Bottomonium at Belle (II)

\qquad

Umberto Tamponi
tamponi@to.infn.it
Excited QCD 2024
tamponieto.inf.it

Benasque, January 19th 2024

The Belle II detector

Belle Il and Bottomonia

Belle (II) relevant datasets

The threshold region

The threshold region: open flavour

The threshold region: hidden flavour

New structure in $\pi \pi Y(n S)$, the $\mathbf{Y}(10750)$

	$\Upsilon(10860)$	$\Upsilon(11020)$	New structure
$\mathrm{M}\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$10885.3 \pm 1.5_{-0.9}^{+2.2}$	$11000.0_{-4.5}^{+4.0+1.3}$	$10752.7 \pm 5.9_{-1.1}^{+0.7}$
$\Gamma(\mathrm{MeV})$	$36.6_{-3.9}^{+4.5}+0.5$	$23.8_{-6.8}^{+8.0}{ }_{-1.8}^{+0.7}$	$35.5_{-11.3}^{+17.6+3.9}$

[Hüsken et al. PRD 106094013 (2022)]

The new Belle II dataset

In fall 2021 Belle II took data above the $\mathrm{Y}(4 \mathrm{~S})$
\rightarrow Goal: study the golden channels to characterize the $\mathrm{Y}(10750)$
\rightarrow Special data taking, lots of discussions and preparation
\rightarrow If you have an idea and you like it, don't give up ;)

News: open flavour cross sections

BB decomposition updated

Ile II
Belle II Preliminary]

BB decomposition updated

\rightarrow Sharp rise in $\mathrm{B}^{*} \mathrm{~B}^{*}$
\rightarrow first point only $\sim 2 \mathrm{MeV}$ above $\mathrm{B}^{0} \mathrm{~B}^{0^{*}}$ threshold
\rightarrow Indication of bound state?
\rightarrow Dip in $B^{*} B$ at the $B^{*} B^{*}$ threshold

BB decomposition updated

Do we saturate the total cross section?
\rightarrow not yet!

$e^{+} e^{-} \rightarrow B^{(*)} B^{(*)}+X$ and $B_{s}{ }^{(*)} B_{s}{ }^{(*)}+X$

Measure the fully-inclusive $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow B_{(s)}{ }^{(*)} B_{\left.(s)^{(}\right)}{ }^{*}+X$
\rightarrow Use D^{0} as proxy for a B^{0}

$$
B F\left[B^{0} \rightarrow D^{0}+X\right] \sim 67 \%
$$

\rightarrow Use $D_{s}{ }^{-}$as proxy for $B_{s}{ }^{0}$

$$
B F\left[B_{s}{ }^{0} \rightarrow D_{s}^{-}+X\right] \sim 60 \%
$$

\rightarrow Use D momentum to identify the quark-level process

$$
\begin{aligned}
& \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{b} \overline{\mathrm{~b}} \rightarrow \mathrm{D}_{(\mathrm{s})}+\mathrm{X} \\
& \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{u} \overline{\mathrm{u}}, \mathrm{~d} \overline{\mathrm{~d}^{-}, \mathrm{ss}, \mathrm{cc} \rightarrow \mathrm{D}_{(\mathrm{s})}+\mathrm{X}}
\end{aligned}
$$

\rightarrow Solve the equation system:

$$
\begin{aligned}
\sigma\left(e^{+} e^{-} \rightarrow b \bar{b} \rightarrow D_{s}^{ \pm} X\right)= & 2 \sigma\left(e^{+} e^{-} \rightarrow B_{s}^{0} \bar{B}_{s}^{0} X\right) \mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{ \pm} X\right) \\
& +2 \sigma\left(e^{+} e^{-} \rightarrow B \bar{B} X\right) \mathcal{B}\left(B \rightarrow D_{s}^{ \pm} X\right) \\
\sigma\left(e^{+} e^{-} \rightarrow b \bar{b} \rightarrow D^{0} / \bar{D}^{0} X\right)= & 2 \sigma\left(e^{+} e^{-} \rightarrow B_{s}^{0} \bar{B}_{s}^{0} X\right) \mathcal{B}\left(B_{s}^{0} \rightarrow D^{0} / \bar{D}^{0} X\right) \\
& +2 \sigma\left(e^{+} e^{-} \rightarrow B \bar{B} X\right) \mathcal{B}\left(B \rightarrow D^{0} / \bar{D}^{0} X\right)
\end{aligned}
$$

