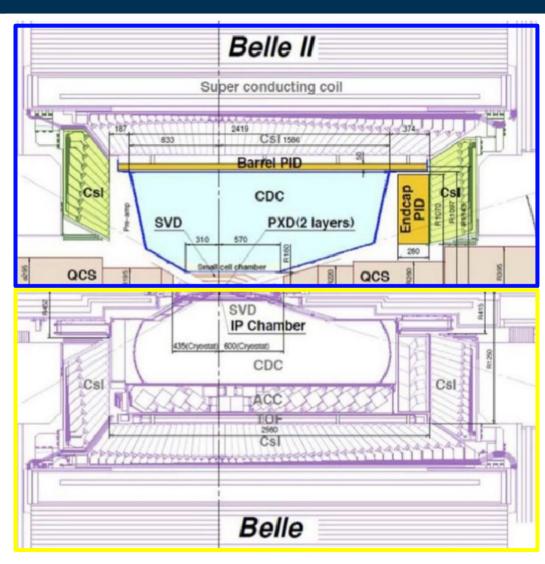
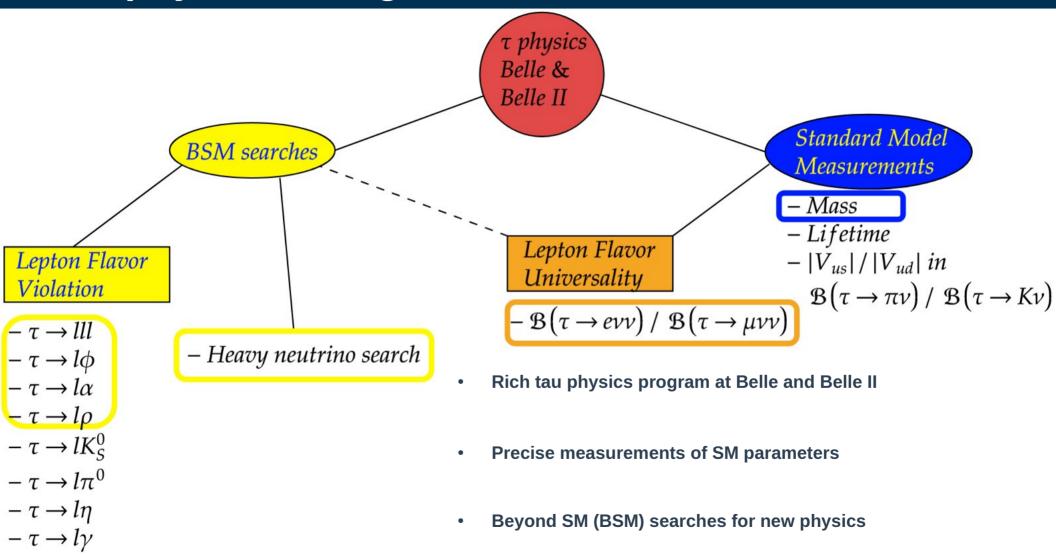
Tau physics at Belle and Belle II



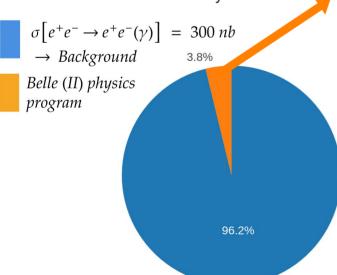
Outline

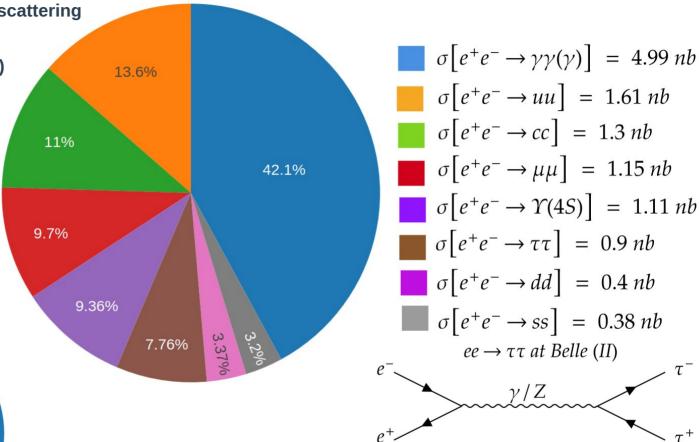

- Belle / Belle II Experiments
- Tau physics
 - Program and Motivation
 - Why at Belle / Belle II ?
 - How to reconstruct tau at Belle / Belle II
- Standard Model measurements
- Lepton Flavor Universality (LFU)
- Lepton Flavor Violation (LFV)
- Summary and Outlook

Belle and Belle II

- General purpose detector with almost 4π coverage
- Located at (Super)KEKB
 - → asymmetric e⁺e⁻ collider in Tsukuba Japan
- Belle
 - 1999 2010
 - 8 GeV electron and 3.5 GeV positron beams
 - 980/fb collected
- Belle II (successor of Belle)
 - 2018 ??
 - 7 GeV electron and 4 GeV positron beams
 - Smaller boost → new vertex detector using 2 layers of pixels and 4 layers of strips
 - 424/fb up to now → goal : 50/ab
- Detection
 - Good momentum resolution & particle ID
 - Good efficiency for neutral particles
 - Missing energy reconstruction
 - Specific low-multiplicity event triggers at Belle II

