

Hot topic at Belle and Belle II: τ physics

Jim Libby on behalf of Belle and Belle II

Indian Institute of Technology Madras

Outline

- 1. Not the only hot topic
 - a trailer for other Belle and Belle II talks
- 2. Why τ physics? Why Belle and Belle II?
- 3. Recent results
 - 1. Beyond-the-standard-model physics: lepton-flavour violation
 - 2. Precision measurement: τ mass
- 4. More to come: a further trailer

1) Belle (II)@HQL

Seven other talks with physics results – hot topics for all!

- 1. Wed. 12:10: LFU tests and searches for new physics in charged current decays at Belle II Henrik Junkerkalefeld
- 2. Wed, 15:00: Recent spectroscopy results from Belle II Renu Garg
- 3. Wed. 17:20: New LFV results from e⁺e⁻ colliders Devendar Kumar
- 4. Fri. 10:10: Rare decays from Belle and Belle II Seema Choudhuri
- 5. Fri. 12:00: Time-dependent *CP* violation in *B*⁰ decay Seema Bahinipati
- 6. Sat. 09:30: Search for *B→Kvv* decay Roberta Volpe
- 7. Sat. 10.35: *CP* violation in charmless B decays Luka Santlej

1) Belle (II)@HQL

Seven other talks with physics results – hot topics for all!

- 3.
- 4.
- 5.
- But al J.30: Search for $B \rightarrow Kvv$ decay – Roberta Volpe
- 7. Sat. 10.35: CP violation in charmless B decays Luka Santlej

2) Why τ? Why Belle (II)?

https://www.quarked.org/

Tau physics motivation I

- 185 standard model decay modes studied
 - principally hadronic final states
- Unique laboratory to study weak interaction

Tau physics motivation I

- 185 standard model decay modes studied
 - principally hadronic final states
- Unique laboratory to study weak interaction
- Third-generation therefore beyond-SMsensitivity anticipated
 - Any observation of lepton-flavour violation in $\tau \rightarrow 3\mu$, $\tau \rightarrow \mu\gamma$, $\tau \rightarrow l\phi$ etc **new physics**
 - SM highly suppressed
- Connections to g-2 and lepton universality violation in b decay

e⁻,μ⁻,d,s

 $\bar{\nu}_{e}, \bar{\nu}_{\mu}, \bar{u}, \bar{u}$

7

Tau physics motivation II

• **Precision measurements** of the τ lepton can have significant impact

Tau physics motivation II

- **Precision measurements** of the τ lepton can have significant impact
- Example:
 - first row unitarity of CKM matrix 'Cabibbo angle anomaly'
 - $B(\tau \rightarrow Kv)/B(\tau \rightarrow \pi v)$ proportional to $|V_{us}/V_{ud}|^2$
 - Combine with lattice QCD information to provide additional constraint

Tau physics motivation II

- Precision measurements of the τ lepton can have significant impact
- Example:
 - first row unitarity of CKM matrix 'Cabibbo angle anomaly'
 - $B(\tau \rightarrow K\nu)/B(\tau \rightarrow \pi\nu)$ proportional to $|V_{us}/V_{ud}|^2$
 - Combine with lattice QCD information to provide additional constraint
- Additionally, lepton-flavour universality and dipole moments
- Mass and lifetime important inputs to these calculations

Why τ physics at the Y(4S)?

• The centre-of-mass energy of the B factories process $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ has comparable cross section to $e^+e^- \rightarrow q\overline{q}, q = e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ u, d, s, c a.k.a. continuum 1.15

Non Bhabha cross section in nb

Why τ physics at the Y(4S)?

- The centre-of-mass energy of the B factories process $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ has comparable cross section to $e^+e^- \rightarrow q\overline{q}, q =$ u, d, s, c a.k.a. continuum
- Similar cross section for $e^+e^- \rightarrow \tau^+\tau^-$
- 920 million tau pairs per ab⁻¹ of integrated luminosity
- A HQL-factory!

Detectors and data samples

- Belle: ~1 ab⁻¹
 - Many achievements: confirmation of KM mechanism, b→cτν, direct CPV in B decay

Detectors and data samples

- Belle: ~1 ab⁻¹
 - Many achievements: confirmation of KM mechanism, b→cτν, direct CPV in B decay
- SuperKEKB + Belle II
 - nanobeam scheme to increase instantaneous luminosity by factor 30 to collect multi-ab⁻¹ sample
 - World record 4.7×10³⁴ cm⁻²s⁻¹
 - Target 6×10³⁵ cm⁻²s⁻¹
 - So far 424 fb⁻¹

Detectors and data samples

- Belle: ~1 ab⁻¹
 - Many achievements: confirmation of KM mechanism, b→cτν, direct CPV in B decay
- SuperKEKB + Belle II
 - nanobeam scheme to increase instantaneous luminosity by factor 30 to collect multi-ab⁻¹ sample
 - World record 4.7×10³⁴ cm⁻²s⁻¹
 - Target 6×10³⁵ cm⁻²s⁻¹
 - So far 424 fb⁻¹