$e^{+} e^{-} \rightarrow B^{(*)} B^{(*)}+X$ and $B_{s}^{(*)} B_{s}^{(*)}+X$

Measure the fully-inclusive $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow B_{(s)}{ }^{\left({ }^{*}\right)} B_{(s)}{ }^{\left({ }^{*}\right)}+X$
\rightarrow Use D^{0} as proxy for a B^{0}
\rightarrow Use $\mathrm{D}_{\mathrm{s}}{ }^{-}$as proxy for $\mathrm{B}_{\mathrm{s}}{ }^{0}$

$e^{+} e^{-} \rightarrow B^{(*)} B^{(*)}+X$ and $B_{s}{ }^{(*)} B_{s}{ }^{(*)}+X$

Measure the fully-inclusive $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow B_{\left.(s)^{*}\right)} B_{(s)^{(*)}}+X$
\rightarrow Use D^{0} as proxy for a B^{0}
\rightarrow Use $\mathrm{D}_{\mathrm{s}}{ }^{-}$as proxy for $\mathrm{B}_{\mathrm{s}}{ }^{0}$

News: hidden flavour cross sections

$e^{+} e^{-} \rightarrow Y(n S) \pi^{+} \pi^{-}$

Discovery mode of the $Y(10750)$
\rightarrow Confirm its existence
\rightarrow Measure the di-pion spectrum
\rightarrow look for Z_{b} contributions

$e^{+} e^{-} \rightarrow Y(n S) \pi^{+} \pi^{-}$

Discovery mode of the $\mathrm{Y}(10750)$

\rightarrow Confirm its existence
$\rightarrow>8 \sigma$ combined significance ($\mathrm{B}+\mathrm{BII}$)

	$\mathcal{R}_{\sigma(1 S / 2 S)}^{\Upsilon(10753)}$	$\mathcal{R}_{\sigma(3 S / 2 S)}^{\Upsilon(10753)}$	$\mathcal{R}_{\sigma(1 S / 2 S)}^{\Upsilon(5 S)}$	$\mathcal{R}_{\sigma(3 S / 2 S)}^{\Upsilon(5 S)}$	$\mathcal{R}_{\sigma(1 S / 2 S)}^{Y(6 S)}$	$\mathcal{R}_{\sigma(3 S / 2 S)}^{\Upsilon(6 S)}$
Ratio	$0.46_{-0.12}^{+0.15}$	$0.10_{-0.04}^{+0.05}$	$0.45_{-0.04}^{+0.04}$	$0.32_{-0.03}^{+0.04}$	$0.64_{-0.13}^{+0.23}$	$0.41_{-0.12}^{+0.16}$

$$
e^{+} e^{-} \rightarrow Y(n S) \pi^{+} \pi^{-}
$$

Discovery mode of the $\mathrm{Y}(10750)$ \rightarrow Confirm its existence
\rightarrow Measure the di-pion spectrum \rightarrow No sign of f_{0} in $\pi \pi Y(1 S)$

Disagreement with all available predictions

$$
e^{+} e^{-} \rightarrow Y(n S) \pi^{+} \pi^{-}
$$

Discovery mode of the $\mathrm{Y}(10750)$ \rightarrow Confirm its existence
\rightarrow Measure the di-pion spectrum
\rightarrow No sign of f_{0} in $\pi \pi Y(1 S)$
$\rightarrow \mathrm{M}(\pi \pi)$ similar to what's seen $\mathrm{Y}(2 \mathrm{~S}) \rightarrow \pi \pi \mathrm{Y}(1 \mathrm{~S})$

Disagreement with S-D model. Compatible with $4 q$?