Tau physics: Program and Motivation



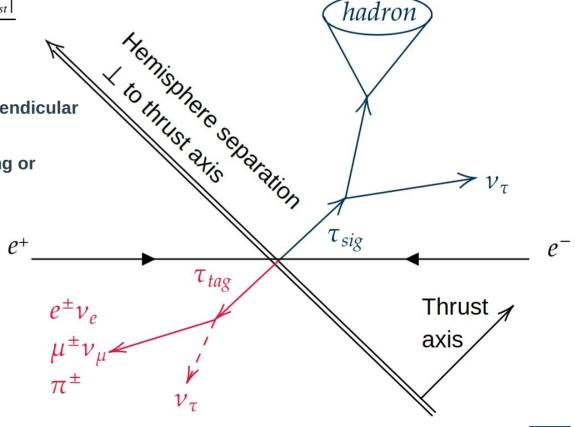

Tau physics: Why at Belle (II)?

• 96.2 % of ee collisions do Bhabha scattering

 \rightarrow Background

- Remaining 3.8 % compose Belle (II) physics program
 - 9.7 % Y(4S) → BB
 - 7.76 % taupair production
 - → 45 billion taupairs @ Belle II
 - High precision studies
 - Rare decay searches

- Clean physics environment, known initial state
- Missing energy reconstruction
- Dedicated low multiplicity triggers (not present in Belle)


Tau physics: How to reconstruct τ at Belle (II)

- SM \u03c4 decays are not fully reconstructable due to missing neutrino
- Identify $\tau+\tau$ events using thrust axis
 - Maximizes projection of all particle momenta in event

Find
$$\vec{n}_{thrust}$$
 which maximizes $\frac{\sum_{i} |\vec{p}_{i}^{CM} \cdot \vec{n}_{thrust}|}{\sum_{i} |\vec{p}_{i}^{CM}|}$

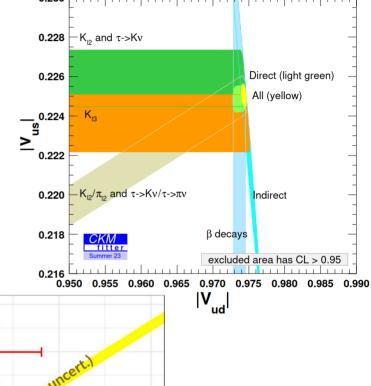
Define two hemispheres divided by the plane perpendicular to the thrust axis

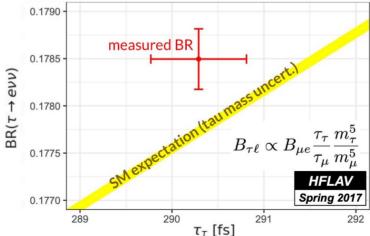
- Reconstruct tag-side tau in standard model 1-prong or 3-prong decay
 - Exclusive → use only 1-prong OR 3-prong events
 - High purity, less efficieny
 - Inclusive → do not reconstruct tag-side tau in a specific mode
 - Higher signal efficiency
 - Higher background levels

SM Measurements: Motivation

Precision measurement of tau quantities can have significant impact

- First row unitarity of CKM-Matrix (Cabbibo-angle-anomaly)
- B(τ → Kν) / B(τ → $\pi \nu$) ~ $|V_{us}|$ / $|V_{ud}|^2$
- Mass of tau is the one with worst precision among leptons

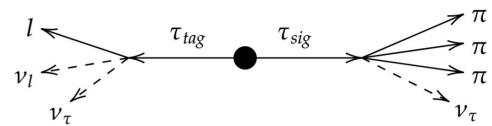

$$m_e = (0.51099895000 \pm 0.00000000015) \text{ MeV}$$

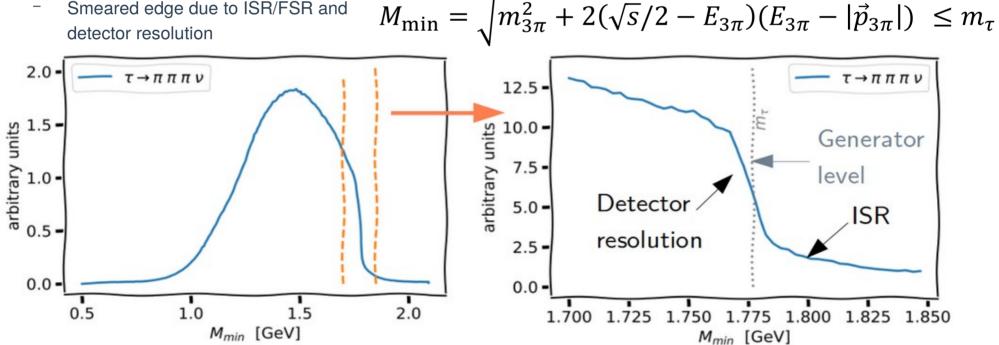

$$m_{\mu} = (105.6583755 \pm 0.0000023) \text{ MeV}$$

$$m_{\tau} = (1776.86 \pm 0.12) \text{ MeV}$$

Lepton Flavor Universality

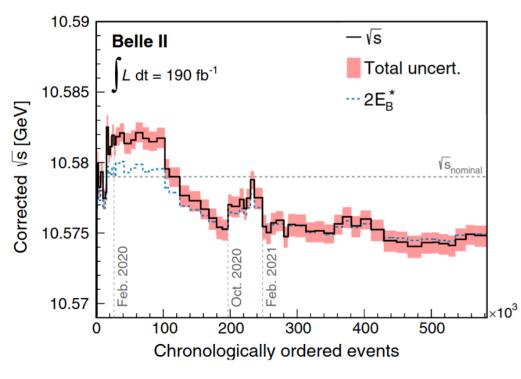
- All leptons are expected to have same coupling strength to W-Boson in SM
 - Different observations would suggest NP contributions
- Mass and lifetime of τ are important inputs to those calculations