How to reconstruct a τ lepton at Belle (II)

- Missing energy from neutrinos does not allow full reconstruction
 - Identify using the thrust axis $\vec{n}_{\rm th}$
 - maximizes the momentum projection
 - Divide event into two hemispheres
- Signal side
 - e.g. $\tau \rightarrow v$ + hadrons
- Tag side: a standard model decay
 - single prong: $\tau \rightarrow lvv$ or $\tau \rightarrow \pi v + n\pi^0$
 - three prong decay: $\tau \rightarrow 3\pi v + n\pi^0$

16

Performance for τ lepton physics

Electron ID: efficiency and mis-ID

Performance for τ lepton physics

3.1) Lepton-flavour violating searches

LFV: $\tau \rightarrow IV^0 (V^0 = \rho, \omega, \phi, K^*)$

• Forbidden in SM but enhanced many leptoquark models, c.f., R(D(*))

- V⁰=ρ, ω, φ, Κ
- Full data set of 980 fb⁻¹
- 3 and 1 prong tag: $3\pi v$, lvv, πv +up to $2\pi^0$
- Background suppression with BDT
- JHEP **06** (2023) 118

V⁰= φ

- Data set of 190 fb⁻¹
- Inclusive tag
- Background suppression with BDT
- <u>arXiv:2305.04759</u>

High efficiency key for best sensitivity: multivariate selection and inclusive tagging

LFV: Belle $\tau \rightarrow IV^0$ (V⁰= ρ , ω , ϕ , K*) approach

- Tagged with 1-prong or 3-prong decay
- Background from $\tau \rightarrow 3\pi v$ and $ee \rightarrow qq$ suppressed with a boosted decision tree (BDT)
- Prepared separate BDT classifier for each IV⁰ mode

LFV: Belle $\tau \rightarrow IV^0$ (V⁰= ρ , ω , ϕ , K^{*}) results

No significant excess in all ℓV^0 modes

World leading results

Mode	ε (%)	$N_{ m BG}$	$\sigma_{\rm syst}$ (%)	$N_{\rm obs}$	$\mathcal{B}_{\rm obs}~(\times 10^{-8})$	
$\tau^{\pm} \to \mu^{\pm} \rho^0$	7.78	0.95 ± 0.20 (stat.) ± 0.15 (syst.)	4.6	0	< 1.7	
$\tau^{\pm} \to e^{\pm} \rho^0$	8.49	$0.80 \pm 0.27 (\text{stat.}) \pm 0.04 (\text{syst.})$	4.4	1	< 2.2	Counting method 90% confidence levels
$\tau^\pm \to \mu^\pm \phi$	5.59	0.47 ± 0.15 (stat.) ± 0.05 (syst.)	4.8	0	< 2.3 *	
$\tau^{\pm} \rightarrow e^{\pm} \phi$	6.45	0.38 ± 0.21 (stat.) ± 0.00 (syst.)	4.5	0	< 2.0 *	
$\tau^{\pm} \rightarrow \mu^{\pm} \omega$	3.27	0.32 ± 0.23 (stat.) ± 0.19 (syst.)	4.8	0	< 3.9 *	30% improvement
$\tau^{\pm} \to e^{\pm} \omega$	5.41	0.74 ± 0.43 (stat.) ± 0.06 (syst.)	4.5	0	< 2.4 *	over previous measurements
$\tau^{\pm} \to \mu^{\pm} K^{*0}$	4.52	$0.84 \pm 0.25 (stat.) \pm 0.31 (syst.)$	4.3	0	< 2.9 *	
$\tau^{\pm} \rightarrow e^{\pm} K^{*0}$	6.94	0.54 ± 0.21 (stat.) ± 0.16 (syst.)	4.1	0	< 1.9 *	
$\tau^{\pm} \to \mu^{\pm} \overline{K}{}^{*0}$	4.58	$0.58 \pm 0.17 (stat.) \pm 0.12 (syst.)$	4.3	1	< 4.3 *	
$\tau^{\pm} \to e^{\pm} \overline{K}{}^{*0}$	7.45	0.25 ± 0.11 (stat.) ± 0.02 (syst.)	4.1	0	< 1.7 *	

LFV: Belle II $\tau \rightarrow I\phi$ approach

- Untagged: train BDT inclusively to discriminate from background
 - event shape variables, signal kinematics, φ mass and rest-of-the-event, i.e., tracks and clusters not used to reconstruct signal
 - 6% efficiency twice Belle

0.50

Belle II (Preliminary)

 $\int \mathcal{L} dt = 190 \, \text{fb}^{-1}$

- CL_{s,obs}

---- CL_{s,exp}

 $\pm 2\sigma \operatorname{CL}_{s,\mathrm{exp}}$

 $\pm 1\sigma \operatorname{CL}_{s, exp}$ $\alpha = 10\%$

Obs.
$$B_{\text{UL}}(\tau \rightarrow e\phi) = 23 \times 10^{-8}$$

Exp. $B_{\text{UL}}(\tau \rightarrow e\phi) = 15 \times 10^{-8}$

Not competitive with the Belle results But first application of the inclusive tag