PRD 105, 074007 (2022)

$$
e^{+} e^{-} \rightarrow Y(n S) \pi^{+} \pi^{-}
$$

Discovery mode of the $\mathrm{Y}(10750)$ \rightarrow Confirm its existence
\rightarrow Measure the di-pion spectrum
\rightarrow look for Z_{b} contributions
\rightarrow No indication of \mathbf{Z}_{b}

Mode	$N_{Z_{b 1}}$	$N_{Z_{b 1}}^{\mathrm{UL}}$	$\sigma_{Z_{b 1}}(\mathrm{pb})$	$\sigma_{Z_{b 1}}^{\mathrm{UL}}(\mathrm{pb})$	$N_{Z_{b 2}}^{\mathrm{UL}}$	$N_{Z_{b 2}}$	$\sigma_{Z_{b 2}}(\mathrm{pb})$	$\sigma_{Z_{b 2}}^{\mathrm{UL}}(\mathrm{pb})$
10.745 GeV								
$\pi \Upsilon(1 S)$	$0.0_{-0.0}^{+1.6}$	<4.9	$0.00_{-0.00}^{+0.04}$	<0.13	-	-	-	
$\pi \Upsilon(2 S)$	$5.8_{-4.6}^{+5.9}$	<13.8	$0.06_{-0.05}^{+0.06}$	<0.14	-	-	-	
10.805 GeV								
$\pi \Upsilon(1 S)$	$2.5_{-1.6}^{+2.4}$	<5.2	$0.21_{-0.13}^{+0.20}$	<0.43	$0.0_{-0.0}^{+0.7}$	<5.8	$0.00_{-0.00}^{+0.03}$	<0.28
$\pi \Upsilon(2 S)$	$5.2_{-3.0}^{+3.8}$	<12.3	$0.15_{-0.09}^{+0.11}$	<0.35	$0.0_{-0.0}^{+0.8}$	<6.0	$0.00_{-0.00}^{+0.04}$	<0.30

$e^{+} e^{-} \rightarrow \chi_{b 1,2}(1 P) \omega$

$\mathrm{Y}(10750) \rightarrow \omega \chi_{\mathrm{b}}$ in the conventional quarkonium model (S-D mixing state) [Y.S. Li, et al., PRD 104, 034036 (2021)]

$$
\begin{aligned}
& \mathcal{B}\left[\mathrm{Y}(10753) \rightarrow \chi_{b 0} \omega\right]=(0.73-6.94) \times 10^{-3}, \\
& \mathcal{B}\left[\mathrm{Y}(10753) \rightarrow \chi_{b 1} \omega\right]=(0.25-2.16) \times 10^{-3}, \\
& \mathcal{B}\left[\mathrm{Y}(10753) \rightarrow \chi_{b 2} \omega\right]=(1.08-11.5) \times 10^{-3} . \\
& R_{12}=\frac{\mathcal{B}\left[\mathrm{Y}(10753) \rightarrow \chi_{b 1} \omega\right]}{\mathcal{B}\left[\mathrm{Y}(10753) \rightarrow \chi_{b 2} \omega\right]}=(0.18-0.22) \\
& R_{02}=\frac{\mathcal{B}\left[\mathrm{Y}(10753) \rightarrow \chi_{b 0} \omega\right]}{\mathcal{B}\left[\mathrm{Y}(10753) \rightarrow \chi_{b 2} \omega\right]}=(0.55-0.63)
\end{aligned}
$$


```
e+}\mp@subsup{e}{}{-}->\mp@subsup{\chi}{b1,2}{(1P) }
```


$$
\sigma\left[e e \rightarrow \omega \chi_{b 0}(1 P)\right]<11.3 p b @ 10.750 \mathrm{GeV}
$$

Two solutions (constr. or destr. interference):

$$
\begin{gathered}
\Gamma_{e e} \times B\left[Y(10750) \rightarrow \omega \chi_{b 1}(1 P)\right]=\begin{array}{l}
(0.63 \pm 0.39 \pm 0.20) \mathrm{eV} \\
(2.01 \pm 0.38 \pm 0.76) \mathrm{eV}
\end{array} \\
\Gamma_{e e} \times B\left[Y(10750) \rightarrow \omega \chi_{b 2}(1 P)\right]=\begin{array}{l}
(0.53 \pm 0.40 \pm 0.15) \mathrm{eV} \\
(1.32 \pm 0.44 \pm 0.53) \mathrm{eV}
\end{array}
\end{gathered}
$$