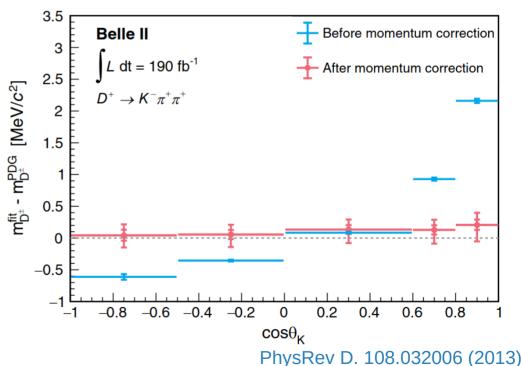



SM Measurements : τ Mass – I

PhysRev D. 108.032006 (2013)

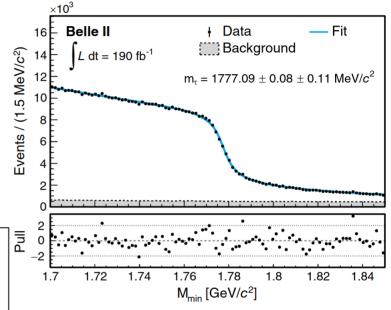
- The τ mass is a fundamental parameter of the SM
- A precise measurement is an important input to LFU tests
- Belle II uses the Pseudomass method
 - Fit kinematic edge of M_{min} distribution in $\tau \rightarrow 3\pi \nu$ decays with empirical function
 - Smeared edge due to ISR/FSR and detector resolution





SM Measurements: τ Mass – II

- Beam energy calibration and momentum correction are crucial for this measurement
 - E_{beam} corrected by hadronic B-Meson decays
 - Momentum correction is done with scale factors for π using $D^{*+} \to D^0 (\to K^- \pi^+) \pi^+$
 - Originates from imperfect B-field, mismodeling in simulation → bias in mass extraction


SM Measurements : τ Mass – III

Perform unbinned maximum likelihood fit to the kinematic edge of the mass distribtion

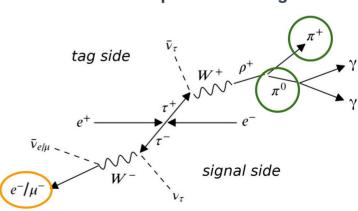
$$M_{\tau} = 1777.09 \pm 0.08 \pm 0.11 \,\mathrm{MeV/c^2}$$

Source	Uncertainty (MeV/c^2)		Events / (1.5 Mo
Knowledge of the colliding beams:	M075 078 55	$- \int \mathcal{L}dt = 190 \text{ fb}^{-1}$	ents
Beam-energy correction	0.07		Ä
Boost vector	< 0.01	175 MIIII	
Reconstruction of charged particles:		~ 175 Million $ee \rightarrow au au$	
Charged-particle momentum correction	0.06		
Detector misalignment	0.03	PDG Average (2022)	
Fit model:	*********	1776.86 ± 0.12	-
Estimator bias	0.03	BES (1996)	
Choice of the fit function	0.02	1776.96 +0.18 +0.25 -0.21 -0.17	
Mass dependence of the bias	< 0.01	BELLE (2007) 1776.61 ± 0.13 ± 0.35	
	0.01	KEDR (2007)	
Imperfections of the simulation:	0.03	$1776.81 \begin{array}{l} +0.25 \\ -0.23 \end{array} \pm 0.15$	
Detector material density Modeling of ISR, FSR and τ decay	0.03	BaBar (2009)	
Neutral particle reconstruction efficiency		1776.68 ± 0.12 ± 0.41	
Momentum resolution	≤ 0.01 < 0.01	BES III (2014) 1776.91 ± 0.12 +0.10 -0.13	
Tracking efficiency correction	< 0.01	Belle II (2023)	
Trigger efficiency	< 0.01	1777.09 ± 0.08 ± 0.11)
Background processes	< 0.01		
		1776 1776.5 1777	
Total	0.11	$m_{_{\scriptscriptstyle{T}}}\left[MeV/c^2 ight]$	

Worlds most precise measurement

PhysRev D. 108.032006 (2013)

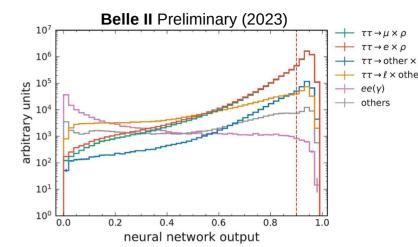
SM Measurements : LFU – I (NEW)