 $^{0.1}_{
m CI}{}^{s}_{
m CI}$

0.75

LFV: Belle II $\tau \rightarrow |\alpha$ motivation

- α is a non-detected (invisible) particle
 - e.g, an axion-like particle (ALP)
- Interesting mass range from 100 MeV-1.6 GeV not covered by other searches
- Previous limits from <u>ARGUS</u> (1995) – 10⁻² to 10⁻³ with masses from zero to 1.6 GeV
 - Only 0.5 fb⁻¹ of data

LFV: Belle II $\tau \rightarrow |\alpha|$ approach

- Using 63 fb⁻¹ of data
- Tag with $\tau \rightarrow 3\pi v$ with π^0 veto
- Background from $\tau \rightarrow Ivv$
 - Use difference in two-body (signal) and three-body kinematics (background) to isolate signal
- Workout lepton momentum in pseudo tau rest frame
 - Assume signal direction opposite 3π direction and tau energy is $\sqrt{s}/2$

LFV: Belle II $\tau \rightarrow |\alpha|$ signal extraction

- Use $x_l = 2E_l^*/m_{\tau}$ where lepton energy is in pseudo rest frame
 - signal would be monochromatic in rest frame broaden by the approximations
- Simulation derived templates fit for different α mass hypotheses

LFV: Belle II $\tau \rightarrow |\alpha|$ signal results

- 95% C.L. branching fraction limits for M_{α} from 0 to 1.6 GeV
- 2 to 14 times more stringent than ARGUS

"Ali's weight was announced as 206 pounds. He had not been so low in years: 216 pounds came through as the correction. A miscalculation of the kilos. A whistle from the press. He was four to eight pounds heavier than he said he would be, a poor prospect for his ability to dance and run", *The Fight*, Norman Mailer

3.2) Heavyweight weigh-in: τ mass measurement:

τ mass measurement

- Fundamental parameter of the standard model
 - Important input to lepton-flavour-universality tests

$$R_e = \frac{\mathcal{B}[\tau^- \to e^- \bar{\nu_e} \nu_\tau]}{\mathcal{B}[\mu^- \to e^- \bar{\nu_e} \nu_\mu]} \qquad \left(\frac{g_\tau}{g_\mu}\right)_e = \sqrt{R_e \frac{\tau_\mu}{\tau_\tau} \frac{m_\mu^3}{m_\tau^3} (1+\delta_W)(1+\delta_\gamma)} \qquad \text{(Ss are radiative corrections)}$$

τ mass measurement

- Fundamental parameter of the standard model
 - Important input to lepton-flavour-universality tests

$$R_e = \frac{\mathcal{B}[\tau^- \to e^- \bar{\nu_e} \nu_\tau]}{\mathcal{B}[\mu^- \to e^- \bar{\nu_e} \nu_\mu]} \qquad \left(\frac{g_\tau}{g_\mu}\right)_e = \sqrt{R_e \frac{\tau_\mu}{\tau_\tau} \frac{m_\mu^3}{m_\tau^3} (1+\delta_W)(1+\delta_\gamma)} \qquad \text{(Ss are radiative corrections)}$$

• We use the pseudomass variable to determine mass

$$\begin{pmatrix} \tau_{\text{tag}} & \tau_{\text{sig}} & \pi \\ \nu_{\ell} & \nu_{\tau} & \nu_{\tau} \end{pmatrix} M_{\text{min}} = \sqrt{m_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi})(E_{3\pi} - |\vec{p}_{3\pi}|)} \le m_{\tau}$$

 Fit to distribution with analytic form that accounts for ISR and resolution

- Fit to distribution with analytic form that accounts for ISR/FSR and resolution
- Knowing the scale key:
 - beam energy (from E_B*) and
 - momentum (from D mass)

τ mass measurement

World's most precise measurement to date - dominant systematics from beam energy and momentum scale

34

5) Prospects and conclusion

Belle II: after current shutdown

- We have not collected the sample size planned to date
 - Beam conditions
- Since summer 2022 shutdown for accelerator upgrades to mitigate background and increase luminosity
- Detector upgrades too
 - two-layer pixel detector installed
- Restart of SuperKEKB in January
- Path to 2 × 10³⁵ cm⁻²s⁻¹ but new final focus to go ³⁰ beyond
- Proposed upgrade from 2027
 - Wed 18:00: Belle II upgrade programme Peter Lewis

[YY/M/D]

More results coming v. soon

Scientific program:

Properties of t leptons t production at lepton and hadron colliders Precision electroweak physics CP Violation and flavor mixing Neutrino physics Lepton universality and flavor violation Decays involving τ leptons Hadronic τ decays and QCD Electric and magnetic dipole moments Future opportunities in τ physics

Conclusion

- Belle and Belle II will be leading the way in investigating properties of the tau lepton
 - Searches for beyond-the-SM physics
 - Precision measurements of tau properties and SM parameters
- A lot more to come once we enter the " 10^{35} era"
- Upgrade plans for reaching the 10s of ab⁻¹