$Y(5 S) \rightarrow \omega \chi_{b j}(1 P)$ is probably just the tail of the $\mathrm{Y}(10750)$!

```
e+}\mp@subsup{e}{}{-}->\mp@subsup{\chi}{b1,2}{\prime}(1P)
```


$$
\sigma\left[e e \rightarrow \omega \chi_{b 0}(1 P)\right]<11.3 \mathrm{pb} @ 10.750 \mathrm{GeV}
$$

Two solutions (constr. or destr. interference):

$$
\begin{gathered}
\Gamma_{e e} \times B\left[Y(10750) \rightarrow \omega \chi_{b 1}(1 P)\right]=\begin{array}{l}
(0.63 \pm 0.39 \pm 0.20) \mathrm{eV} \\
(2.01 \pm 0.38 \pm 0.76) \mathrm{eV}
\end{array} \\
\Gamma_{e e} \times B\left[Y(10750) \rightarrow \omega \chi_{b 2}(1 P)\right]=\begin{array}{l}
(0.53 \pm 0.40 \pm 0.15) \mathrm{eV} \\
(1.32 \pm 0.44 \pm 0.53) \mathrm{eV}
\end{array}
\end{gathered}
$$

Prediction (S-D mix):
[PRD 104, 034036 (2021)]

Disagreement with S-D model

$e^{+} e^{-} \rightarrow \chi_{b 1,2}(1 P) \omega$

[PRL 130, 091902 (2023)]

$e^{+} e^{-} \rightarrow \eta_{b}(1 S) \omega$

[Wang, Chin. Phys. C 43, 123102 (2019)]

Mode	$\mathcal{B}(4 q)(\%)$	$\mathcal{B}(b \bar{b})(\%)$
$B \bar{B}^{*}$	$39.3_{-22.9}^{+38.7}$	21.3
$B \bar{B}^{*}$	~ 0.2	14.3
$B^{*} \bar{B}^{*}$	$52.3_{-31.7}^{+54.9}$	64.1
$B_{s} \bar{B}_{s}$	-	0.3
$\omega \eta_{b}$	$7.9_{-5.0}^{+14.0}$	-
$f_{0}(1370) \Upsilon$	$0.2_{-0.2}^{+0.6}$	-
$\omega \Upsilon$	~ 0	-

Strategy:

\rightarrow Reconstruct ω
\rightarrow Measure its recoil mass

$e^{+} e^{-} \rightarrow \eta_{b}(1 S) \omega$

Compatible with S-D mixed

No evidence of ω transition to $\eta_{\mathrm{b}}(1 \mathrm{~S})$!

Summary

We don't have yet clear indications on the nature of the $\mathrm{Y}(10750)$
\rightarrow S-D mixed state model compatible with $\omega \eta_{\mathrm{b}}(1 S)$, but not with $\omega \chi_{\mathrm{bj}_{\mathrm{j}}}(1 \mathrm{P})$
\rightarrow No enhancement of $\omega \eta_{\mathrm{b}}(1 \mathrm{~S})$ predicted by tetraquark model.
\rightarrow No indication of f_{0} in $\mathrm{M}(\pi \pi)$ in $\mathrm{Y}(10750) \rightarrow \pi \pi \mathrm{Y}(\mathrm{nS})$
\rightarrow New precise data on inclusive and exclusive $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{B}^{(*)}{ }_{(\mathrm{s})} \overline{\mathrm{B}}^{(*)}{ }_{(\mathrm{s})}$ cross sections
\rightarrow Can be used to get $\mathrm{G}\left[\mathrm{Y}(10750) \rightarrow \mathrm{B}^{(*)} \overline{\mathrm{B}}^{(*)}\right]$
\rightarrow Data are waiting to be fitted ;)

