
- 4 layer double sided strips
- 20 – 50 ns shaping time

Pixel Vertex Detector
- 2 layer pixel detector (8MP)
- DEPFET technology
~ 51,500 sense wires inside 1.5T magnetic field.
- ~ 51,500 sense wires inside 1.5T magnetic field.
- Key roles:
 1. Reconstruct charged tracks with precision momentum measurements.
 2. Particle identification using measurements of $\frac{dE}{dx}$.
 3. Trigger for charged particles.

Moving into final position + cosmic ray testing ongoing.
~ 51,500 sense wires inside 1.5T magnetic field.

Key roles:
1. Reconstruct charged tracks with precision momentum measurements.
2. Particle identification using measurements of $\frac{dE}{dx}$.
3. Trigger for charged particles.

Moving into final position + cosmic ray testing ongoing.
Belle II Detector

Electromagnetic Calorimeter
- 8000 CsI crystals, 16X
- PMT/APD readout
- Time of Propagation counter
- DIRC with 20mm quartz bars
- MCP-PMT readout

Aerogel RICH
- Proximity focusing RICH with silica aerogel

Central Drift Chamber
- Proportional wire drift chamber
- 15000 sense wires in 58 layers

Silicon Vertex Detector
- 4 layer double sided strips
- 20 – 50 ns shaping time

Pixel Vertex Detector
- 2 layer pixel detector (8MP)
- DEPFET technology

Image of Belle II Detector with labels:
- **Pixel Vertex Detector**
- **Silicon Vertex Detector**
- **Central Drift Chamber**
The Belle II Experiment

Time of Propagation counter
- DIRC with 20 mm quartz bars
- MCP-PMT readout

Pixel Vertex Detector
- 2 layer pixel detector (8MP)
- DEPFET technology

Silicon Vertex Detector
- 4 layer double sided strips
- 20 – 50 ns shaping time

Central Drift Chamber
- Proportional wire drift chamber
- 15000 sense wires in 58 layers

Aerogel RICH
- Proximity focusing RICH with silica aerogel
Particle identification in barrel region.
▶ Particle identification in barrel region.

▶ Sixteen modules, each containing:
 ▶ Two 2.7m long quartz bars.
 ▶ A spherical mirror.
 ▶ An expansion prism.
 ▶ An array of photo–detectors.
- Particle identification in barrel region.

- Sixteen modules, each containing:
 - Two 2.7m long quartz bars.
 - A spherical mirror.
 - An expansion prism.
 - An array of photo–detectors.

- Cherenkov ring reconstructed in 3D from time and the $x – y$ position.
- Particle identification in barrel region.

- Sixteen modules, each containing:
 - Two 2.7m long quartz bars.
 - A spherical mirror.
 - An expansion prism.
 - An array of photo–detectors.

- Cherenkov ring reconstructed in 3D from time and the $x-y$ position.

- TOP installed – undergoing background tests.
Time of Propagation Detector
Particle identification in forward end-cap.
Particle identification in forward end-cap.

Components:
Particle identification in forward end-cap.

Components:
- Aerogel radiator → produces Cherenkov photons.
- Expansion volume.
- 2D array of photon detectors (420 Hybrid Avalanche Photo Detectors).
- Read-out system for photon detectors.
- Particle identification in forward end-cap.

- Components:
 - Aerogel radiator → produces Cherenkov photons.
 - Expansion volume.
 - $2D$ array of photon detectors (420 Hybrid Avalanche Photo Detectors).
 - Read–out system for photon detectors.

- Focusing constructed to separate K and π photons across most of their momentum range.
Particle identification in forward end-cap.

Components:
- Aerogel radiator → produces Cherenkov photons.
- Expansion volume.
- $2D$ array of photon detectors (420 Hybrid Avalanche Photo Detectors).
- Read–out system for photon detectors.

Focusing constructed to separate K and π photons across most of their momentum range.

Partially installed, cosmic ray tests ongoing.
Belle II Detector

- **Time of Propagation counter**
 - DIRC with 20 mm quartz bars
 - MCP-PMT readout

- **Pixel Vertex Detector**
 - 2 layer pixel detector (8MP)
 - DEPFET technology

- **Silicon Vertex Detector**
 - 4 layer double sided strips
 - 20 – 50 ns shaping time

- **Central Drift Chamber**
 - Proportional wire drift chamber
 - 15000 sense wires in 58 layers

- **Aerogel RICH**
 - Proximity focusing RICH with silica aerogel
Belle II Detector

- **Electromagnetic Calorimeter**
 - 8000 CsI Crystals, $16X_0$
 - PMT/APD readout

- **Time of Propagation counter**
 - DIRC with 20 mm quartz bars
 - MCP-PMT readout

- **Central Drift Chamber**
 - Proportional wire drift chamber
 - 15000 sense wires in 58 layers

- **Silicon Vertex Detector**
 - 4 layer double sided strips
 - 20 – 50 ns shaping time

- **Pixel Vertex Detector**
 - 2 layer pixel detector (8MP)
 - DEPFET technology

- **Aerogel RICH**
 - Proximity focusing RICH with silica aerogel
Electromagnetic Calorimeter

- Reuse barrel crystals from Belle (new waveform sampling electronics).
- Reuse barrel crystals from Belle (new waveform sampling electronics).

