

Status and Future Prospects for Charged Lepton Flavor Violation Searches at B Factories and Belle-II

Tomoyuki Konno

for the Belle II collaboration

KEK IPNS

25/08/2016, NuFact2016, Qyu Nhon, Vietnam

Introduction to tau LFV

- Lepton Flavor Violation (LFV) is highly suppressed in the Standard Model (SM) even if neutrino oscillation is taken
 Br < O(10⁻⁵⁴) => Experimentally unreachable
- Many extensions to SM predict to enhance LFV to be observable in current experiment facilities: Br ~O(10⁻⁸)
- => Observation of LFV is an clear signature of the New Physics (NP)!
- Tau lepton the heaviest charged lepton coupling to the NP
- => Many possible LFV decay modes related to the NP models

Predicted BF in various models

• Various models predict BF for $\tau \rightarrow \mu \gamma$ and $\tau \rightarrow \mu \mu \mu$

	Reference	$ au o \mu \gamma$	$ au ightarrow \mu \mu \mu$
SM+ ν mixing	EPJ C8 (1999) 513	10-40	10-14
SM + heavy Maj v_R	PRD 66 (2002) 034008	10 ⁻⁹	10-10
Non-universal Z'	PLB 547 (2002) 252	10 ⁻⁹	10 ⁻⁸
SUSY SO(10)	PRD 68 (2003) 033012	10 ⁻⁸	10-10
mSUGRA+seesaw	PRD 66 (2002) 115013	10-7	10 ⁻⁹
SUSY Higgs	PLB 566 (2003) 217	10-10	10-7

Numbers correspond to the most optimistic case

• B factory sensitivity (~10⁻⁸) reaches a possible region to τ LFV!

Predicted BF in various models

• Ratio of Tau LFV decay BF provides discrimination of NP models

(M.Blanke, et al., JHEP 0705, 013(2007), C.Yue, et al., PLB547, 252 (2002))

		SUSY+GUT (SUSY+Seesaw)	Higgs mediated	Little Higgs	non-universal Z' boson
	$\left(\frac{\tau \to \mu \mu \mu}{\tau \to \mu \gamma}\right)$	$\sim 2 \times 10^{-3}$	0.06~0.1	0.4~2.3	~16
	$\left(\frac{\tau \to \mu e e}{\tau \to \mu \gamma}\right)$	$\sim 1 \times 10^{-2}$	$\sim 1 \times 10^{-2}$	0.3~1.6	~16
	Br ($ au o \mu \gamma$) @ Max	< 10 ⁻⁷	< 10 ⁻¹⁰	< 10 ⁻¹⁰	< 10 ⁻⁹
Fa	vorite mode	s $\tau \to \mu \gamma$	1		$\tau \rightarrow \mu \mu \mu$

• It is important to search for various kinds of τ LFV

=> Almost all decay modes were studied using the Belle data

τ LFV search at Belle

B-factory at KEK

- KEKB: asymmetric e+(3.5GeV) e-(8GeV)
 - Peak luminosity: 2.1x10³⁴ cm⁻²s⁻¹
 - => World highest peak luminosity
 - σ(ττ)~0.9nb, σ(bb)~1.1nb

=> B-factory is also τ factory!

- Belle Detector:
 - Good track reconstruction
 - Good particle identification
 - => Lepton efficiency:90% Fake rate : O(0.1) % for e O(1)% for μ

Analysis procedure

- $e^+e^- \rightarrow \tau^+\tau^-$: No missing in signal side <mark>→ Signal side</mark>: μμμ - Fully reconstructed Tag side: 1 prong + missing - Br ~ 85 %
- Signal extraction: $m_{\mu\mu\mu} \Delta E$ plane

$$-m_{\mu\mu\mu} = \sqrt{E_{\mu\mu\mu}^2 - p_{\mu\mu\mu}^2} \sim m_{\tau}$$

$$-\Delta E = E_{\mu\mu\mu}^{CM} - E_{beam}^{CM} \sim 0$$

Number of Background is estimated using sideband data and MC

🗖 signal MC

3σ ellipse signal r

Signal :

 $\Delta E (GeV)$

0

Generic **t** decay

1 85

Signal and backgrounds

Analysis strategy

- Rare decay search :
 => Understand backgrounds and reduce as much as possible
- Search various decay modes:
- Analyze the modes from simple selection to hard for background reduction
 - Provide feedback to next analysis of similar final state

