

Status and Prospects of Belle II

Akimasa Ishikawa (KEK) on behalf of the Belle II collaboration

20231107 KEK Theory Meeting on Particle Physics Phenomenology (KEK-PH2023)

Belle II Experiment

- Here at KEK Tsukuba campus
 - SuperKEKB accelerator
 - Belle II detector

SuperKEKB Accelerator

- Highest luminosity collider
 - $L_{target} = 6 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$
 - E_{CM}=10.58GeV on Y(4S)
 - Just above the BB threshold to produce B meson pairs efficiently
 - Can go higher, Y(5S) upto 11.24GeV
 - Energy-asymmetric collisions
 - 7.0GeV (e⁻) x 4.0GeV (e⁺)
 - To boost B mesons to measure time dependent CPV
 - 50ab⁻¹ will be accumulated around 2035
 - Containing 1x10¹¹ B mesons, 1.4x10¹¹ charm hadrons, and 0.9x10¹¹ τ
 - Processes with cross sections of O(1)ab or less are reachable

Peak Luminosity [x10³⁵cm_{.2}s⁻¹]

2

2019

2024

2029

10

0

2034

Belle II Detector

- Significant detector improvements from Belle
 - Better and Larger Vertex Detector → Time dependent CPV, especially with long lived Ks.
 - − Two level trigger system → dark sector searches etc.

<u>KLong and muon detector:</u> Resistive Plate Chambers (barrel outer layers) Scintillator + WLSF + SiPM's (end-caps, inner 2 barrel layers)

EM Calorimeter: CsI(TI), waveform sampling (barrel+ endcap)

electrons (7 GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), small cells, long lever arm, fast electronics (Core element)

Particle Identification TOP detector system (barrel) Prox. focusing Aerogel RICH (fwd)

positrons (4 GeV)

Luminosity and Dataset

- June 2022 : Run1 operation stopped
 - World's highest luminosity of 4.7x10³⁴ cm⁻²s⁻¹
 - 428fb⁻¹ data were accumulated so far
 - 362fb⁻¹ on resonance, 42fb⁻¹ off-resonance, 19fb⁻¹ energy scan
 - C.f. Belle collected 1040fb⁻¹

Belle II Cons and Pros (vs. LHCb)

- Cons.
 - Statistics of b hadrons!! (cross section 1nb vs. 144µb)
 - We will only have 10^{11} B mesons with 50ab⁻¹ on Y(4S) and 5x10⁸ B_s with 5ab⁻¹ on Y(5S)
 - No large samples of b baryons and B_c
 - Production of these hadrons are not yet established at e^+e^- collisions around Y(nS).
 - Proper time resolution is worse and B meson is not so boosted.
 - Background suppression with B vertex displacement is not so easy
 - Bs mixing (Δm_s) can not be measured (while $\Delta \Gamma_s$ can be measured).

Belle II Cons and Pros (vs. LHCb)

- Pros.
 - Smaller background cross section (O(1)nb vs. O(10)mb)
 - ~3.4nb for ee \rightarrow qq, ~1.08nb for ee \rightarrow Y(4S) \rightarrow BB
 - Almost 100% trigger efficiency for BB events (11 charged + 5 photons in average).
 - Main triggers
 - 3-track || 2-track with opening angle || ECL energy sum >1GeV || ECL # of Clusters >=4
 - Absolute BF measurement possible.
 - Two level trigger system for low multiplicity events
 - Many dark sectors signature (X+missing) can be triggered
 - High hermeticity $4\pi \times 94\%$
 - High reconstruction efficiency of O(1)~O(10)%.
 - Full reconstruction of B meson possible (tagging of the other B meson)
 - More than one missing neutrino modes \rightarrow B \rightarrow D(*) $\tau\nu$, B $\rightarrow\tau\nu$, B \rightarrow K $^{(*)}\nu\nu$, B \rightarrow K $\tau\tau$, B $\rightarrow\nu\nu$
 - 4 momentum conservation usable → dark sector searches
 - Detection of electron
 - Detection efficiency of electron is almost the same as that of muon → test of LFU
 - Easy to recover bremsstrahlung photon
 - Detection of neutrals
 - reconstruction of γ , π^0 and Ks efficiently \rightarrow sum-of-exclusive method for $B \rightarrow Xsl^+l^-$, $B \rightarrow \pi^0 \pi^0$, $B_{(s)} \rightarrow \gamma \gamma$
 - Better energy resolution of hard $\gamma \rightarrow B \rightarrow K^* \gamma$ background to $B \rightarrow \rho \gamma$ can be suppressed