- Refurbished end–cap crystals (CsI(Tl) \rightarrow CsI)

Roles:

- Detect photons with precision measurements.
- Identify electrons.
- Help detect K_0 together with the KLM.

Hardware tests carried out on crystals–Electronics still in construction/testing.
- Reuse barrel crystals from Belle (new waveform sampling electronics).

- Refurbished end-cap crystals (CsI(Tl) → CsI)

- Roles:
 - Detect photons with precision measurements.
 - Identify electrons.
 - Help detect K_L^0 together with the KLM.
Electromagnetic Calorimeter

- Reuse barrel crystals from Belle (new waveform sampling electronics).
- Refurbished end-cap crystals (CsI(Tl) → CsI)
- Roles:
 - Detect photons with precision measurements.
 - Identify electrons.
 - Help detect K_L^0 together with the KLM.
- Hardware tests carried out on crystals – Electronics still in construction/testing.
Alternating layers of iron plates and detector components.
- Alternating layers of iron plates and detector components.

- Iron plates:
 - K_L shower hadronically.
 - Flux return for magnet.
- Alternating layers of iron plates and detector components.

- Iron plates:
 - K_L shower hadronically.
 - Flux return for magnet.

- Replaced end-cap and inner-most barrel RPCs with scintillators.
Alternating layers of iron plates and detector components.

- Iron plates:
 - K_L shower hadronically.
 - Flux return for magnet.

- Replaced end–cap and inner–most barrel RPCs with scintillators.

- Barrel (End–cap) installed in 2013 (2014).
Alternating layers of iron plates and detector components.

Iron plates:
- K_L shower hadronically.
- Flux return for magnet.

Replaced end-cap and inner-most barrel RPCs with scintillators.

Barrel (End-cap) installed in 2013 (2014).

Currently undergoing commissioning/cosmic ray testing.
- Rewritten (mostly) from scratch.
- Rewritten (mostly) from scratch.
- Standardise common processes.
- Rewritten (mostly) from scratch.
- Standardise common processes.

Example: \(B^0 \to D^0(\to \pi^0\pi^0)\pi^0 \)

```plaintext
# Load up a data set to analyse
inputMdstList('B2D0pi0_mdst.root')

# Create "pi0:all" and "pi0:good" ParticleLists
# from ECL clusters
goodPi0()

# Reconstruct D0 -> pi0 pi0 decay.
# Keep only candidates with: 1.7 < M(pi0pi0) < 2.0 GeV
reconstructDecay('D0:pi0pi0 -> pi0:good pi0:good',
'1.7 < M < 2.0')

# Reconstruct B0 -> D0 pi0 decay and keep only candidates with:
# Mbc > 5.24 GeV and -1 < Delta E < 1 GeV
reconstructDecay('B0:all -> D0:pi0pi0 pi0:good',
'5.24 < Mbc < 5.29 and abs(deltaE) < 1.0')

# Perform MC matching (MC truth association)
mMatchMCTruth('B0:all')

# Write out the flat ntuple
ntupleFile('B02D0Pi0-Reconstruction.root')
ntupleTree('b0', 'B0:all', toolsB0)

# Process the events
process(analysis_main)
```
- Rewritten (mostly) from scratch.
- Standardise common processes.
- Events independent → trivial parallelisation.

Example: reconstruct $B^0 \to D^0(\pi^0 \pi^0)\pi^0$

```python
# Load up a data set to analyse
inputMdstList('B2D0pi0_mdst.root')

# Create "pi0:all" and "pi0:good" ParticleLists
# from ECL clusters
goodPi0()

# Reconstruct D0 -> pi0 pi0 decay.
# Keep only candidates with: 1.7 < M(pi0pi0) < 2.0 GeV
reconstructDecay('D0:pi0pi0 -> pi0:good pi0:good',
                 '1.7 < M < 2.0')

# Reconstruct B0 -> D0 pi0 decay and keep only candidates with:
# Mbc > 5.24 GeV and -1 < Delta E < 1 GeV
reconstructDecay('B0:all -> D0:pi0pi0 pi0:good',
                 '5.24 < Mbc < 5.29 and abs(deltaE) < 1.0')

# Perform MC matching (MC truth association)
mismatchMCTruth('B0:all')

# Write out the flat ntuple
ntupleFile('B02D0P10-Reconstruction.root')
ntupleTree('b0', 'B0:all', toolsB0)

# Process the events
process(analysis_main)
```
- Rewritten (mostly) from scratch.
- Standardise common processes.
- Events independent → trivial parallelisation.
- CVMFS mountable central builds OR ~ 1 min binaries setup.