Summary

We don't have yet clear indications on the nature of the $\mathrm{Y}(10750)$
\rightarrow S-D mixed state model compatible with $\omega \eta_{\mathrm{b}}(1 S)$, but not with $\omega \chi_{\mathrm{bj}_{\mathrm{j}}}(1 \mathrm{P})$
\rightarrow No enhancement of $\omega \eta_{\mathrm{b}}(1 \mathrm{~S})$ predicted by tetraquark model.
\rightarrow No indication of f_{0} in $\mathrm{M}(\pi \pi)$ in $\mathrm{Y}(10750) \rightarrow \pi \pi \mathrm{Y}(\mathrm{nS})$
\rightarrow New precise data on inclusive and exclusive $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{B}^{(*)}{ }_{(\mathrm{s})} \overline{\mathrm{B}}^{(*)}{ }_{(\mathrm{s})}$ cross sections
\rightarrow Can be used to get $\mathrm{G}\left[\mathrm{Y}(10750) \rightarrow \mathrm{B}^{(*)} \overline{\mathrm{B}}^{(*)}\right]$
\rightarrow Data are waiting to be fitted ;)

What's next: $\pi \pi h_{b}(1 P), \eta h_{b}(1 P), \eta Y(1 D), \eta^{(')} Y(n S), Y(1 S)$ inclusive, radiative transitions...

Backup

η transitions updated

$$
\begin{aligned}
& \mathcal{B}(\Upsilon(5 S) \rightarrow \Upsilon(1 S) \eta)=(0.85 \pm 0.15 \pm 0.08) \times 10^{-3}, \\
& \mathcal{B}(\Upsilon(5 S) \rightarrow \Upsilon(2 S) \eta)=(4.13 \pm 0.41 \pm 0.37) \times 10^{-3},
\end{aligned}
$$

$$
Y(2 S) \rightarrow Y(1 S)
$$

$$
Y(3 S) \rightarrow Y(1 S)
$$

$$
Y(4 S) \rightarrow Y(1 S)
$$

$$
Y(5 S) \rightarrow Y(1 S)
$$

$$
\begin{gathered}
10^{-6} 10^{-4} 10^{-2} \\
Y(5 S) \rightarrow Y(2 S)
\end{gathered}
$$

Belle VS Belle II

Tracking and vertexing
\rightarrow More precise

Particle identification

\rightarrow Much more powerful

Calorimetry
\rightarrow Unchanged (Better reconstruction, but more backgrounds)

Super-KEKB: the nano-beam scheme

Belle II

Brute force: Increase the current (x2)
Precision: denser beams, smaller β^{*} (×20)

Super-KEKB: the nano-beam scheme

$\eta / \pi \pi$ Ratio updated

$$
\begin{aligned}
& \frac{\Gamma(\Upsilon(5 \mathrm{~S}) \rightarrow \Upsilon(2 \mathrm{~S}) \eta)}{\Gamma\left(\Upsilon(5 \mathrm{~S}) \rightarrow \Upsilon(2 \mathrm{~S}) \pi^{+} \pi^{-}\right)}=0.51 \pm 0.06 \pm 0.04 \\
& \frac{\Gamma(5 \mathrm{~S}) \rightarrow \Upsilon(1 \mathrm{~S}) \eta)}{\Gamma\left(\Upsilon(5 \mathrm{~S}) \rightarrow \Upsilon(1 \mathrm{~S}) \pi^{+} \pi^{-}\right)}=0.19 \pm 0.04 \pm 0.01
\end{aligned}
$$

$Y(5 S) \rightarrow \eta Y(1 S, 2 S)$

Results of the combined decays modes:

$$
\begin{aligned}
& \sigma_{\mathrm{B}}\left(e^{+} e^{-} \rightarrow \Upsilon(2 \mathrm{~S}) \eta\right)=2.07 \pm 0.21 \pm 0.19 \mathrm{pb}, \\
& \sigma_{\mathrm{B}}\left(e^{+} e^{-} \rightarrow \Upsilon(1 \mathrm{~S}) \eta\right)=0.42 \pm 0.08 \pm 0.04 \mathrm{pb},
\end{aligned}
$$