Rich Physics Program

• Flavor physics

- B
 - CKM Unitarity Triangle
 - Rare decays
 - Lepton Flavor Universality
 - etc
- Charm
 - CPV
 - mixing
 - Lifetime
 - etc

- τ

- Mass
- Lifetime
- CPV
- EDM
- etc

• QCD

- Bottomonia, charmonia and exotic hadrons containing heavy quark
- HVP with radiative return for muon g-2
- fragmentation
- etc
- EW
 - Weak mixing angle
 - etc
- Light new particle searches
 - Dark sector mediators
 - etc
- And more

Recent Highlights

CKM Matrix and Unitarity Triangle

- Unitarity condition of CKM Matrix
 - Product of d and b columns

$$\begin{split} V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} &= 0 \\ \frac{V_{ub}^{*}V_{ud}}{V_{cb}^{*}V_{cd}} + 1 + \frac{V_{tb}^{*}V_{td}}{V_{cb}^{*}V_{cd}} &= 0 \end{split}$$

- This draws triangle in complex plain
 - called unitarity triangle (UT)
 - − Three angles (ϕ_1 , ϕ_2 , ϕ_3) → CP violations
 - Three sides (|V_{cb}|, |V_{ub}|, |V_{td}|) →
 Amplitudes
- Test of UT is one of the most important missions at Belle II
 - All angles and sides can be measured only at Belle II

New Physics Reach with UT

• Search for new physics in B⁰ mixing

20231107

Can reach to O(1000) TeV new physics scale

New Physics Reach with UT

- Search for new physics in B⁰ mixing
 - Can reach to O(1000) TeV new physics scale
 - Improve $\varepsilon_{\rm K}$ by precise measurement of $|V_{\rm cb}|$
 - O(10⁵) TeV

20231107

UT Angle φ_1

• Time dependent CPV in $b \rightarrow c\bar{c}s$ process

$$\frac{\Gamma(\overline{B}^0 \to f_{CP}; t) - \Gamma(\overline{B}^0 \to f_{CP}; t)}{\Gamma(\overline{B}^0 \to f_{CP}; t) + \Gamma(\overline{B}^0 \to f_{CP}; t)} = S \cdot \sin(\Delta m_d \cdot t) - C \cdot \cos(\Delta m_d \cdot t)$$

$$\underline{S} = -\xi_{CP} \sin 2\phi_1$$
 , C=0

- Requires proper time difference (Δt) and flavor tagging information
 - Vertex resolution improved with pixel detector
 - flavor tagging efficiency improved by 18% with Graph Neural Net
 - (31.68 \pm 0.45 \pm 0.41) % (old)
 - \rightarrow (37.40 ± 0.43 ± 0.34) % (GNN)

Impact parameter resolution Belle and Belle II

20231107

362fb⁻¹ Measurement of $\sin 2\phi_1$ in $B \rightarrow J/\psi$ Ks

- Time dependent CPV in $B \rightarrow J/\psi$ Ks •
 - S = sin2 ϕ_1 = 0.724 ± 0.035 ± 0.014
 - $C = 0.035 \pm 0.026 \pm 0.012$
- Consistent with current World Average ۲

HFLAV: S = 0.695 + 0.019 C = 0.000 + 0.020LHCb: $S = 0.716 \pm 0.015 C = 0.012 \pm 0.012$

sin(2β	$) \equiv s$	$\sin(2\phi_1) \frac{\text{HFLAV}}{\frac{Moriond 2018}{PRELIMINARY}}$
BaBar PRD 79 (2009) 072009	•	$0.69 \pm 0.03 \pm 0.01$
BaBar χ ₂₀ K _S PRD 80 (2009) 112001	, <u> </u>	0.69 ± 0.52 ± 0.04 ± 0.07
BaBar J/ψ (hadronic) K _S PRD 69 (2004):052001		+ <u>+</u> 1,56 ± 0.42 ± 0.21
Belle PRL 108 (2012) 171802	H	$0.67 \pm 0.02 \pm 0.01$
ALEPH PLB 492, 259 (2000)		★ 0.84 ^{+0.82} ± 0.16
OPAL EPJ C5, 379 (1998)		H 3.20 ^{+1.80} ± 0.50 ± 0.50
CDF PRD 61, 072005 (2000)	-	★ 0.79 ^{+0.41}
LHCb JHEP 11 (2017) 170		н 0.76 ± 0.03
Belle5S PRL 108 (2012) 171801	*	0.57 ± 0.58 ± 0.06
Average HFLAV		0.70 ± 0.02
-2 -1	0	1 2 3