Example: reconstruct $B^0 \rightarrow D^0(\rightarrow \pi^0\pi^0)\pi^0$

```plaintext
# Load up a data set to analyse
inputMdstList('B2D0pi0_mdst.root')

# Create "pi0:all" and "pi0:good" ParticleLists
# from ECL clusters
goodPi0()

# Reconstruct D0 -> pi0 pi0 decay.
# Keep only candidates with: 1.7 < M(pi0pi0) < 2.0 GeV
reconstructDecay('D0:pi0pi0 -> pi0:good pi0:good',
                 '1.7 < M < 2.0')

# Reconstruct B0 -> D0 pi0 decay and keep only candidates with:
# Mbc > 5.24 GeV and -1 < Delta E < 1 GeV
reconstructDecay('B0:all -> D0:pi0pi0 pi0:good',
                 '5.24 < Mbc < 5.29 and abs(deltaE) < 1.0')

# Perform MC matching (MC truth association)
matchMCTruth('B0:all')

# Write out the flat ntuple
ntupleFile('B02D0Pi0-Reconstruction.root')
ntupleTree('b0', 'B0:all', toolsB0)

# Process the events
process(analysis_main)
```
Rewritten (mostly) from scratch.
Standardise common processes.
Events independent → trivial parallelisation.
CVMFS mountable central builds OR ~ 1 min binaries setup.
First full release: 08.2017

Example: reconstruct $B^0 \rightarrow D^0 (\rightarrow \pi^0 \pi^0) \pi^0$

Load up a data set to analyse
inputMdstList('B2D0pi0_mdst.root')

Create "pi0:all" and "pi0:good" ParticleLists
from ECL clusters
goodPi0()

Reconstruct D0 → pi0 pi0 decay.
Keep only candidates with: 1.7 < M(pi0pi0) < 2.0 GeV
reconstructDecay('D0:pi0pi0 -> pi0:good pi0:good',
'1.7 < M < 2.0')

Reconstruct B0 → D0 pi0 decay and keep only candidates with:
Mbc > 5.24 GeV and -1 < Delta E < 1 GeV
reconstructDecay('B0:all -> D0:pi0pi0 pi0:good',
'5.24 < Mbc < 5.29 and abs(deltaE) < 1.0')

Perform MC matching (MC truth association)
matchMCTruth('B0:all')

Write out the flat ntuple
ntupleFile('B02D0Pi0-Reconstruction.root')
nTupleTree('b0', 'B0:all', toolsB0)

Process the events
process(analysis_main)
Phase 1 (Feb 2016):
Beam commissioning + beam background measurements
Phase 1 (Feb 2016):
Beam commissioning + beam background measurements
 Details in next talk.
Phase 1 (Feb 2016):
Beam commissioning + beam background measurements
 ▶ Details in next talk.

Phase 2 (Dec 2017):
Detector in place without VXD
Phase 1 (Feb 2016): Beam commissioning + beam background measurements
 ▶ Details in next talk.

Phase 2 (Dec 2017): Detector in place without VXD

Phase 3 (Nov 2018): Physics run
New physics motivation for new B–factory.
New physics motivation for new B–factory.

SuperKEKB to set new world record instantaneous luminosity.
\[8 \times 10^{35} \text{cm}^{-2}\text{s}^{-1} \]
\[50 \text{ab}^{-1} \]
- New physics motivation for new B–factory.

- SuperKEKB to set new world record instantaneous luminosity.
 \[8 \times 10^{35} \text{cm}^{-2}\text{s}^{-1}\]
 \[50 \text{ab}^{-1}\]

- Detector component construction/installation ongoing.
New physics motivation for new B–factory.

SuperKEKB to set new world record instantaneous luminosity.
\[8 \times 10^{35} \text{cm}^{-2} \text{s}^{-1} \]
\[50 \text{ab}^{-1} \]

Detector component construction/installation ongoing.

Software still in development → mid–2017 full release.
New physics motivation for new B–factory.