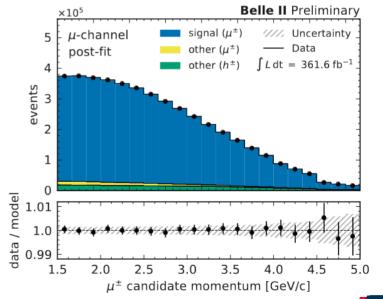

- SM picture of leptons
 - 3 families with different masses and different, separately conserved lepton numbers
 - Coupling to W boson is flavor-independent (?) \rightarrow $g_e = g_{\mu} = g_{\tau}$ lepton universality
- Test LFU (e- μ) in tau decays with g_e , g_μ being proportional to the leptonic branching fractions

$$\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau}^{2} \sim \frac{\mathcal{B}(\tau \to \mu \nu \nu)}{\mathcal{B}(\tau \to e \nu \nu)}$$

$$\int \mathcal{L}dt = 362 \text{ fb}^{-1}$$

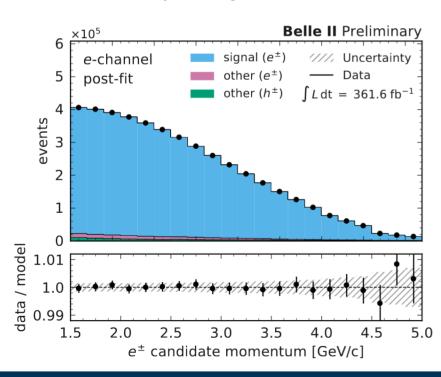
$$\sim 334 \text{ Million } ee \to \tau\tau$$

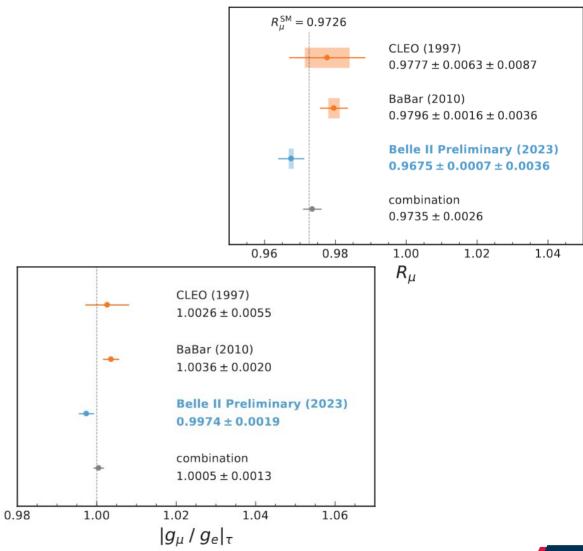

- LFU is sensitive to new physics if it violates lepton flavor and/or lepton universality in weak charged-currents
- Belle II analysis uses 1-prong decays with one charged hadron and at least one neutral pion on the tag-side
 - Large BF \sim 35% on tag-side, low backgrounds, high trigger efficier
- Signal side:
 - One particle track with lepton ID requirement
- Tag side:
 - One track with $E_{cluster}/p < 0.8$
 - At least one neutral pion on tag side



SM Measurements : LFU – II (NEW)

- Event selection is performed with rectangular cuts + neural network
- 94 % purity with 9.6 % signal efficiency for the combined sample
- Main backgrounds:
 - ee → ττ (π faking e/ μ) ~ 3.3 %
 - ee → $\tau\tau$ (wrong tag) ~ 2.3 %
 - ee → eeττ ~ 0.2%
- Extraction of R₁
 - Binned maximum likelihood template fit with pyhf in lepton momentum [1.5, 5] GeV
 - Simultaneous for e/μ channel for better constraints
 - Systematics included with nuisance parameters modifying the templates
 - 3 templates for electron and muon channel
 - Signal decays
 - Background with correct signal side lepton
 - Background with misidentified particle on signal side





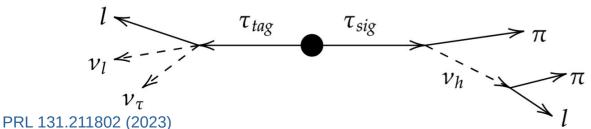
SM Measurements : LFU – III (NEW)

- Leading systematics
 - Particle identification 0.32%
 - **Trigger 0.10%**
- Measured R= 0.9675 +/- 0.0007 +/- 0.0036
 - Most precise e-mu universality from tau decays in single measurement

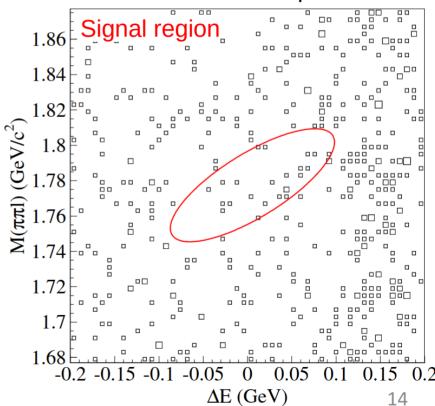
BSM: Heavy neutrino search - I

- Neutrino mass is not zero, which needs a mechanism to generate it
 - Including heavy, right-handed neutrinos is an approach to introduce neutrino mass

$$\int \mathcal{L}dt = 980 \text{ fb}^{-1}$$


 ~ 905 Million $ee \rightarrow \tau \tau$

$au^{\pm} ightarrow \pi^{\pm} u_h$ with $u_h ightarrow \pi^{\pm} l^{\mp}$


- v_h long-lived Majorana neutrino, $I = e/\mu$
- Signal-side : require two pions and a lepton with common vertex
- Tag-side: 1 or 3-prong tau decay
- Backgrounds originate from $ee \rightarrow qq$, $\tau\tau$, II, eell
 - Suppress them with M and ΔE cuts