Preliminary

Preliminary

Measurement of ϕ_3

- Utilize an interference between b→c and b→u, such as B⁺→D⁰K⁺
 - The amplitude ratio is around 0.1
- D⁰ and D⁰ interfere when decaying to common final states
 - − D→K⁺K⁻, Ksπ⁺π⁻, KsK[±]π[∓]
 - Measurement of Direct CPVs and BF ratios
- LHCb gives the best ϕ_3 results with combination
 - $\phi_3 = (63.8 \pm 3.6) \text{deg}$

LHCB-CONF-2022-003

JHEP 02 (2022) 063

JHEP 03 (2023) 2308.05048

- Combining Belle and Belle II analyses
 - $\phi_3 = (78.6 \pm 7.3) \text{deg}$

B decay	D decay	Method	Data set
			$(Belle + Belle II)[fb^{-1}]$
$B^+ \to D h^+$	$D \rightarrow K_{\rm S}^0 h^- h^+$	BPGGSZ	711 + 128
$B^+ \to D h^+$	$D \to K^0_{\rm S} \pi^- \pi^+ \pi^0$	BPGGSZ	711 + 0
$B^+ \to D h^+$	$D ightarrow K_{ m S}^0 \pi^0, K^- K^+$	GLW	711 + 189
$B^+ \to D h^+$	$D\to K^+\pi^-, K^+\pi^-\pi^0$	ADS	711 + 0
$B^+ \to D h^+$	$D \rightarrow K_{ m s}^0 K^- \pi^+$	GLS	711 + 362
$B^+ \to D^*K^+$	$D \rightarrow K_s^0 \pi^- \pi^+$	BPGGSZ	605 + 0
$B^+ \to D^*K^+$	$D \to K^0_{\rm S} \pi^0, K^0_{\rm S} \phi, K^0_{\rm S} \omega,$	CIW	210 + 0
	$K^-K^+,\pi^-\pi^+$	GLW	

• With a several ab⁻¹, Belle II can give the

competitive result

$|V_{cb}|$

- Measure with semileptonic decays
 - b→clv

20231107

- Two techniques : exclusive and inclusive
 - About 3σ difference between exclusive and inclusive measurements
 - Thoery ? Experiment ? Lattice QCD?

$|V_{cb}|$ in Angular analysis of $B \rightarrow D^* |_V$

• Measure 4D differential decay rate

 $\frac{d^4\Gamma}{dwd\cos\theta_\ell d\cos\theta_V d\chi} \propto |V_{cb}|^2 A(w,\cos\theta_\ell,\cos\theta_V,\chi)$

 Using BGL and CLN parameterizations with Lattice QCD input at zero recoil w=1

 $|V_{cb}|_{BGL} = (40.57 \pm 0.31 \pm 0.95 \pm 0.58) \times 10^{-3}$ $|V_{cb}|_{CLN} = (40.13 \pm 0.27 \pm 0.93 \pm 0.58) \times 10^{-3}$

- Consistent with WA

WA values [HFLAV 2021] $|V_{cb}|_{excl} = (39.10 \pm 0.50) \times 10^{-3}$

 Slightly better agreement with inclusive measurement

Preliminary

189fb⁻¹

Lepton Flavor Universality in B Decays

Lepton Flavor Universality

• SM respects LFU

$$R(D^{(*)}) = \frac{\mathcal{B}\left(B \to D^{(*)}\tau\nu_{\tau}\right)}{\mathcal{B}\left(B \to D^{(*)}\ell\nu_{\ell}\right)}$$
$$R(X) = \frac{\mathcal{B}\left(B \to X\tau\nu_{\tau}\right)}{\mathcal{B}\left(B \to X\ell\nu_{\ell}\right)}$$

- Deviation from unity for the Ratio only comes from lepton masses
- While new physics such as leptoquark can differ the Ratio from the SM prediction
- Current WA is about 3σ to 4σ deviated from the SM predictions

Preliminary 189fb⁻¹ First Measurement of R(D*) at Belle II

- Signal side ٠
 - Three D* channels. $D^{*+} \rightarrow D^0 \pi^+ / D^+ \pi^0$. $D^{*0} \rightarrow D^0 \pi^0$
 - Two leptonic τ decays, $\tau \rightarrow evv$, $\tau \rightarrow \mu vv$
- Tag side
 - hadronic decays
- Results

 $R(D^*) = 0.267 + 0.041 - 0.039$ (stat.) + 0.028 (syst.)

