Time-integrated WS-to-RS ratio of the $D^{0} \longrightarrow K^{+} \pi^{-} \pi^{0}$ decay at Belle II

Chanchal Sharma ${ }^{a,{ }^{*}}$ and Kavita Lalwani ${ }^{a, b}$
${ }^{a}$ Malaviya National Institute of Technology Jaipur, 302017, India
E-mail: 2018RPY9026@mnit.ac.in

In the standard model, mixing and CP violation in the charm sector are expected to be very small, and thus, they constitute a sensitive probe for potential new physics contributions.
The "wrong-sign" $D^{0} \longrightarrow K^{+} \pi^{-} \pi^{0}$ decay is one of the most promising channels at Belle II, as this can be produced through two interfering processes: a direct doubly Cabibbo-suppressed decay of the D^{0} meson, or through $D^{0}-\bar{D}^{0}$ mixing followed by a Cabibbo-favored decay of the $\overline{D^{0}}$ meson. In this work, we report the time-integrated WS-to-RS ratio of the "wrong-sign" $D^{0} \longrightarrow K^{+} \pi^{-} \pi^{0}$ decay in the simulation of the integrated luminosity of $1 a b^{-1}$ at Belle II. The Belle II is the upgraded experimental facility at SuperKEKB, KEK, Japan. This study will be used to measure the mixing and CP Violation of the "wrong-sign" $D^{0} \longrightarrow K^{+} \pi^{-} \pi^{0}$ decay.

[^0]
Introduction

As the standard model predicts extremely minimal mixing and CP violation in the charm sector, thus they represent a sensitive probe for new possible physics contributions [1]. The "Wrong-Sign" (WS) decay $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ is one of the most promising channels at Belle II [2]. This decay can be produced by two interfering processes: either by $D^{0}-\bar{D}^{0}$ mixing followed by a Cabibbo-favored decay of the D^{0} meson or through direct doubly Cabibbo-suppressed decay of the $\overline{D^{0}}$ meson. One of the greatest channels to examine charm mixing and look for the CP violation in $D^{0}-\bar{D}^{-}$oscillations is the WS $D^{*+} \rightarrow D^{0}\left(\rightarrow K^{+} \pi^{-} \pi^{0}\right) \pi^{+}$decay. Separating these two processes and measuring the mixing is made possible by measuring the time-dependent decay rate of wrong-sign decays.

This analysis aims to determine the time-integrated WS-to-RS ratio of the "wrong-sign" $D^{0} \rightarrow$ $K^{+} \pi^{-} \pi^{0}$ decay in the Belle II simulation at an integrated luminosity of $1 a b^{-1}$. The Belle II [2] is an improved experimental facility at SuperKEKB [3], KEK Japan.

Dataset and Selection Criteria

The WS signal decay $D^{*+} \rightarrow D^{0}\left(\rightarrow K^{+} \pi^{-} \pi^{0}\right) \pi^{+}$are reconstructed alongside with the corresponding "Right-Sign" (RS) decay $D^{*+} \rightarrow D^{0}\left(\rightarrow K^{-} \pi^{+} \pi^{0}\right) \pi^{+}$, which is used as control channel in the simulation at the integrated luminosity of $1 \mathrm{ab}^{-1}$ at Belle II. The same criteria used to reconstruct the WS decays are also used for the RS decays. The candidates $D^{0} \rightarrow K^{ \pm} \pi^{\mp} \pi^{0}$ are reconstructed from charged kaon, and pion having at least one hit in Silicon Vertex Detector (SVD) [2] and 20 hits in Central Drift Chamber (CDC) [2], combined with $\pi^{0} \rightarrow \gamma \gamma$. Photon candidates consist of energy clusters from at least 2 ECL crystals (i.e, number of cluster hits >1.5) that have a polar angle in the range $\left[17^{\circ}, 150^{\circ}\right]$ (to ensure they are not matched to any CDC track), and energy larger than $80 \mathrm{MeV}, 30 \mathrm{MeV}$, and 60 Mev if reconstructed in the regions 1 (forward), 2 (barrel) and 3 (backward) of the ECL, respectively. The two photons must have a difference in azimuthal angle of $|\Delta \phi|<1.5$ and a 3D opening angle smaller than 1.4. The diphoton mass is requested to be in the range $[0.12,0.145] \mathrm{GeV} / \mathrm{c}^{2}$. The D^{0} is thus reconstructed by combining with low momentum pions, which has at least one hit in CDC to form $D^{*+} \rightarrow D^{0} \pi^{+}$decay. The "swapped" D^{0} mass, computed by inverting the mass hypothesis on the charged D^{0} decay products, is requested to be smaller than $1.81 \mathrm{GeV} / \mathrm{c}^{2}$ or larger than $1.9 \mathrm{GeV} / \mathrm{c}^{2}$. Such a requirement is estimated to reduce the fraction of doubly misidentified decays in simulation. The criteria on the center of mass momentum of D^{*+} is applied to be greater than $2.5 \mathrm{GeV} / \mathrm{c}$ to remove the background contribution coming from D^{0} meson from B decays.

