

Measurement of time integrated raw asymmetry in

 $_{2} D^{0} \rightarrow K^{0}_{s}K^{0}_{s}$ decay at Belle II

³ Sanjeeda Bharati Das^{*a*,*} and Kavita Lalwani^{*b*} (for the Belle II collaboration)

- ⁴ ^{*a,b*} Malaviya National Institute of Technology Jaipur,
- 5 Jawahar Lal Nehru Marg, Jhalana Gram, Malviya Nagar, Jaipur, India, 302017
- 6 *E-mail:* 2018rpy9055@mnit.ac.in, kavita.phy@mnit.ac.in

 $D^0 \to K_s^0 K_s^0$ is a Singly Cabibbo Suppressed decay, which involves the interference of $c\overline{u} \to s\overline{s}$ and $c\overline{u} \to d\overline{d}$ transitions. Due to such interference, the Charge Parity asymmetry may be enhanced

⁷ to an observable level within the Standard Model. In this work, the signal yield and corresponding raw asymmetry (A_{raw}) for $D^0 \rightarrow K_s^0 K_s^0$ is estimated using the Belle II Monte Carlo samples corresponding to an integrated luminosity of 1/ab.

16th International Conference on Heavy Quarks and Leptons (HQL2023) 28 November-2 December 2023 TIFR, Mumbai, Maharashtra, India

*Speaker

[©] Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

8 1. Introduction

 $D^0 \to K_s^0 K_s^0$ is a Singly Cabibbo Suppressed (SCS) decay, which involves the interference of $c\overline{u} \to s\overline{s}$ and $c\overline{u} \to d\overline{d}$ transitions, mediated by the exchange of a *W* boson at tree level as shown in Figure 1. Due to such interference, the Charge Parity asymmetry (\mathcal{A}_{CP}) may be enhanced to an observable level within the Standard Model (SM) [1].

Figure 1: Loop level (left) and tree level (right) Feynman diagrams for $D^0 \to K_s^0 K_s^0$ decay.

The world-average determination of $\mathcal{A}_{CP}(D^0 \to K_s^0 K_s^0) = (-1.9 \pm 1.0)\%$, is limited by the 13 statistical precision [2]. The average is dominated by measurements from Belle [5] and LHCb [3]. 14 Using e^+e^- - collision data corresponding to an integrated luminosity of 921/fb, Belle measured 15 $\mathcal{A}_{CP}(D^0 \rightarrow K_s^0 K_s^0) = (-0.02 \pm 1.53 \pm 0.02 \pm 0.17)\%$, where the first uncertainty is statistical, 16 the second systematic, and the third is due to the uncertainty in the CP asymmetry of the reference 17 mode, $D^0 \to K_s^0 \pi^0$. A more precise result is obtained by LHCb measurement using pp-collision 18 data collected during Run 2 and corresponding to an integrated luminosity of 6/fb: $\mathcal{A}_{CP}(D^0 \rightarrow D^0)$ 19 $K_s^0 K_s^0 = (-3.1 \pm 1.2 \pm 0.4 \pm 0.2)\%$, where the first uncertainty is statistical, the second is systematic, 20 and the third is due to the uncertainty in the CP asymmetry of the reference channel $D^0 \to K^+ K^-$. 21 In this work, the signal yield and corresponding raw CP asymmetry (A_{raw}) for $D^0 \to K_s^0 K_s^0$ 22 is measured using Belle II Monte Carlo (MC) samples at integrated luminosity of 1 ab⁻¹. The 23 Belle II [6] is an experimental facility at SuperKEKB [7] located in Tsukuba, Japan. The final goal 24 of this analysis is to measure the \mathcal{A}_{CP} in $D^0 \to K_s^0 K_s^0$ with the combined Belle and Belle II datasets 25 where, $D^0 \rightarrow K^+ K^-$ is used as a reference mode. 26

²⁷ 2. Reconstruction of $D^0 \to K^0_s K^0_s$

Signal candidates are reconstructed using the centrally produced Belle II MC samples at 28 integrated luminosity of 1 ab⁻¹. The complete decay chain reconstructed for our analysis is $D^{*+} \rightarrow$ 29 $D^0(\to K_s^0 K_s^0) \pi_s^+$, where π_s^+ denotes the low-momentum (*soft*) pions. Each K_s^0 is reconstructed by 30 combining two oppositely charged pions. Pairs of K_s^0 candidates thus reconstructed are combined to 31 form the decay $D^0 \to K_s^0 K_s^0$. Finally, the D^0 candidates are combined with *soft* pions originating 32 from the interaction region $|d_r| < 0.5$ cm and $|d_z| < 2$ cm to form the decay $D^{*+} \rightarrow D^0 \pi_s^+$, where 33 $|d_r|$ and $|d_z|$ are respectively the longitudinal and transverse impact parameters. To suppress events 34 where the D^{*+} candidate comes from B meson decays, the momentum of the D^{*+} in the e^+e^- 35 center-of-mass system is required to be greater than than 2.5 GeV/ c^2 . The difference between the 36 reconstructed D^{*+} and D^0 masses, Δm , must not exceed 0.16 GeV/ c^2 . Charge conjugation is implied 37 throughout this document unless explicitly mentioned. 38

