LFV τ searches at the Belle and Belle II experiments

- Alberto Martini DESY (Deutsches Elektronen-Synchrotron)
 - on behalf of the Belle & Belle II collaborations
 - Tau2023 conference 5 December 2023

τ LFV searches at B-factories

Lepton Flavor Violation (LFV) is allowed in various extensions of the Standard Model (SM) but it has never been observed

τ LFV channels

Good determination of τ mass and energy + few SM background sources

Tough determination of τ mass and energy + irreducible SM backgrounds

τ LFV channels

Good determination of τ mass and energy + few SM background sources Golden channel: $\tau \rightarrow \mu \mu \mu$ experimentally the most accessible

ref: https://arxiv.org/ pdf/1808.10567.pdf

Tough determination of τ mass and energy + irreducible SM backgrounds Golden channel: $\tau \rightarrow \mu \gamma$ Largest BF in models where a one-loop diagram is involved

An observation would be a clear signature of NP!

$$\begin{array}{c|c|c} B(\tau \rightarrow \mu \gamma) & B(\tau \rightarrow \mu \mu \mu) \\ \hline 10^{-49} \sim 10^{-52} & 10^{-53} \sim 10^{-56} \\ 10^{-9} & 10^{-10} \\ 10^{-9} & 10^{-8} \\ 10^{-8} & 10^{-10} \\ 10^{-7} & 10^{-9} \\ 10^{-10} & 10^{-7} \end{array}$$

τ LFV channels

Good determination of τ mass and energy + few SM background sources Golden channel: $\tau \rightarrow \mu \mu \mu$ experimentally the most accessible

ref: https://arxiv.org/ pdf/1808.10567.pdf

Tough determination of τ mass and energy + irreducible SM backgrounds Golden channel: $\tau \rightarrow \mu \gamma$ Largest BF in models where a one-loop diagram is involved

An observation would be a clear signature of NP!

$$\begin{array}{c|c|c} B(\tau \rightarrow \mu \gamma) & B(\tau \rightarrow \mu \mu \mu) \\ \hline 10^{-49} \sim 10^{-52} & 10^{-53} \sim 10^{-56} \\ 10^{-9} & 10^{-10} \\ 10^{-9} & 10^{-8} \\ 10^{-8} & 10^{-10} \\ 10^{-7} & 10^{-9} \\ 10^{-10} & 10^{-7} \end{array}$$

Introduction to the B-factories: Belle & Belle II

The Belle experiment (1999 - 2010) and the Belle II experiment (2018 -) operate at B-factories KEKB and SuperKEKB \rightarrow collisions of e⁺ e⁻ at Y(4S) resonance: 10.58 GeV

One of the golden channels for this model

17th International Workshop on τ Lepton Physics: τ 2023 - Alberto Martini for Belle II - 5 December 2023, Louisville Kentucky USA

Analysis motivations: $\tau \rightarrow IV^{0}$

Nice interplay between B and τ physics!

Analysis steps for $\tau \rightarrow V^0$ @Belle

Analysis steps:

- Prepare BDT classifier for each LFV mode \bullet
 - modes; event shape and kinematics

 Event selection and background suppression via BDT - For all modes: V⁰ mass; event tag side & decay

• Additional for the l ω modes: momentum of π^0 from

 ω and lower energy of the two photons from π^0

Dominant syst. from tracking efficiency and particle identification Negligible impact on the limit

No significant excess found \rightarrow set ULs at 90% CL by counting approach

Mode	arepsilon~(%)	$N_{ m BG}$	$\sigma_{ m syst}~(\%)$	$N_{ m obs}$	$\mathcal{B}_{\rm obs} \ (\times 10^{-5})$	-8)
$\tau^{\pm} \to \mu^{\pm} \rho^0$	7.78	$0.95 \pm 0.20 (stat.) \pm 0.15 (syst.)$	4.6	0	< 1.7	
$\tau^\pm \to e^\pm \rho^0$	8.49	$0.80 \pm 0.27 (stat.) \pm 0.04 (syst.)$	4.4	1	< 2.2	
$\tau^{\pm} ightarrow \mu^{\pm} \phi$	5.59	$0.47 \pm 0.15 (stat.) \pm 0.05 (syst.)$	4.8	0	< 2.3	•
$\tau^{\pm} ightarrow e^{\pm} \phi$	6.45	$0.38 \pm 0.21 (stat.) \pm 0.00 (syst.)$	4.5	0	< 2.0	•
$\tau^\pm \to \mu^\pm \omega$	3.27	$0.32 \pm 0.23 (stat.) \pm 0.19 (syst.)$	4.8	0	< 3.9	•
$\tau^{\pm} \rightarrow e^{\pm} \omega$	5.41	$0.74 \pm 0.43 (stat.) \pm 0.06 (syst.)$	4.5	0	< 2.4	•
$ au^{\pm} ightarrow \mu^{\pm} K^{*0}$	4.52	$0.84 \pm 0.25 (stat.) \pm 0.31 (syst.)$	4.3	0	< 2.9	
$\tau^{\pm} \rightarrow e^{\pm} K^{*0}$	6.94	$0.54 \pm 0.21 (stat.) \pm 0.16 (syst.)$	4.1	0	< 1.9	•
$ au^{\pm} ightarrow \mu^{\pm} \overline{K}^{*0}$	4.58	$0.58 \pm 0.17 (stat.) \pm 0.12 (syst.)$	4.3	1	< 4.3	•
$\tau^{\pm} \to e^{\pm} \overline{K}{}^{*0}$	7.45	$0.25 \pm 0.11 (stat.) \pm 0.02 (syst.)$	4.1	0	< 1.7	•
$\begin{split} B(\tau \to eV^0) &< (1.7 - 2.4) \times 10^{-8} \\ B(\tau \to \mu V^0) &< (1.7 - 4.3) \times 10^{-8} \end{split}$					World best results! ~30% improvement wrt provement wrt provement wrt provement wrt provement 54	
					ref:	https://arxiv.org/pdf/0801.2475