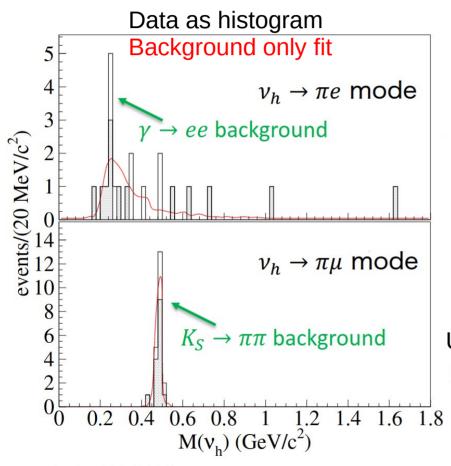
$$\Delta E = (E_{\pi\pi l}^{CM} - \sqrt{s/2})$$

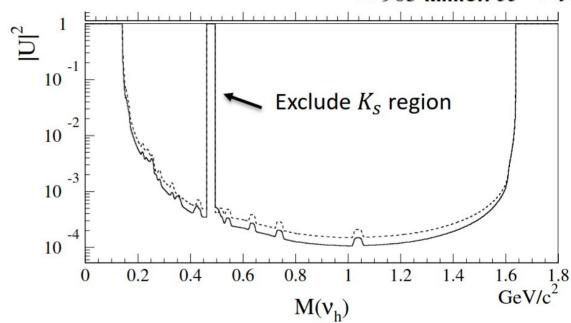
Search for signal-like narrow peak

Data in M-ΔE plane

Epiphany 2024

BSM: Heavy neutrino search – II

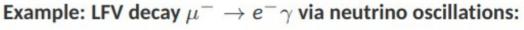


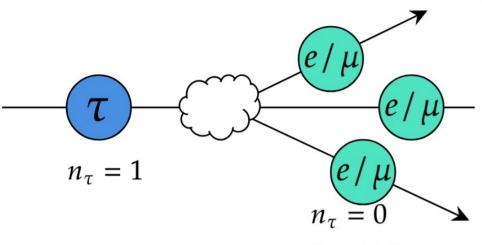

• No narrow signal peak found in $M(\nu_h \rightarrow \pi I)$ distribution

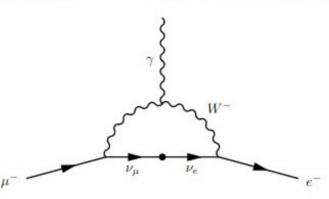
$$\int \mathcal{L}dt = 980 \text{ fb}^{-1}$$

Set upper limit at 95% confidence level

UL on the heavy neutrino mixing set in the mass range $0.2 < M(\nu_h) < 1.6 \ {\rm GeV/c^2}$

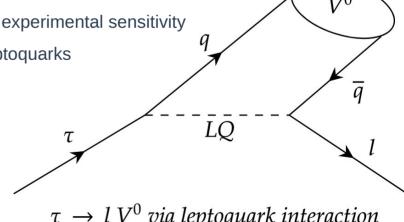

1.4x10⁻⁴ (1.5x10⁻⁴) in Dirac-like limit for normal (inverted) hierarchy


1.0x10⁻⁴ (1.1x10⁻⁴) in Majorana-like limit for normal (inverted) hierarchy

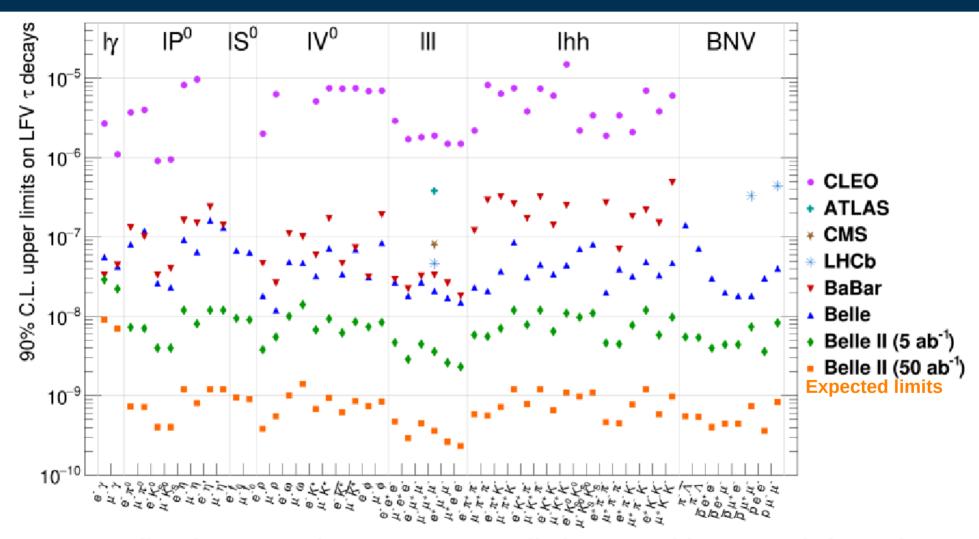

PRL 131.211802 (2023)

LFV – Motivation

Lepton Flavor Violation (LFV)