SuperKEKB to set new world record instantaneous luminosity.
\[8 \times 10^{35} \text{cm}^{-2}\text{s}^{-1}\]
\[50 \text{ab}^{-1}\]

Detector component construction/installation ongoing.

Software still in development \(\rightarrow\) mid–2017 full release.

End–2018: Data taking to begin.
BACKUP
<table>
<thead>
<tr>
<th>Belle II</th>
<th>Overlap</th>
<th>LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Missing particles</td>
<td>▶ CPV</td>
<td></td>
</tr>
<tr>
<td>▶ Inclusive measurements</td>
<td>▶ Semi-leptonic</td>
<td>▶ Large baryonic samples</td>
</tr>
<tr>
<td>▶ LFV</td>
<td>▶ EWP</td>
<td>▶ Deccays to visible particles.</td>
</tr>
<tr>
<td></td>
<td>▶ Charm physics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▶ Low-multiplicity signatures.</td>
<td></td>
</tr>
</tbody>
</table>
Belle II is the upgraded Belle detector. Most components have been upgraded. The key changes are:

- The old silicon strip detector immediately outside the beam pipe will be replaced with a two–layer pixel detector.
- The remaining silicon strip detector is to be extended to have a larger radius than in Belle.
- The readout of the silicon strip detector will be changed from one based on the VA1TA chip to one based on the APV25 chip featuring a decreased shaping time.
- The central drift chamber, the primary tracking device, will have a larger volume and smaller cell sizes than in Belle.
- Particle identification is to be performed by entirely new devices using Čerenkov imaging with faster read–outs than in Belle.
- The end–cap scintillator crystals (CsI(T1)) in the electromagnetic calorimeter will be replaced with faster, more radiation tolerant pure CsI crystals, and new electronics will be used.
- The end–cap and inner layers of the K_L and μ detector are to be replaced with scintillators.
1. Particle hits → electron–hole pairs produced.
2. Holes drift to the p+ back contact. Electrons accumulate in 'internal gate'.
3. Current from p+ source → p+ drain through FET modulated by FET gate and field from electrons in 'internal gate'.
4. Current is measured and amplified as it’s carried away.
5. n+ clear pulse to 'internal gate' removes collected electrons and signal charge.
6. Device is now reset and ready again.
1. Particle hits → electron–hole pairs produced.
1. Particle hits \rightarrow electron–hole pairs produced.

2. Holes drift to the p+ back contact.
 Electrons accumulate in ‘internal gate’.
1. Particle hits \rightarrow electron–hole pairs produced.

2. Holes drift to the p+ back contact. Electrons accumulate in ‘internal gate’.

3. Current p+ source \rightarrow p+ drain through FET modulated by FET gate and field from electrons in ‘internal gate’.

4. Current is measured and amplified as it’s carried away.

5. n+ clear pulsed to ‘internal gate’ removes collected electrons and signal charge.

6. Device is now reset and ready again.
1. Particle hits \rightarrow electron–hole pairs produced.

2. Holes drift to the p+ back contact. Electrons accumulate in ‘internal gate’.

3. Current p+ source \rightarrow p+ drain through FET modulated by FET gate and field from electrons in ‘internal gate’.

4. Current is measured and amplified as it’s carried away.
1. Particle hits → electron–hole pairs produced.

2. Holes drift to the p+ back contact. Electrons accumulate in ‘internal gate’.

3. Current p+ source → p+ drain through FET modulated by FET gate and field from electrons in ‘internal gate’.

4. Current is measured and amplified as it’s carried away.

5. n+ clear pulsed to ‘internal gate’ removes collected electrons and signal charge.
1. Particle hits → electron–hole pairs produced.

2. Holes drift to the p+ back contact. Electrons accumulate in ‘internal gate’.

3. Current p+ source → p+ drain through FET modulated by FET gate and field from electrons in ‘internal gate’.

4. Current is measured and amplified as it’s carried away.

5. n+ clear pulsed to ‘internal gate’ removes collected electrons and signal charge.

6. Device is now reset and ready again.
Milestones

Belle II construction schedule reconsideration: 2016 May 31

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Event</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>8</td>
<td>Phase 1 (5mo)</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>3</td>
<td>Summer Shutdown</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>5</td>
<td>Phase 2 (5mo)</td>
<td></td>
</tr>
</tbody>
</table>

Global Operation
- Global Operation: machine time per JFY
- Belle rollout/in

Global Position
- TOP
 - Solenoid field measurement
 - CDC

Cryogenics (for Solenoid)
- IBBelle, CO2 ready on site

COMP

On Beam Line
- GCR -VF (details to be worked out)
- GCR -V (details to be worked out)

ECL
- ARICH
- Ecaps
- VXD