Analysis results for $\tau \rightarrow |V^0 @Belle$

Analysis steps for $\tau \rightarrow |\phi|$ @Belle II

Analysis steps for $\tau \rightarrow |\phi|$ @Belle II

Analysis steps for $\tau \rightarrow |\phi|$ @Belle II

Results for $\tau \rightarrow |\phi|$ @Belle II

Best upper limits on $\tau \rightarrow 3\mu$ from Belle: 2.1 x 10⁻⁸ @90% CL with 782 fb⁻¹ but Belle II is already competitive with 424 fb⁻¹

Fully reconstucted decay of the signal tau

- No backgrounds from SM processes
- Tight signal region \rightarrow large background reduction

Analysis of $\tau \rightarrow 3\mu$ @Belle II

023 - Alberto Martini for Belle II - 5 December 2023, Louisville Kentucky USA

Analysis of $\tau \rightarrow 3\mu$ @Belle II

Best upper limits on $\tau \rightarrow 3\mu$ from Belle: 2.1 x 10⁻⁸ @90% CL with 782 fb⁻¹ but Belle II is already competitive with 424 fb⁻¹

Fully reconstucted decay of the signal tau

- No backgrounds from SM processes
- •Tight signal region \rightarrow large background reduction

023 - Alberto Martini for Belle II - 5 December 2023, Louisville Kentucky USA

Results for $\tau \rightarrow 3\mu$ @Belle II: inclusive approach

Analysis selection and results: inclusive approach

<u>GBoost BDT trained on 32 variables:</u>

• Inputs from: signal τ ; event tag side; event shape and kinematics

 ε_{sig} = 20.42 ± 0.06% ~3x larger than Belle & Expected BKG: $0.5^{+1.4}_{-0.5}$ events

Results for $\tau \rightarrow 3\mu$ @Belle II: inclusive approach

Analysis selection and results: inclusive approach

GBoost BDT trained on 32 variables:

• Inputs from: signal τ ; event tag side; event shape and kinematics

 ε_{sig} = 20.42 ± 0.06% ~3x larger than Belle & Expected BKG: $0.5^{+1.4}_{-0.5}$ events

- B-factories are a perfect environment for LFV searches on τ sector
 - Belle and Belle II are also a τ -factories!

- New high profile searches:
 - $\tau \rightarrow IV^0$ @Belle & Belle II and $\tau \rightarrow 3\mu$ @Belle II
- Belle II worked hard to overcome the larger samples from Belle/BABAR to produce competitive limits
- More results to come with a larger dataset so stay tuned!

17th International Workshop on τ Lepton Physics: τ 2023 - Alberto Martini for Belle II - 5 December 2023, Louisville Kentucky USA

Summary

 $\tau \rightarrow l\alpha$ search @Belle II in Sourav Dey's talk

Emergency slides!!

17th International Workshc

Louisville Kentucky USA

Phase space for the $\tau \rightarrow 3\mu$ search

Search for LFV two-body decay $\tau \rightarrow l + \alpha$ (I = e, μ) α is an invisible gauge boson that can be predicted by

Belle II

$\tau \rightarrow l\alpha$ motivation

$\tau \rightarrow l \alpha$ analysis @Belle II

17th International Workshop on τ Lepton Physics: τ 2023 - Alberto Martini for Belle II - 5 December 2023, Louisville Kentucky USA

ARGUS analysis approach is adopted \rightarrow definition of pseudo-rest (ps) frame

-+ Data

1.2

1.2

 X_{μ}

1.4

1.6

-+ Data

1.4

 $\tau \rightarrow \mu \nu \overline{\nu}$

Other

1.6

0.8

0.8

Xe

τ→eν⊽

Other

Results for $\tau \rightarrow l \alpha @$ Belle II

95% C.L. upper limits using the CLs method \rightarrow no significant excess in 62.8 fb⁻¹ of data (2019-20)

Ref: https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.130.181803

Physics: τ analyses