Forbidden in SM

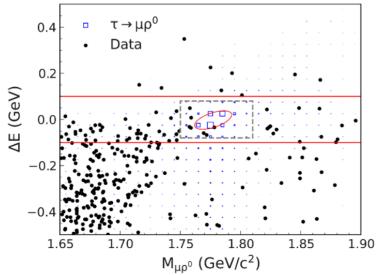

$$n_{e/\mu} = x$$

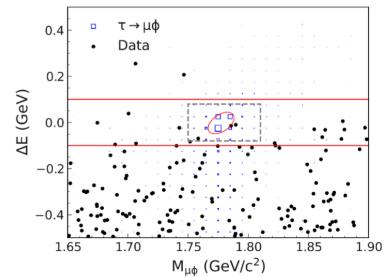
- Only possible due to neutrino oscillation BR ~O(10⁻⁵⁰) → beyond any experimental sensitivity
- Extensions to the SM (New Physics) predict such decays e.g. via Leptoquarks
 - Can couple to quarks and leptons and so feature LFV decays
- Observation would be new physics

 $\tau \to l V^0$ via leptoquark interaction

LFV – Past searches and projections

 \rightarrow Belle II is expected to set new upper limits on a wide range of channels


LFV: $\tau \rightarrow IV^0 - I$



- Signal side:
 - Reconstruct lepton and $V^0 \in [\rho, \phi, \omega, K^*]$
- Tag side:
 - Reconstruct 1 or 3-prong tau
- **Backgrounds:**
 - $\tau \rightarrow 3\pi \nu$ and ee \rightarrow qq
 - Suppression with BDT

Source	$\sigma_{ m syst}~(\%)$	
Integrated luminosity	1.4	
$ee \to \tau \tau(\gamma)$ cross section [48]	0.3	
$\mathcal{B}(\phi \to K^+K^-)$ and $\mathcal{B}(\omega \to \pi^+\pi^-\pi^0)$	1.2 and 0.7	
Trigger efficiency	0.2 – 0.9	
Tracking efficiency	$0.35 imes N_{ m track}$	
Electron identification efficiency	$1.7 \times N_{ m electron}$	
Muon identification efficiency	$1.8 imes N_{ m muon}$	
K^{\pm} and π^{\pm} identification efficiency	1.6 (ρ^0) , 1.8 (ϕ) and 1.1 $(K^{*0} \text{ and } \overline{K}^{*0})$	
π^0 efficiency	$2.2 imes N_{\pi^0}$	
Electron veto for hadrons	0.4 – 1.2	
MC statistics	0.3 – 0.5	
Track energy resolution	0.3 – 1.3	
Photon energy resolution	0.0 – 0.4	

$\int \mathcal{L}dt = 980 \text{ fb}^{-1}$
~ 905 Million $ee \to \tau \tau$

JHEP06(2023)118

LFV: $\tau \rightarrow IV^0 - II$

No significant excess observed → set ULs at 90% CL

World leading results

Mode	ε (%)	$N_{ m BG}$	$\sigma_{\rm syst}$ (%)	$N_{ m obs}$	$\mathcal{B}_{\text{obs}} (\times 10^{-8})$
$\tau^{\pm} \to \mu^{\pm} \rho^0$	7.78	$0.95\pm0.20({\rm stat.}) \pm0.15({\rm syst.})$	4.6	0	< 1.7
$\tau^\pm \to e^\pm \rho^0$	8.49	$0.80\pm0.27({\rm stat.})\ \pm0.04({\rm syst.})$	4.4	1	< 2.2
$ au^{\pm} o \mu^{\pm} \phi$	5.59	$0.47 \pm 0.15 (stat.) \pm 0.05 (syst.)$	4.8	0	< 2.3 *
$ au^{\pm} o e^{\pm} \phi$	6.45	$0.38\pm0.21({\rm stat.})\ \pm0.00({\rm syst.})$	4.5	0	< 2.0 *
$ au^{\pm} ightarrow \mu^{\pm} \omega$	3.27	$0.32\pm0.23({\rm stat.})\ \pm0.19({\rm syst.})$	4.8	0	< 3.9 *
$ au^{\pm} o e^{\pm} \omega$	5.41	$0.74\pm0.43({\rm stat.})\ \pm0.06({\rm syst.})$	4.5	0	< 2.4 *
$\tau^{\pm} \to \mu^{\pm} K^{*0}$	4.52	$0.84 \pm 0.25 (stat.) \pm 0.31 (syst.)$	4.3	0	< 2.9 *
$\tau^{\pm} \to e^{\pm} K^{*0}$	6.94	$0.54\pm0.21({\rm stat.})\ \pm0.16({\rm syst.})$	4.1	0	< 1.9 *
$\tau^{\pm} \to \mu^{\pm} \overline{K}^{*0}$	4.58	$0.58\pm0.17({\rm stat.})\ \pm0.12({\rm syst.})$	4.3	1	< 4.3 *
$ au^{\pm} o e^{\pm} \overline{K}^{*0}$	7.45	$0.25\pm0.11({\rm stat.})\ \pm0.02({\rm syst.})$	4.1	0	< 1.7 *

 $B(\tau \to eV^0) < (1.7 - 2.4) \times 10^{-8}$

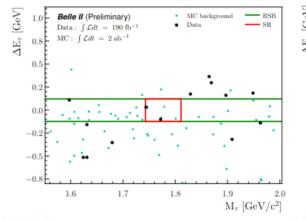
 $B(\tau \to \mu V^0) < (1.7 - 4.3) \times 10^{-8}$

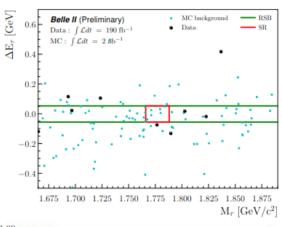
Improvement ~30% compared to previous results!