Consistent with both SM and WA •

0.55

R(D)

Preliminary 189fb⁻¹

Measurement of R(X)

- First measurement of R(X) at B factory
 - Complementary to exclusive R(D^(*))

$$R(X) = \frac{\mathcal{B}(B \to X \tau \nu_{\tau})}{\mathcal{B}(B \to X \ell \nu_{\ell})}$$

- Reconstruction
 - − Signal $\tau \rightarrow e \nu \nu, \tau \rightarrow \mu \nu \nu$
 - Hadronic tagging
- Use missing mass squared and lepton momentum to isolate signal from B→Xlv background
 - Template fitting performed
- Result

$R(X)=0.228\pm0.016(stat.)\pm0.036(syst.)$

- Consistent with SM prediction
- Major systematics
 - MC statistics, PDF shape, BF of $B \rightarrow D^{**} Iv$

Rare B Decays

Time Dependent CPV in $B \rightarrow \eta' Ks$

- b→sqq process dominated by QCD penguin
- If measured S is deviated from $sin2\phi_1$, it might be a new physics signal
- Reconstruction
 - − $\eta' \rightarrow \eta(\gamma\gamma)\pi^+\pi^-$
 - − $\eta' \rightarrow \rho(\pi^+\pi^-)\gamma$
- Result

 $S = 0.67 \pm 0.10 \pm 0.04$ $C = -0.19 \pm 0.08 \pm 0.03$

HFLAV: $S = 0.63 \pm 0.06 C = -0.05 \pm 0.04$

- Consistent with $sin2\varphi_1$ and WA

Time Dependent CPV in $B \rightarrow K^* \gamma$

- Photon in b→sγ process is predominantly left-handed in SM
- New physics enchases the right-handed photons
- Time dependent CPV in $B \rightarrow K^{*0}\gamma$ is sensitive to the photon polarization
- S~ in SM while lrager value for NP

$$S^{\rm SM}_{K^*(K^0_S\pi^0)\gamma} = (-2.3\pm1.6)\%$$

- Reconstruction
 - B→(Ksπ⁰)γ
 - Vertex is determined from long lived Ks decaying to $\pi^+\pi^-$ using beam spot constraint
- Result
 - $\square S = 0.00^{+0.27}_{-0.26} \pm 0.03$
 - $\square C = 0.10 \pm 0.13 \pm 0.03$
 - HFLAV: $S = -0.16 \pm 0.22 \ C = -0.04 \pm 0.14$
 - Consistent with the SM prediction
 - Most precise to date!

20231107

New Physics

Preliminary

362fb⁻¹

$B^+ \rightarrow K^+ \nu \nu$

- FCNC process with no charm loop $\leftarrow b \rightarrow sl^+l^-$
- Precise SM prediction
 - $B(B^+ \rightarrow K^+ vv) = (5.58 \pm 0.37) \times 10^{-6} \qquad \begin{array}{c} PRD \ 107, \ 014511 \ (2023) \\ PRD \ 107, \ 119903 \ (2023) \end{array}$
- Sensitive to New physics
 - Axion, ALPs, dark scalar, Z', LQ
- Experimentally challenging
 - Only Kaon in the final state \rightarrow Huge backgrounds
 - Analysis performed with 63fb⁻¹
 - Update with 362fb⁻¹

$B^+ \rightarrow K^+ v v$ Analysis Methods

- Hadronic tagging analysis (HTA)
 - The other B meson reconstructed with hadronic decays
 - BDT to suppress backgrounds
 - Efficiency 0.4%
 - High purity S/N=7%
- Inclusive tagging analysis (ITA)
 - Highest momentum kaon candidate is selected as signal candidate.
 - Charged and neutral particles are collected as rest of events.
 - Two consecutive BDTs are used (BDT₁, BDT₂) to suppress backgrounds
 - High efficiency of 8%
 - Purity S/N=0.8%
- BDT distributions are transformed by flattening the signal component and then are fitted (with q² for ITA) to extract signal