$\tau \rightarrow \ell \ell \ell$

- Data: 782fb⁻¹
- No event s are found in the signal region.
- Almost BG free
 - Expected # of BG:0.01-0.21
 - Good lepton ID
- Br < (1.5-2.7) x 10⁻⁸ at 90%CL

Mode	ε (%)	N _{BG} ^{EXP}	σ _{syst} (%)	UL (x10 ⁻⁸)
<i>e</i> ⁻ <i>e</i> ⁺ <i>e</i> ⁻	6.0	0.21 <u>±</u> 0.15	9.8	2.7
$\mu^-\mu^+\mu^-$	7.6	0.13 <u>±</u> 0.06	7.4	2.1
$e^-\mu^+\mu^-$	6.1	0.10 <u>±</u> 0.04	9.5	2.7
$\mu^- e^+ e^-$	9.3	0.04 <u>±</u> 0.04	7.8	1.8
$\mu^- e^+ \mu^-$	10.1	0.02 <u>±</u> 0.02	7.6	1.7
$e^-\mu^+e^-$	11.5	0.01±0.01	7.7	1.5

$au ightarrow \Lambda h / \overline{\Lambda} h$

- No candidate events found
 => no significant excess
 - Expected # of BG: (0.21-0.42)
- $\tau\tau$ BG including K_S^0 miss ID as Λ
 - Reduce by K_S^0 mass
- $q \overline{q}$ BG including Λ : proton ID
- UL@90%CL (preliminary):
 - Br < (2.8-3.1) x10⁻⁸ : B-L cons.

- Br < (3.0-4.2) x10⁻⁸ : B-L viol.

 $\tau \rightarrow \ell V^0 (= \rho^0, K^{*0}, \omega, \phi)$

- Search with 854fb⁻¹ data sample
 - Select one lepton and two hadrons
 - Require di-hadron mass to be consistent with a vector meson mass
- Possible backgrounds
 - For $\ell = \mu$, hadronic tau decay and $q \overline{q}$ with miss μ -ID
 - For $\ell = e$, 2photon processes could be large BG.
 - ee+X process also become large background.
 - => Reduced using missing-momentum direction.

$au ightarrow \ell V^0 (= ho^0, K^{*0}, \omega, \phi)$

- After event selection
 - 1 event in $\mu\phi$, μK^{*0} , $\mu \overline{K}^{*0}$
 - 0 events others in the signal region
 =>No significant excess
 - => expected # of BG: 0.06-1.48
 - $Br(\tau \rightarrow \ell V^0) < (1.2-8.4) \times 10^{-8} @90\%$ CL

Phys.Lett.B699,251 (2011)

Mode	ε (%)	N _{BG} EXP	N _{obs.}	UL (x10 ⁻⁸)	Mode	ε (%)	N _{BG} EXP	N _{obs.}	UL (x10 ⁻⁸)
$e^- ho^0$	7.6	0.29 <u>+</u> 0.15	0	1.8	<i>e</i> ⁻ <i>K</i> ^{*0}	4.4	0.39 <u>+</u> 0.14	0	3.2
$\mu^- ho^0$	7.1	1.48 <u>+</u> 0.35	0	1.2	$\mu^- K^{*0}$	3.4	0.53 <u>+</u> 0.20	1	7.2
$e^-\phi$	4.2	0.47 <u>±</u> 0.19	0	3.1	$e^-\bar{K}^{*0}$	4.4	0.08±0.08	0	3.4
$\mu^-\phi$	3.2	0.06±0.06	1	8.4	$\mu^- \bar{K}^{*0}$	3.6	0.45 <u>+</u> 0.17	1	7.0
e ⁻ ω	2.9	0.30±0.14	0	4.8	$\mu^-\omega$	2.4	0.72 <u>±</u> 0.18	0	4.7

$\tau \rightarrow \ell h h'$

• Search with 854fb⁻¹ data

- BaBar: Br<(7-48)x10⁻⁸at 221fb⁻¹

• 14 modes are investigated ($h, h' = \pi^{\pm}, K^{\pm}$)

 $-\tau^- \rightarrow \ell^- h^+ h'^-$: 8 modes (lepton flavor violation)

 $-\tau^- \rightarrow \ell^+ h^- h'^-$: 6 modes (lepton number violation)

$\tau \rightarrow \ell h h'$

Upper limits at 90%CL: Br($\tau \rightarrow \ell h h'$) < (2.0-8.4)x10⁻⁸

- No significant excess
 - 1 event: $\mu^-\pi^+\pi^-$, $\mu^-\pi^+K^-$
 - no events: other modes
 - => Expected # of BG: 0.06-0.72