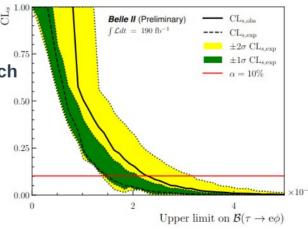
LFV: $\tau \rightarrow I \phi$

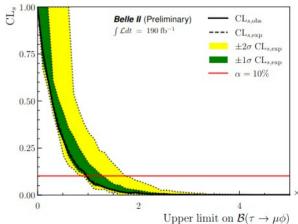
- Untagged inclusive reconstruction: do not reconstruct the tag side into a specific decay
 - Higher Signal efficiency (~32% improvement), more background, use of rest of event variables

$$\int \mathcal{L}dt = 190 \text{ fb}^{-1}$$


$$\sim 75$$
 Million $ee \rightarrow \tau\tau$


- Backgrounds reduced with pre selections and a BDT trained against qqbar events
- Oberved UL @ 90% CL
 - Electron channel: 1.0x10⁻⁷
 - Muon channel: 6.6x10⁻⁸
- No improvement to Belle/BaBar
 - → Small data set
- First, successfull untagged strategy approach for tau physics


Experiment	$\mathcal{B}_{\text{UL}}^{90}(e\phi) \; (\times 10^{-8})$ exp. / obs.	$\mathcal{B}_{\mathrm{UL}}^{90}(\mu\phi)~(\times 10^{-8})$ exp / obs.
BaBar	5.0 / 3.1	8.2 / 19
Belle	4.3 / 3.1	$4.9 \ / \ 8.4$


Babar : 451/fb

Belle: 854/fb

$LFV: \tau \rightarrow l\alpha - l$

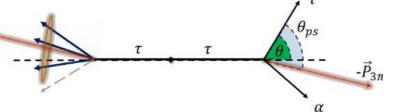
Data

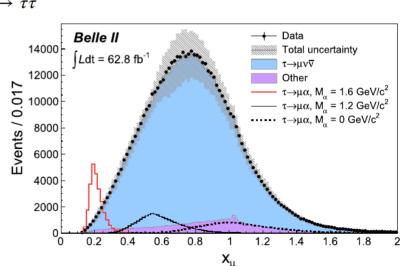
 $\tau \rightarrow e \nu \overline{\nu}$

Other

Total uncertainty

 $\tau \rightarrow e\alpha$, M_a = 1.6 GeV/c² $\tau \rightarrow e\alpha$, M = 1.2 GeV/c² $\tau \rightarrow e\alpha$, M_{...} = 0 GeV/c²


- a is an invisible spin-0 boson
 - Predicted by many models trying to incorporate neutrino-oscillation, muon magnetic moment anomaly or indirect evidence of dark matter in SM
- This direct search probes BSM theories with high sensitivity
- Previous limits from ARGUS: 10⁻² to 10⁻³ 0.5/fb of data
 - Result from 1995


 $\int \mathcal{L} dt = 62.8 \text{ fb}^{-1}$

- Tau momentum cannot be determined from the decay particles directly
 - Approximate the energy in CMS as half of the beam energy and its direction opposite to the 3 hadrons on the tag-side pseudo rest frame
 - Search for an excess above the $\tau \to l \nu \nu$ nomalized lepton energy spectrum with E₁* the energy of the charged lepton in pseudo rest frame

$$x_{\ell} \equiv \frac{E_{\ell}^*}{m_{\tau}c^2/2}$$

0.8

 X_e

Belle II

Events / 0.017

4000

2000

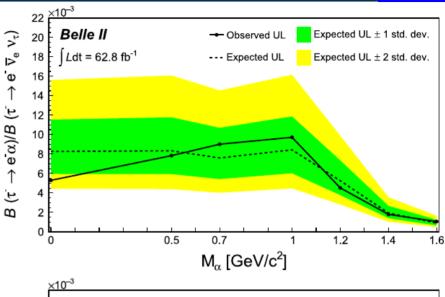
 $\int L dt = 62.8 \text{ fb}$

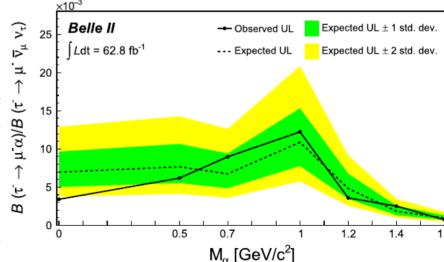
0.4

0.6

PRL 130 181803 (2023)

LFV: τ - la - ll

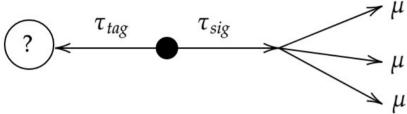

- Simulation derived templates fit for different α mass hypotheses
- Measure $\mathcal{B}_{\ell\alpha}/\mathcal{B}_{\ell\bar{\nu}\nu} \equiv \mathcal{B}(\tau^- \to \ell^-\alpha)/\mathcal{B}(\tau^- \to \ell^-\bar{\nu}_\ell\nu_\tau)$ with τ \to lyv as normalization channel
 - Some systematics cancel → higher precision
- 2 to 14 times more stringent than ARGUS
 - Still only early data set in use


