The tau lepton mass measured at Belle II

Radek Žlebčík (on behalf of the Belle II Collaboration)

Dec 4, 2023 Louisville

Belle II, Phys.Rev.D 108 (2023) 3

Particle Zoo

 m_e

 m_{μ}

 m_{τ}

=

=

=

Masses of leptons

 $(105.6583755 \pm 0.0000023) \text{ MeV}$

 $(1776.86 \pm 0.12) \text{ MeV}$

PDG 2022

Standard Model of Elementary Particles and Gravity

page 2

$m_{ m e}=rac{2R_{\infty}h}{clpha^2}$ 1.777 GeV/c² 105.7 MeV/c² -1 0.511 MeV/c² 1/2 ⁻¹ ^{1/2} **e** 1/2 tau muon electron 0.3 x 10⁻⁹ 22 x 10⁻⁹ 68000 x 10⁻⁹ 36 x 10⁻⁹ $\frac{\Delta m_{\tau}}{2} = 6.8 \times 10^{-5}$ $m_{ au}$

Relative precision of masses

Needed precision

300 USD

Lepton flavor universality & tau lepton mass

Is the fraction of tau decays to electron consistent with SM?

Lepton flavor universality & tau lepton mass

Tau lepton mass is exciting on its own!

Previous measurements

Methods

Give me a scale!

τ factories

Source	$\Delta m_{\tau} ~({\rm MeV}/c^2)$
Theoretical accuracy	0.010
Energy scale	$+0.022 \\ -0.086$
Energy spread	0.016
Luminosity	0.006
Cut on number of good photons	0.002
Cuts on PTEM and acoplanarity angle	0.05
mis-ID efficiency	0.048
Background shape	0.04
Fitted efficiency parameter	+0.038
Total	+0.094 -0.124

BES III Phys.Rev.D 90 (2014)

Systematic uncertainties of the tau mass

B factories

Source	Uncertainty (MeV)
Momentum Reconstruction	0.39
CM Energy	0.09
MC Modeling	0.05
MC Statistics	0.05
Fit Range	0.05
Parameterization	0.03
Total	0.41

BaBar Phys.Rev.D 80 (2009)

Source of systematics	σ , MeV/ c^2
Beam energy and tracking system	0.26
Edge parameterization	0.18
Limited MC statistics	0.14
Fit range	0.04
Momentum resolution	0.02
Model of $\tau \rightarrow 3\pi \nu_{\tau}$	0.02
Background	0.01
Total	0.35

Belle Phys.Rev.Lett. 99 (2007)

BES III method

BESIII (τ factory)

Source	$\Delta m_{\tau} \; ({\rm MeV}/c^2)$
Theoretical accuracy	0.010
Energy scale	$+0.022 \\ -0.086$
Energy spread	0.016
Luminosity	0.006
Cut on number of good photons	0.002
Cuts on PTEM and acoplanarity angle	0.05
mis-ID efficiency	0.048
Background shape	0.04
Fitted efficiency parameter	+0.038 -0.034
Total	+0.094 -0.124

BES III Phys.Rev.D 90 (2014)

Compton-scattering of laser light used to measure beam energies.

Challenges for B factories

BaBar (B factory)

Source	Uncertainty (MeV)
Momentum Reconstruction	0.39
CM Energy	0.09
MC Modeling	0.05
MC Statistics	0.05
Fit Range	0.05
Parameterization	0.03
Total	0.41

BaBar Phys.Rev.D 80 (2009)

B factories : $E_{cms} = 10.58 \text{ GeV}$

The pseudomass method

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s/2} - E_{3\pi}^*)(E_{3\pi}^* - P_{3\pi}^*)} \le m_{\tau}$$

Belle II

- Belle II at asymmetric-energy SuperKEKB e+e- collider
- B & charm & tau factory $\sigma_{bb} \sim \sigma_{cc} \sim \sigma_{ au au} \sim 1 \; {\rm nb}$
- Clean environment of ee collisions:
 - \rightarrow Efficient reconstruction neutrals
 - \rightarrow Missing energy
 - \rightarrow Interaction vertex

TAU2023 | 4 December 2023 | Radek Žlebčík

- Belle II tracking resolution superior to its predecessor

 → Sharper step in M_{min}
- Data taking is getting restarted (LS1 July 2022 - January 2024)
- Accumulated 424 fb⁻¹ (190 fb⁻¹ used in the tau-mass analysis)

The z-axis of the coordinate system points towards electron momentum

Unprecedented luminosity,

VI SE wavelength-shifting fiber

Final-state momentum scale

- Calibration of track momenta using $D^{0} \rightarrow K\pi$ as standard candle
- Momentum SFs are derived by comparing D⁰ peak position with PDG value
 → SFs function of charge & cos θ
- Benefiting from better tracking performance compared to Belle/BaBar
- Systematic uncertainties:
 - \rightarrow m(D⁰) PDG uncertainties
 - \rightarrow peak position modeling
 - → detector misalignment

Tau mass unc. from momentum-scale 0.39 MeV (BaBar) → 0.06 MeV (Belle II)

$$M_{\rm min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s/2} - E_{3\pi}^*)(E_{3\pi}^* - P_{3\pi}^*)}$$

$$m_{\tau}^2 = (p_{3\pi} + p_{\nu})^2$$

Calibration of the collision energy

2000

3000

Beam Energy [MeV]

4000

n

1000

5000

Y4S resonance

- The energy of the colliding particles has not a "sharp" value but varies from collision to collision
 - \rightarrow There is a spread of CMS energy
- The ee → BB cross section is not flat in energy but we run at Y4S resonance
 - → B mesons have tendency to have energy closer to the Y4S mass, i.e. $\langle E_B^* \rangle \neq \langle E_{\rm cm} \rangle/2$
- To correct for this effect, the Y4S resonance shape has to be known
 - → Using data from BaBar 2009 Y4S resonance scan

$$R_b = N(B\bar{B})/N(\mu^+\mu^-)$$

Time dependence of collision energy

Belle II results

Source	$\frac{\text{Uncertainty}}{[\text{ MeV}/c^2]}$
Knowledge of the colliding beams:	
Beam energy correction	0.07
Boost vector	≤ 0.01
Reconstruction of charged particles:	
Charged particle momentum correction	0.06
Detector misalignment	0.03
Fitting procedure:	
Estimator bias	0.03
Choice of the fit function	0.02
Mass dependence of the bias	≤ 0.01
Imperfections of the simulation:	
Detector material budget	0.03
Modeling of ISR and FSR	0.02
Momentum resolution	≤ 0.01
Neutral particle reconstruction efficiency	≤ 0.01
Tracking efficiency correction	≤ 0.01
Trigger efficiency	≤ 0.01
Background processes	≤ 0.01
Total	0.11

Belle II results

Conclusions

 $m_{\tau} = 1777.09 \pm 0.08 \pm 0.11 \,\mathrm{MeV}/c^2$

- Belle II m_{τ} determination has much higher accuracy than Belle / BaBar due to:
 - → Better detector resolution
 - \rightarrow More advanced calibration procedures
- Belle II achieved even slightly better precision than BESIII (tau-factory)
- \bullet Substantial part of the m_{τ} uncertainty comes from external inputs, e.g. Y4S resonance shape & B mass