_						
Mode	ε (%)	$N_{\rm BG}$	$\sigma_{\rm syst}$ (%)	$N_{\rm obs}$	s_{90}	$B(10^{-8})$
$ au^- ightarrow \mu^- \pi^+ \pi^-$	5.83	0.63 ± 0.23	5.3	0	1.87	2.1
$ au^- ightarrow \mu^+ \pi^- \pi^-$	6.55	0.33 ± 0.16	5.3	1	4.02	3.9
$\tau^- \to e^- \pi^+ \pi^-$	5.45	0.55 ± 0.23	5.4	0	1.94	2.3
$\tau^- \to e^+ \pi^- \pi^-$	6.56	0.37 ± 0.18	5.4	0	2.10	2.0
$\tau^- \to \mu^- K^+ K^-$	2.85	0.51 ± 0.18	5.9	0	1.97	4.4
$\tau^- ightarrow \mu^+ K^- K^-$	2.98	0.25 ± 0.13	5.9	0	2.21	4.7
$\tau^- \to e^- K^+ K^-$	4.29	0.17 ± 0.10	6.0	0	2.28	3.4
$\tau^- \to e^+ K^- K^-$	4.64	0.06 ± 0.06	6.0	0	2.38	3.3
$ au^- ightarrow \mu^- \pi^+ K^-$	2.72	0.72 ± 0.27	5.6	1	3.65	8.6
$\tau^- \to e^- \pi^+ K^-$	3.97	0.18 ± 0.13	5.7	0	2.27	3.7
$ au^- ightarrow \mu^- K^+ \pi^-$	2.62	0.64 ± 0.23	5.6	0	1.86	4.5
$\tau^- \to e^- K^+ \pi^-$	4.07	0.55 ± 0.31	5.7	0	1.97	3.1
$\tau^- \to \mu^+ K^- \pi^-$	2.55	0.56 ± 0.21	5.6	0	1.93	4.8
$\tau^- \to e^+ K^- \pi^-$	4.00	0.46 ± 0.21	5.7	0	2.02	3.2

Phys.Lett.B719,346 (2013)

Future prospects at Belle II

Beam background studies

- Beam Exorcism for a Stable ExperimenT II (BEAST II):
 - Measure beam background for safe roll-in of Belle II.
 - Feedback to SuperKEKB : injector tuning, vacuum scrubbing...
 - Detailed tuning and verification of simulation essential for Belle II operation

Phase-I (Feb-June 2016): finished

- Single beam background studies
- Analysis is now ongoing
 Phase-II (Dec 2017-)
- First beam collisions
- BEAST II VXD for background commissioning
- Full Belle II outer detector

Belle II Detector

arXiv:1011.0352 (2011)

Belle II detector status

Outer detector installation in progress

- KLM and ECL are installed
- All 16 TOP modules are installed now
- CDC installation is in progress
- ARICH is in construction

Cosmic ray & beam test

- Cosmic ray tests are in progress
 - KLM/TOP:
 Electronics studies
 - ECL/CDC:
 More than 10 months with cosmic data taking
 - ARICH: First cosmic ring image was observed

Cosmic track though $CDC \rightarrow$

↓Cherenkov ring in ARICH

VXD Beam test at DESY April, 2016
 => Data reduction and slow control schemes

VXD Prototype detector @ DESY beam test

SuperKEKB Luminosity profile

Prospects at Belle II

Signal resolution

LFV Upper limits @ B factories

Current estimation with Belle II final statistics : ~10⁻² lower

Many decay modes are accessible

belle II internal node #21

Summary

- Belle collected a 1ab⁻¹ data sample containing ~10⁹ τ pairs
 - Almost all upper limits on BF for τ LFV are analyzed with Belle's full data sample and reach O(10⁻⁸)
- Belle II experiment is scheduled to start at 2018 and collect $^{5} \times 10^{10} \tau$ pairs in 50ab⁻¹ data sample
 - LFV Sensitivity depends on statistics
 - Background free modes, such as $\tau \rightarrow \ell \ell \ell \ell$ can be reached to O(10⁻¹⁰) branching ratio sensitivity while $\tau \rightarrow \ell \gamma$ modes will be O(10⁻⁹), highly depends on the background situation
- First tuning of SuperKEKB was succeeded
 - BEAST II will provide more knowledge of beam background
- Detector construction is ongoing with cosmic ray/beam tests
 - Belle II rolls in at the end of the year