Efficiency Variation

Due to the different amplitude models for RS and WS samples, the reconstruction efficiency over the Dalitz plot [6] is required. Using a sample of 60×10^{-3} truth-matched RS signal decays generated with a phase-space model, which comprises both D^{*+} and D^{*-} mesons in the generation, we determine the variation of $\epsilon_{K \pi \pi^{0}}$ as a function of the three-body phase-space. The phase space of a three-body decay, in which initial and final-state particles all have spin zero, can be parametrized as a function of two independent kinematic variables. We choose the invariant mass, $m\left(\pi, \pi^{0}\right)$, and the
cosine of the helicity angle, $\cos \theta\left(\pi, \pi^{0}\right)$ of the π system 1 such that the kinematically allowed domain has a rectangular shape. We evaluate the efficiency for reconstructing and selecting RS decays over this rectangular domain using a grid of equally sized 100×100 bins. The resulting efficiency map, shown in figure 1, is used to correct the simulated WS and RS decays on a per-candidate basis.

Figure 1: Efficiency across the Dalitz plot evaluated as a function of $\mathrm{m}\left(\pi, \pi^{0}\right)$ invariant mass and helicity angle $\cos \theta\left(\pi, \pi^{0}\right)$.

Results

The background components are identified for $D^{0} \rightarrow K^{ \pm} \pi^{\mp} \pi^{0}$ candidates, and a two-dimensional binned fit $\left(m\left(D^{0}\right), m\left(D^{0} \pi^{+}\right)\right)$is performed to determine the signal yield, where $m\left(D^{0} \pi^{+}\right)$is the mass of the D^{*} but with no mass hypothesis on the D^{0} daughters [4]. The Probability Density Function (PDF) for signal component corresponding to $m\left(D^{0}\right)$ and $m\left(D^{0} \pi^{+}\right)$are Double Gaussian and Johnson [5], fixed to that of the RS signal. The random-pion (background) shape due to correctly reconstructed D^{0} candidates combined with unrelated $\pi_{s}, m\left(D^{0} \pi^{+}\right)$parametrization by $\left[m-m_{0}\right]^{1 / 2}+\alpha\left[m-m_{0}\right]^{3 / 2}$ and $m\left(D^{0}\right)$ is the same as that of the signal. A background component due to $D^{*+} \rightarrow D^{0}\left(\rightarrow \pi^{-} \pi^{+} \pi^{0}\right) \pi^{+}$decays in which the positively charged pion is misidentified as a kaon, $m\left(D^{0}\right)$ PDF parametrized as a double Gaussian function and $m\left(D^{0} \pi^{+}\right)$is the same as that of the signal. For partially reconstructed $D^{*+} \rightarrow D^{0}\left(\rightarrow h^{+} h^{\prime-} \pi^{0} X\right) \pi^{+}$and combinatorial background components, $m\left(D^{0}\right)$ shape is parametrized using a first-order Chebyshev polynomial. The $m\left(D^{0} \pi^{+}\right)$shape modelled using a Johnson's S_{U} function, for the peaking component due to partially reconstructed decays, and as random pion background, for the combinatorial component. The parameters of the Johnson's S_{U} function are determined from fits to the data candidates populating the $m\left(D^{0}\right)$ sideband region $[1.8,1.82] \cup[1.9,1.93] \mathrm{GeV} / \mathrm{c}^{2}$.

All fit parameters are fixed to the values obtained from separate fits to all signal and background components. The efficiency corrected fit results of $m\left(D^{0}\right)$ and $m\left(D^{0} \pi^{+}\right)$distribution for WS sample are reported in figure 2.

[^1]

Figure 2: Distribution of $m\left(D^{0}\right)$ (left) and $m\left(D^{0} \pi^{+}\right)$(right) for WS $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ candidates reconstructed in simulation, with fit projections overlaid.

We have rediscovered the wrong-sign $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ decay in simulation. The observed yield of WS and RS Sample are $\mathrm{N}\left(D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}\right)=14322 \pm 262$ and $\mathrm{N}\left(D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}\right)=$ 6713521 ± 4030, where the uncertainties are only statistical. The ratios of WS to RS yields are measured to be,

$$
\begin{equation*}
\frac{N\left(D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}\right)}{N\left(D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}\right)}=(2.13 \pm 0.04) \times 10^{-3} \tag{1}
\end{equation*}
$$

The results are in agreement with the value of ratio used in generation, 2.12×10^{-3}.

References

[1] R.L. Workman et al., Review of particle physics, Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
[2] Altmannshofer, W. et al., Belle II collaboration, The Belle II Physics Book, BELLE2-PUB-PH-2018-001.
[3] Akai et al., SuperKEKB collider, Nucl. Instrum. Meth., 907, 188-199 (2018).
[4] Di Canto, Angelo, Measurement of CP Violating Asymmetries in $D^{0} \longrightarrow \pi^{+} \pi^{-}$and $D^{0} \rightarrow$ $K^{+} K^{-}$Decays at CDF, 10.2172/1248346, (2012).
[5] Johnson, N. L., Systems of frequency curves generated by methods of translation, Biometrika 36, 149-176 (1949).
[6] R. H. Dalitz, "On the analysis of τ-meson data and the nature of the τ-meson" Phil. Mag. 44, 1068 (1953).

[^0]: *Speaker

[^1]: ${ }^{1}$ The π helicity angle is defined as the angle between the neutral-pion and the kaon momenta in the rest frame of the π system.