39 3. Main background

The major background for the decay $D^0 \to K_s^0 K_s^0$ is $D^0 \to K_s^0 \pi^+ \pi^-$. The latter has the same final state particles and also originates from a real D^0 , therefore it has the same Δm and D^0 mass distribution as of the signal. This makes it difficult to separate the signal from the background using

solely the traditionally used Δm variable.

Figure 2: Distributions of γ for signal and background components. *Non-peaking backgrounds* denotes the backgrounds that do not peak in Δm .

The flight distance of the K_s^0 with respect to the D^0 vertex is exploited to provide a better separation of the signal and peaking background components. We introduce a new variable γ , defined as the minimum of the flight-distance significance of the K_s^0 candidates. Its distribution for signal and background candidates is shown in Figure 2. No dedicated selection criteria is applied to suppress the $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ background, instead, γ is used as fitting variable, together with Δm .

49 **4. Results**

Two variables, Δm and γ are used to discriminate between the signal and the background components for the $D^0 \to K_s^0 K_s^0$ decay, and to measure its yield and A_{raw} which is defined by

$$A_{raw} = \frac{N(D^0 \to K_s^0 K_s^0) - N(\bar{D}^0 \to K_s^0 K_s^0)}{N(D^0 \to K_s^0 K_s^0) + N(\bar{D}^0 \to K_s^0 K_s^0)},\tag{1}$$

where N denotes the number of signal candidates. A simultaneous unbinned maximum likelihood 52 fit to $(\Delta m, \gamma)$ of D^0 and \overline{D}^0 candidates is performed for candidates populating the $m(K_s^0 K_s^0)$ signal 53 window: [1.85, 1.88] GeV/c². The Δm and γ projections of the fit to 1/ab equivalent Belle II Monte 54 Carlo is shown in Figure 3. The signal shape in both dimensions is modelled using a Johnson's 55 S_U [8] probability distribution function (PDF). The $D^0 \to K_s^0 \pi^+ \pi^-$ (Background) component is 56 modelled in the Δm dimension using the sum of a Gaussian and a Johnson's S_U [8] PDFs, both 57 with the same mean. In the γ dimension, it is modelled using a Johnson's S_U [8] function. Other 58 *background* components in the γ dimension is extracted from the Δm side-bands and are modelled 59 using the sum of two Johnson's S_U PDFs. In the Δm dimension, it is modelled using the function: 60

- 61 $((\Delta m \Delta m_0) + \alpha (\Delta m \Delta m_0)^{3/2})$, where Δm_0 is 0.13957039 GeV/c². All shape parameters of the fit
- are fixed to their values obtained from the separate fits to the components in simulation. The yields
- ⁶³ corresponding to the three components, the corresponding raw asymmetries and α is left free to float. Same shapes are assumed to correctly describe both the D^0 and the \overline{D}^0 samples.

Figure 3: Distributions of Δm (left) and γ (right), with fit projections overlaid. The normalized residuals (pulls) are also shown in the lower panel of each plot.

64

The measured signal yield is 5853 ± 83 and the corresponding A_{raw} is $(0.7 \pm 1.4)\%$. Our simulation result is ~10% better as compared to that expected from the same analysis performed on Belle simulated data.

68 **References**

- [1] Ulrich Nierste and Stefan Schacht, CP violation in $D^0 \rightarrow K_s^0 K_s^0$, Phys. Rev. D **92** 054036 (2015).
- [2] Workman, R. L. and others, Review of Particle Physics **2022**, 083C01 (2022).
- [3] R. Aaij et al., Measurement of CP Asymmetry in $D^0 \rightarrow K_s^0 K_s^0$ decays, Phys. Rev. D 104 L031102 (2021).
- [4] Heavy Flavor Averaging Group, Y. Amhis et al., Averages of b-hadron, c-hadron, and τ -lepton properties as of 2021.
- [5] N.Dash et al., Search for CP violation and measurement of the branching fraction in the decay $D^0 \rightarrow K_s^0 K_s^0$, Phys. Rev. Lett **119** 171801 (2017).
- ⁷⁸ [6] E Kou. et al., The Belle II Physics Book, **2019** 123C01 (2019).
- ⁷⁹ [7] Akai et al., SuperKEKB collider, Nucl. Instrum. Meth., **907**, 188-199 (2018).
- [8] N. L. Johnson, Systems of frequency curves generated by methods of translation, Biometrika
 36, 149-176 (1949).