Preliminary 362fb⁻¹

$B^+ \rightarrow K^+ \nu \nu$ Result

• First evidence for $B^+ \rightarrow K^+ \nu \nu$

HTA and ITA combined

 $\mu = 4.7 \pm 1.0(\text{stat}) \pm 0.9(\text{syst})$

 $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = [2.4 \pm 0.5(\text{stat})^{+0.5}_{-0.4}(\text{syst})] \times 10^{-5}$

- 3.6σ from null
- 2.8 σ from SM prediction
- When taking the combination, common events are removed from ITA sample (~ 2% of the total)

 $-\infty \pm 1.6$

HTA

$$\mu = 2.2 \pm 2.3(\text{stat})^{+1.0}_{-0.7}(\text{syst})$$

$$\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = [1.1^{+0.9}_{-0.8}(\text{stat})^{+0.8}_{-0.5}(\text{syst})] \times 10^{-5}$$

Candidates/0.01

 $B \rightarrow \rho \gamma$

- FCNC process with $b \rightarrow d$ transition ٠
 - Isospin violation large?

$$a_I^{\bar{0}-} = \frac{c_V^2 \,\Gamma(\bar{B}^0 \to \bar{V}^0 \gamma) - \Gamma(B^- \to V^- \gamma)}{c_V^2 \,\Gamma(\bar{B}^0 \to \bar{V}^0 \gamma) + \Gamma(B^- \to V^- \gamma)}$$

- WA
$$A_{I} = (30^{+16}_{-13})\%$$

$$\bar{a}_I^{\rm SM}(\rho\gamma) = (5.2 \pm 2.8)\,\%$$

- Analysis ۰
 - Combination of Belle (711fb⁻¹) and Belle II (362fb⁻¹)
 - $B^0 \rightarrow \rho^0 \gamma$, $B^+ \rightarrow \rho^+ \gamma$
 - Large $B \rightarrow K^* \gamma$ background is suppressed using PID and ΛE
- Results •
 - A₁ is consistent with both SM and WA
 - Most precise results to date

Belle II

Belle

$$BR(\rho^{+}\gamma) = (12.87^{+2.02+1.00}_{-1.92-1.17}) \times 10^{-7}$$

$$BR(\rho^{0}\gamma) = (7.45^{+1.33+1.00}_{-1.27-0.80}) \times 10^{-7}$$

$$A_{I} = (14.2^{+11.0+8.9}_{-11.7-9.1})\%$$

$$A_{CP} = (-8.4^{+15.2+1.3}_{+15.3-1.4})\%$$

M_{bc} (GeV/c²)

Cham, τ and Dark Sector

Charm Hadron Lifetime

- Good vertex resolution allows precise measurement of charm hadron lifetime
- Measurements of lifetime improve the understanding of QCD in charm hadron decays

$$\begin{split} \Gamma(D) &= \ \frac{1}{2m_D} \sum_X \int_{\mathrm{PS}} (2\pi)^4 \delta^{(4)}(p_D - p_X) \ |\langle X(p_X) | \mathcal{H}_{\mathrm{eff}} | D(p_D) \rangle|^2, \\ &\to \ \frac{1}{2m_D} \mathrm{Im} \langle D | \mathcal{T} | D \rangle \quad \text{where} \quad \mathcal{T} = i \int d^4x \, T \left\{ \mathcal{H}_{\mathrm{eff}}(x) \,, \mathcal{H}_{\mathrm{eff}}(0) \right\} \\ &\to \ \Gamma_3 + \Gamma_5 \frac{\langle \mathcal{O}_5 \rangle}{m_c^2} + \Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_c^3} + ... + 16\pi^2 \left(\tilde{\Gamma}_6 \frac{\langle \tilde{\mathcal{O}}_6 \rangle}{m_c^3} + \tilde{\Gamma}_7 \frac{\langle \tilde{\mathcal{O}}_7 \rangle}{m_c^4} + ... \right) \end{split}$$

- Except for Ω_c , Belle II has made the world's best precision
 - For Ω_c , Belle II confirms longer lifetime measured by LHCb

Submitted to PRI

2020

2010

vear

2000

τ mass

- Fundamental parameter of the SM
- Crucial for LFU test in τ decays
- Use pseudo-mass technique with $\tau \rightarrow 3\pi v$