$Y(5 S) \rightarrow \eta^{\prime} Y(1 S)$

[Phys.Rev.D 104 (2021) 11, 112006]
Combining the two decay modes:

$$
\mathcal{B}\left(\Upsilon(5 S) \rightarrow \Upsilon(1 \mathrm{~S}) \eta^{\prime}\right)<6.9 \times 10^{-5}, C L=90 \%
$$

$Y(5 S) \rightarrow \eta^{\prime} Y(1 S)$

[Phys.Rev.D 104 (2021) 11, 112006]
Combining the two decay modes:
$\frac{\Gamma\left(\Upsilon(5 \mathrm{~S}) \rightarrow \Upsilon(1 \mathrm{~S}) \eta^{\prime}\right)}{\Gamma(\Upsilon(5 \mathrm{~S}) \rightarrow \Upsilon(1 \mathrm{~S}) \eta)}<0.09(C L=90 \%)$

$\chi_{b o}(2 P) \rightarrow \omega Y(1 S)$

Peculiar features

$\rightarrow \omega \mathrm{Y}(1 \mathrm{~S})$ threshold between $\chi_{\mathrm{b} 0}$ and $\chi_{\mathrm{b} 1}$

$\rightarrow \chi_{b 0}(2 \mathrm{P})$ decay still possible sub-threshold, like in $\mathrm{X}(3872) \rightarrow \omega \mathrm{J} / \psi$

$\chi_{b o}(2 P) \rightarrow \omega Y(1 S)$

Peculiar features

$\rightarrow \omega \mathrm{Y}(1 \mathrm{~S})$ threshold between $\chi_{\mathrm{b} 0}$ and $\chi_{\mathrm{b} 1}$
$\rightarrow \chi_{b 0}(2 \mathrm{P})$ decay still possible sub-threshold, like in $\mathrm{X}(3872) \rightarrow \omega \mathrm{J} / \psi$

Reconstruction strategy:

Mass of $\omega+\mu \mu$ pair
$\rightarrow \chi_{b}(2 \mathrm{P})$ produced by non-reconstructed radiative decay of $\mathrm{Y}(3 \mathrm{~S})$
$\chi_{b o}(2 P) \rightarrow \omega Y(1 S)$

First evidence of $\chi_{b 0} \rightarrow \omega \mathrm{Y}(1 \mathrm{~S}) \quad(3.6 \sigma) \mathrm{D}_{\mathrm{S}}^{\mathrm{s} / \mathrm{i}} \mathbf{~}$
$\mathcal{B}\left(\chi_{b 0}(2 P) \rightarrow \omega \Upsilon(1 S)\right)=\left(0.54_{-0.18}^{+0.19} \pm 0.07\right) \%$

[Phys.Rev.D 104 (2021) 11, 112006]
New analysis of η and η ' transitions from the $\mathrm{Y}(5 \mathrm{~S})$ region.
One final state, several decays: $\mu^{+} \mu^{-} \pi^{+} \pi^{-} \boldsymbol{\gamma \gamma}$

$Y(5 S) \rightarrow \eta Y(1 S, 2 S)$

[Phys.Rev.D 104 (2021) 11, 112006]
New analysis of η and η ' transitions from the $\mathrm{Y}(5 \mathrm{~S})$ region.
One final state, several decays: $\mu^{+} \mu^{-} \pi^{+} \pi^{-}$д

$Y(5 S) \rightarrow \eta Y(1 S, 2 S)$

[Phys.Rev.D 104 (2021) 11, 112006]
New analysis of η and η ' transitions from the $Y(5 S)$ region.
One final state, several decays: $\mu^{+} \mu^{-} \pi^{+} \pi^{-}$д

References

Kuang (2006): Front. Phys. China 1 (2006) 19-37
Voloshin (2007): Prog. Part. and Nuc. Phys. Vol 61, Issue 2, pp. 455-511
Simonov, Veselov (2008): Phys. Lett. B, Vol 673, Issue 3, pp. 211-215
Meng, Chao (2008): Phys. Rev. D 78, 074001
Voloshin (2011): Mod. Phys. Lett. A Vol. 26, No. 11, pp. 773-778
Voloshin (2012): Phys. Rev. D 85, 034024
Pineda, Castellà (2019): Phys. Rev. D 100, 054021

