

Searches for lepton flavor violation in meson decays at Belle

Belle Experiment

Belle accumulated $\sim 1 \text{ ab}^{-1}$ of data.

Search for CLFV at Belle 2

Search for LFV at Belle

- Considering the observation of neutrino oscillations, charged lepton flavor violation (LFV) is allowed, but at an exceedingly small rate: BR($\tau^{\pm} \rightarrow \mu^{\pm} \gamma$)~10⁻⁵⁴ in the Standard Model (SM).
- LFV can be studied by precisely measuring the beyond SM parameters involving LFV phenomena.
- Low background and full event reconstructions make Belle an ideal place to search for LFV.

Resonance	Energy (GeV)			Luminosity (fb^{-1})
	HER	LER	\sqrt{s}	
$\Upsilon(1S)$	7.1511	3.1286	9.4603	6
$\Upsilon(2S)$	7.5750	3.3141	10.023	25
$\Upsilon(3S)$	7.8262	3.4240	10.355	3
$\Upsilon(4S)$	7.9988	3.4995	10.579	711
$\Upsilon(5S)$	8.2150	3.5941	10.860	121

- Search for $B^0_{s} \rightarrow \ell^{\pm} \tau^{\mp}$ ($\ell = e, \mu$) with the semi-leptonic tagging method JHEP 08 2023, 178 (2023)
- Search for the lepton flavor violating decays $B^+ \rightarrow K^+ \tau^{\pm} \ell^{\mp}$ at Belle PRL 130, 261802 (2023)

Search for lepton flavor violating decays of *Y*(1*S*) JHEP 05 2022, 095 (2022)

Search for
$$B^0_{s} \rightarrow \ell^{\pm} \tau^{\mp}$$

- Beyond SM models containing Z' and leptoquarks predict the enhancements in the decay rate of $B^0_{s} \rightarrow \ell^{\pm} \tau^{\mp}$.
- The branching fraction of $B_{s}^{0} \rightarrow \ell^{\pm} \tau^{\mp}$ can be as large as 10⁻⁵. Mod. Phys. Lett. A 33 (2018) 1850019
- Previous bound by LHCb: $\mathcal{B}(B^0_s \to \mu^\pm \tau^\mp) < 3.4 \times 10^{-5} \text{ PRL 123 (2019) 211801}$
- There is no available bound on $B^0_{s} \rightarrow e^{\pm} \tau^{\mp}$ decay.

Search for
$$B^0_{s} \rightarrow \ell^{\pm} \tau^{\mp}$$

 $D_s^+ \to \phi \pi^+, \bar{K}^{*0} K^+, \phi \rho^0 \pi^+, K_S^0 K^+, \phi \rho^+$

We extract signal yield from momentum of primary lepton in c.m. frame
$$(p_1^*)$$
.

We provide the first result on $B_{s}^{0} \rightarrow e^{\pm} \tau^{\mp}$ decays.

JHEP 08 2023, 178 (2023)

Search for $B^0 \rightarrow \ell^{\pm} \tau^{\mp}$

Search for CLFV at Belle 7

Search for $B^+ \rightarrow K^+ \tau^{\pm} \ell^{\mp}$

- Models with vector leptoquark (U_1) provide interesting lower bounds on $b \rightarrow s \tau \mu$ transition. $\mathcal{B}(B \rightarrow K \tau \mu) > 0.7 \times 10^{-7}$ PRD 104, 055017 (2021)
- Tag side *B* meson is fully reconstructed in the hadronic decay modes.
- Signal yield is extracted by fitting the recoil mass of the system containing K⁺ and the primary lepton.
- Signal modes are categorized into two categories: $OS_{\mu/e} \Rightarrow \mu/e$ and signal *B* have opposite charge $SS_{\mu/e} \Rightarrow \mu/e$ and signal *B* have the same charge

 $711 \text{fb}^{-1} \Upsilon(4S)$ sample

 $X \Rightarrow e, \mu, \pi$

Search for $B^+ \rightarrow K^+ \tau^{\pm} \ell^{\mp}$

• Two BDT classifiers have been trained to suppress $b\overline{b}$ backgrounds and $q\overline{q}$ backgrounds.

Search for $B^+ \to K^+ \tau^{\pm} \ell^{\mp}$

Search for $B^+ \rightarrow K^+ \tau^{\pm} \ell^{\mp}$

	Upper limit at 90% CL					
Experiment	$\mathcal{B}(B^+ \rightarrow K^+ \tau^+ \mu^-)$ x10 ⁻⁵	$\mathcal{B}(B^+ \rightarrow K^+ \tau^- \mu^+)$ x10 ⁻⁵	$\mathcal{B}(B^+ \rightarrow K^+ \tau^+ e^-)$ x10 ⁻⁵	$\mathcal{B}(B^+ \to K^+ \tau^- e^+)$ x10 ⁻⁵		
BaBar	<2.8	<4.5	<1.5	<4.3		
PRD 86, 012004 (2012)						
LHCb JHEP 06 (2020) 129	<3.9	-	-	-		
Belle PRL 130, 261802 (2023)	<0.6	<2.5	<1.5	<1.5		

Our results are most stringent results to date.

Search for $\Upsilon(1S) \rightarrow \ell_1^{\pm} \ell_2^{\mp} / \gamma \ell_1^{\pm} \ell_2^{\mp}$

- Obtained results on $\Upsilon(1S) \rightarrow \ell_1^{\pm} \ell_2^{\mp}$ decays put constraints on LFV via vector, dielectric, and tensor operators. PRD 94, 074023 (2016)
- Three-body $\Upsilon(1S) \rightarrow \gamma \ell_1^{\pm} \ell_2^{\mp}$ decays prove the LFV operators which are inaccessible in two-body decays. PRD 94, 074023 (2016)
- To avoid the QED backgrounds, we use $\gamma(1S)$ states with di-pion tagging.
- We extract the signal for $\Upsilon(1S) \rightarrow e^{\pm} \mu^{\mp}$ and $\Upsilon(1S) \rightarrow \ell^{\pm} \tau^{\mp}$ decays by fitting $\Delta M = M_{\pi\pi e\mu} - M_{e\mu}$ and $M_{recoil}(\pi \pi \ell)$, respectively.

 $25 \text{fb}^{-1} \Upsilon(2S)$ sample

 $\ell_1, \ell_2 \Rightarrow$ combinations of *e*, μ, τ

Search for $\Upsilon(1S) \rightarrow \ell_1^{\pm} \ell_2^{\mp}$

Our results are most stringent results to date.

JHEP 05 2022, 095 (2022)

Search for CLFV at Belle 13

Search for $\Upsilon(1S) \rightarrow \gamma \ell_1^{\pm} \ell_2^{\mp}$

We have searched for the first time.

JHEP 05 2022, 095 (2022)

Search for CLFV at Belle 14

- $B^0_{s} \rightarrow \ell^{\pm} \tau^{\mp}$ search: we reconstruct the tag side using semi-leptonic decays, and we provide the first result on $B^0_{s} \rightarrow e^{\pm} \tau^{\mp}$ decays.
- $B^+ \to K^+ \tau^{\pm} \ell^{\mp}$ search: we use hadronic tagging method, and obtained results are most stringent to date. For $B^+ \to K^+ \tau^+ \mu^-$ decay, the obtained UL is one order of magnitude less than the corresponding previous result.
- $\Upsilon(1S) \rightarrow \ell_1^{\pm} \ell_2^{\mp} / \gamma \ell_1^{\pm} \ell_2^{\mp}$ search: we use di-pion tagging with $\Upsilon(2S)$ data sample. All results are most stringent to date.

Thanks for your attention