backup

Belle II schedule

Belle II construction schedule reconsideration : 2016 May 31

		2016		2017			2018	2019
	1 2 3 4	5 6 7 8 91	0 11 12 1 2 3	4 5 6 7	8 9101	1 1 2 1 2 3 4	5 6 7 8 9	1011121123
Global Operation	Phase 1 (Summer 5mo) Shutdown		Su	mmer utdown	Phase 2 (5mo)	Summer Shutdown	Physics Run
machine time per JFY	2		3			5		6
Belle roll-out/in								
		phase 1 to 2					phase 2 to 3	
Global Position	pit		On Beam L	ine		On Beam Line		On Beam Line
TOP								
Solenoid field measurement			GCR -VF (letails to be				
CDC		CDC	worked out					
ECL ARICH Ecap VXD		en to Ts	BW 1	ARIC co	GCR -V (details to be worked FW out)	CR	VXD G	CR
			GCR -		GCR -			
Cryogenics (for Solenoid)		Me	VF/Measure	ement	V/Measu	re Beam	G	CR Beam
IBBelle, CO2	Place for IBBelle		CO2 pipe for BEAST from manifold to dock ◀ IBBelle					
ready on site		CDC	BP2					
		TOP		ARICH	PX	D 🗕 SVD		
		ECL	BEAST V	XD		VXD		
COMP								
		PD	LFV in B factory	@ NuFact 2	2016			27

Barrel PID : iTOP

Detection of internally reflected Cherenkov (DIRC):

• Cherenkov pattern in two hit coordinates and time of propagation.

 Good conformity in data and MC

 Assembly of iTOP modules is ongoing

TOP test beam data

End-cap PID: Aerogel RICH

Tau LFV in B factory @ NuFact 2016

•

Cherenkov angle [rad]

Cosmic ray test at Tsukuba BF4

- Coincidence of 2 plastic scintillators
 - Less than 0.1Hz but clean signal
- One Aerogel tile is inside black box
 - 6 HAPDs are applied HVs and GBs.
- Parameter tuning was done last week
- First ring images was observed!
 - Long run will start this week

Cosmic tracker on the ARICH structure

Experimental challenge at higher luminosity

- For a higher luminosity
 - More beam background (20 x)
 - Higher trigger rate (0.5 -> 30kHz)
 - More radiation hardness
- Important improvements
 - Hermeticity for full reconstruction=> Finer granularity (more channels)
 - Impact parameter resolution
 => Smaller beam pipe (1.5cm -> 1.0cm)
 => Pixel detector (DEPFET)
 - K_s vertex reconstruction efficiency
 => Lager SVD coverage
 - Better K / π separation
 => New Particle ID devices

Two Phases of the BEAST (Beam Background Commissioning Experiment)

Phase I installation on-going

BEAST Phase 2: ~May 2017

- Bellell outer detector rolled in.
- VXD BEAST Assembly
- BEAST detectors in dock space and around QCS
- BEAST DAQ & Belle DAQ

BEAST Phase I beampipe now installed (3.1 km of ring is complete)

Belle II DAQ system

- Belle2Link : High speed serial link for unified readout scheme except PXD
 COPPER : Platform for receiver part of Belle2Link
- Special readouts for PXD reduce data size according to Region of Interests
- Unified trigger timing distribution for FEEs and COPPERs
- Two layers of event building in network data flow
- High Level Trigger (HLT) farm analyzing online data using offline software

$au ightarrow \Lambda h / \overline{\Lambda} h$

- Search with 904fb⁻¹ data sample
 - Select three hadrons
 - Require Λ vertex
- 4 modes are searched for. (h = p, K)
 - $\tau \rightarrow \Lambda h^-$: (B-L) conserving decay
 - $\tau \rightarrow \overline{\Lambda} h^-$: (B-L) violating decay
- $\tau\tau$ BG including K_S^0 miss ID as Λ
 - Reconstruct K_S^0 and reduce reject events that are likely to be K_S^0
- $q \overline{q}$ BG including Λ
 - Reject events with proton in tag side

$au ightarrow \mu\gamma$, $e\gamma$

Phys. Lett. B 666, 16 (2008)

- Previous results:
- Search with 545 fb⁻¹

- Main BG : $\tau \rightarrow \mu \nu \nu + ISR \gamma$ ISR: Initial State Radiation

- $\tau \rightarrow \mu \gamma$: Br < 4.5x10⁻⁸ at 90%C.L.
- $\tau \rightarrow e\gamma$: Br < 1.2x10⁻⁸ at 90%C.L.