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} \le m_{\tau}.$$

Result

m_{τ} = 1777.09 ±0.08 ±0.11 MeV

- Dominant uncertainties Most precise to date
 - Beam energy

$$\begin{pmatrix} g_{\mu} \\ g_{e} \end{pmatrix}_{\tau} = \sqrt{R_{\mu} \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})}},$$

$$R_{\mu} = \frac{\mathcal{B}[\tau^{-} \rightarrow \mu^{-} \bar{\nu_{\mu}} \nu_{\tau}]}{\mathcal{B}[\tau^{-} \rightarrow e^{-} \bar{\nu_{e}} \nu_{\tau}]}$$

$$f(x) = 1 - 8x + 8x^{3} - x^{4} - 12x^{2} \ln x$$

Dark Sector

- Z' in L_{μ} - L_{τ}
 - Gauging the difference of μ and τ numbers
 - Might couple to dark sector particles
 - Can explain muon g-2 anomaly
- Search for $ee \rightarrow \mu\mu Z'$ with $Z' \rightarrow \mu\mu$ and invisible decays
 - Z' $\rightarrow \mu\mu$ similar limit with Belle and Babar
 - Exclude almost all region of $M_{Z'} > 2m_{\mu}$ explaining muon g-2
 - Fully invisible Z'
 - First exclusion explaining muon g-2, $0.8 < M_{Z'} < 4.5 GeV$

Near Future Prospects

- June 2022 Jan 2024: Long Shutdown 1 for SuperKEKB and Belle II upgrades
 - New collimators to reduce beam induced backgrounds which limit beam current
 - \rightarrow can go higher luminosity
 - Two-layer pixel detector was installed
 - → better vertex resolution under higher beam induced background
 - − TOP PMT replacement \rightarrow better Kaon ID
- Jan 2024 : SuperKEKB operation resumed
 - Plan to accumulate more data than Belle in run2

Future Prospects on Physics

- Summarized in Physics Book
 - <u>https://doi.org/10.1093/ptep/ptz106</u>
- One example on UT measurements
 - Uncertainty of Sides : ~1% for $|V_{cb}|$ and $|V_{ub}|$
 - Uncertainty of Angles : 0.2deg, 0.6deg, 1.5deg for ϕ_1 , ϕ_2 and ϕ_3
 - Should consider
 - ϕ_1 : Penguin pollution
 - ϕ_2 : isospin breaking effect

See deviation?

PTEP

Prog. Theor. Exp. Phys. 2019, 123C01 (654 pages) DOI: 10.1093/ptep/ptz106

The Belle II Physics Book

E. Kou^{25,4,51}, P. Urquijo^{145,4}, W. Altmannshofe^{135,4}, F. Beaujean^{29,4}, G. Bell^{122,4}, M. Benek^{14,4}, I. Bigi^{14,4}, F. Bishara^{150,16,4}, M. Blanke^{95,16}, C. Bobeth^{113,114,4}, M. Bona^{152,4}, N. Brambilla^{14,4,4}, V. M. Braun^{50,4}, J. Bord^{12,135,4}, A. J. Buras^{155,4}, H. Y. Cheng^{45,4}, C. W. Chiang^{22,4}, M. Ciuchini^{29,4}, G. Colangelo^{12,8,4}, A. Crivellin^{102,4}, H. Czyz^{156,24}, J. Datta^{14,4,6}, F. De Fazio^{15,4}, T. Depisch^{17,4}, M. J. Dolan^{145,4}, J. Evans^{155,4}, S. Fajfer^{109,14,4}, T. Feldmann^{122,4}, S. Godfrey^{7,4}, M. Gronau^{42,4}, Y. Grossman^{15,4}, F. K. Gu^{45,13,4,6}, U. Haisch^{150,11,4}, C. Hanhart^{21,4}, S. Hashimoto^{122,4,4}, S. Hirose^{30,4}, J. Hisano^{80,90,4}, L. Hofer^{12,7,4}, M. Hoferichte^{45,4}, M. Gu^{42,5}, T. Hudr^{12,4}, T. Hurth

Summary

- Belle II at SuperKEKB has rich physics program
- With a data corresponding to a half of Belle data, world leading and unique physics results are presented
- SuperKEKB operation will resume in Jan 2024
- Belle II will collect more data than Belle in Run2
- Stay tuned

backup

Comparison of $B \rightarrow Kvv$