$$\int \mathcal{L} dt = 62.8~\mathrm{fb}^{-1}$$

$$\sim 57.7$$
 Million $ee
ightarrow au au$

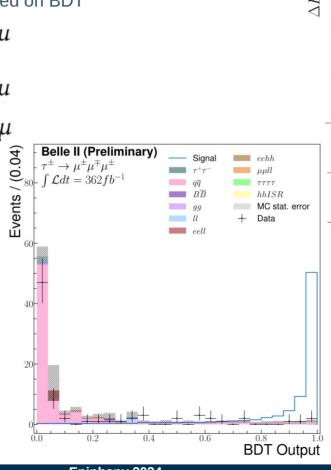
$M_{\alpha} [{\rm GeV}/c^2]$	$\mathcal{B}_{e\alpha}/\mathcal{B}_{e\bar{\nu}\nu}$ (×10 ⁻³)	UL at 95% C.L. $(\times 10^{-3})$	UL at 90% C.L. $(\times 10^{-3})$
0.0	-8.1 ± 3.9	5.3(0.94)	4.3(0.76)
0.5	-0.9 ± 4.3	7.8(1.40)	6.5(1.15)
0.7	1.7 ± 4.0	9.0(1.61)	7.6(1.36)
1.0	1.7 ± 4.2	9.7(1.73)	8.2(1.47)
1.2	-1.1 ± 2.6	4.5(0.80)	3.7(0.66)
1.4	-0.3 ± 1.0	1.8(0.32)	1.5(0.26)
1.6	0.2 ± 0.5	1.1(0.19)	0.9(0.16)

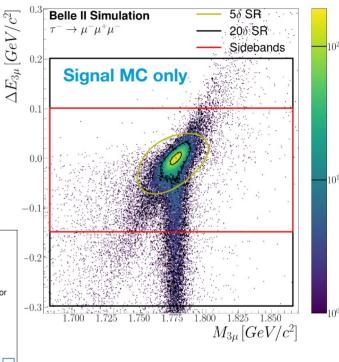
$M_{\alpha} [{\rm GeV}/c^2]$	$\mathcal{B}_{\mu\alpha}/\mathcal{B}_{\mu\bar{\nu}\nu}$ (×10 ⁻³)	UL at 95% C.L. $(\times 10^{-3})$	UL at 90% C.L. $(\times 10^{-3})$
0.0	-9.4 ± 3.7	3.4(0.59)	2.7(0.47)
0.5	-3.2 ± 3.9	6.2(1.07)	5.1(0.88)
0.7	2.7 ± 3.4	9.0(1.56)	7.8(1.35)
1.0	1.7 ± 5.4	12.2(2.13)	10.3(1.80)
1.2	-0.2 ± 2.4	3.6(0.62)	2.9(0.51)
1.4	0.9 ± 0.9	2.5(0.44)	2.2(0.38)
1.6	-0.3 ± 0.5	0.7(0.13)	0.6(0.10)



PRL 130 181803 (2023)

LFV: $\tau \rightarrow \mu \mu \mu - I$ (NEW)

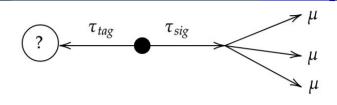

- Best privious upper limit from Belle 2.1x10⁻⁸ @90% CL with 782/fb
- Inclusive → ~30% gain in signal efficiency, larger backgrounds
 - Selection and background rejection based on BDT



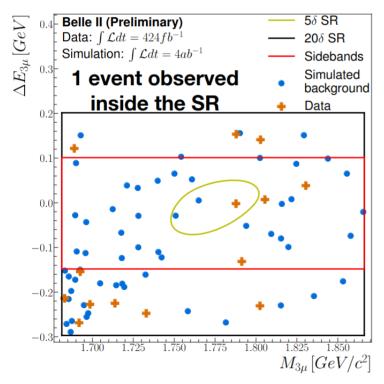
- Fully reconstructed tau signal
- No peaking background from SM processes

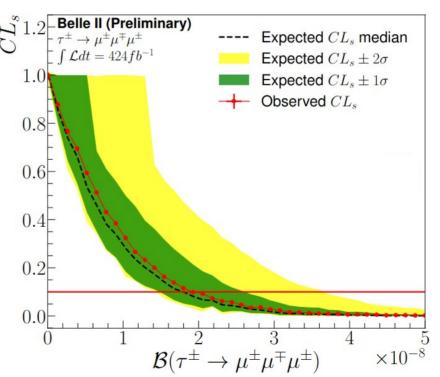
$$\int \mathcal{L}dt = 424 \text{ fb}^{-1}$$

$$\sim 391 \text{ Million } ee \to \tau\tau$$



LFV: $\tau \rightarrow \mu \mu \mu - II (NEW)$




- XGBoost BDT with 32 variables
 - Inputs from signal tau, event tag-side and event shape/kinematic variables
 - ε = 20.42 % ~ 3 times larger than Belle
 - Expected background events: 0.5^{+1.4}-0.5
- No significant excess → calculate UL @90% CL with 424/fb using CLs method

UL @ 90%CL: 2.9x10⁻⁸

UL @ 90% CL: 1.9x10⁻⁸ → most stringent!

Summary

- B factories are a good environment for tau physics!
- Belle and Belle II will contribute to the understanding of tau lepton properties
 - Searches for BSM physics
 - LFU
 - Presicion measurements of SM parameters
- Analysis with combined Belle & Belle II data sets are ongoing
- A lot more to come with more data
 - Now 424/fb, next run starting in the coming weeks
- Topics not covered:
 - Michel Parameters : PRL 131.021801 (2023)
 - Tau lifetime → ongoing study
 - LFV → ongoing studies