Exotics Workshop, 14 Nov 2023, Nagoya

Belle and Belle II results on exotic hadrons

Roman Mizuk

IJCLab (Orsay) and Paris Saclay University

Contents

JHEP 08, 131 (2023)

Measurement of cross sections

 $e^+e^- \rightarrow \Upsilon(nS) \pi^+\pi^$ $e^+e^- \rightarrow \eta_b(1S)\omega, \chi_{b0}(1P)\omega$ preliminary $e^+e^- \rightarrow B\bar{B}, B\bar{B}^*, B^*\bar{B}^*$ using Belle II energy scan data.

Energy dependence of $\sigma(e^+e^- \rightarrow B_s \overline{B}_s X)$ at Belle.

 \Rightarrow Bottomonium-like states.

Subject appeared in 2008

• Belle: PRL 100, 112001 (2008)

$$\Gamma(\Upsilon(5S) \rightarrow \Upsilon(1S, 2S, 3S) \pi^+\pi^-) \sim 1 \, MeV$$

• BaBar: BaBar PRD 78, 112002 (2008)

$$\frac{\Gamma(\Upsilon(4S) \to \Upsilon(1S)\eta)}{\Gamma(\Upsilon(4S) \to \Upsilon(1S)\pi^{+}\pi^{-})} = 2.4 \pm 0.4$$

Hadronic transitions in bottomonium

 $\pi^+\pi^-$: *E*1*E*1 gluons

$$\begin{split} &\Gamma(\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-) = 5.7 \pm 0.5 \,\mathrm{keV} \\ &\Gamma(\Upsilon(3S) \to \Upsilon(1S)\pi^+\pi^-) = 0.89 \pm 0.08 \,\mathrm{keV} \\ &\Gamma(\Upsilon(3S) \to \Upsilon(2S)\pi^+\pi^-) = 0.57 \pm 0.06 \,\mathrm{keV} \end{split}$$

partial widths are small

 η : *E*1*M*2 gluons Amplitude \propto chromomagnetic moment of *b* quark $\propto 1/m_b$

$$\begin{split} \Gamma(\Upsilon(2S) &\to \Upsilon(1S)\eta) = (9.3 \pm 1.5) \times 10^{-3} \, \mathrm{keV} \\ \Gamma(\Upsilon(3S) &\to \Upsilon(1S)\eta) < 2 \times 10^{-3} \, \mathrm{keV} \\ & \text{additional suppression} \end{split}$$

Hadronic transitions in bottomonium

 $\pi^+\pi^-$: *E*1*E*1 gluons

 $\Gamma(\Upsilon(2S) \to \Upsilon(1S)\pi^{+}\pi^{-}) = 5.7 \pm 0.5 \,\mathrm{keV}$ $\Gamma(\Upsilon(3S) \to \Upsilon(1S)\pi^{+}\pi^{-}) = 0.89 \pm 0.08 \,\mathrm{keV}$ $\Gamma(\Upsilon(3S) \to \Upsilon(2S)\pi^{+}\pi^{-}) = 0.57 \pm 0.06 \,\mathrm{keV}$

partial widths are small

 $\Gamma(\Upsilon(5S) \to \Upsilon(nS) \pi^+\pi^-) \sim 1 \, MeV$

 η : *E*1*M*2 gluons Amplitude \propto chromomagnetic moment of *b* quark $\propto 1/m_b$

$$\begin{split} \Gamma(\Upsilon(2S) &\to \Upsilon(1S)\eta) = (9.3 \pm 1.5) \times 10^{-3} \, \mathrm{keV} \\ \Gamma(\Upsilon(3S) &\to \Upsilon(1S)\eta) < 2 \times 10^{-3} \, \mathrm{keV} \\ & \text{additional suppression} \end{split}$$

 $\frac{\Gamma(\Upsilon(4S) \to \Upsilon(1S) \eta)}{\Gamma(\Upsilon(4S) \to \Upsilon(1S) \pi^+\pi^-)} = 2.4 \pm 0.4$

New decay mechanism: via exotic admixture

Molecular admixture

 $|B\overline{B}
angle$

- decay into constituents dominates
- if p_B is high then rescattering is suppressed

Hadroquarkonium $|\Upsilon(2S) f_0\rangle$

• decays into bottomonium core

Compact tetraquark $|bq \, \bar{b} \bar{q} \rangle$

• decays into open flavor are not enhanced

Hybrid $|b\bar{b} g\rangle$

• $b\overline{b}$ is in spin-singlet state

Angular momentum wave function

Voloshin, PRD 85, 034024 (2012)

Angular momentum wave function

Voloshin, PRD 85, 034024 (2012)

$$\begin{split} |B\bar{B}\rangle &\equiv |S_{b\bar{q}} = 0, L_{b\bar{q}} = 0, S_{\bar{b}q} = 0, L_{\bar{b}q} = 0, L = 1\rangle \\ &= \frac{1}{2\sqrt{3}} |S_{b\bar{b}} = 1, J_{q\bar{q}} = 0\rangle \rightarrow \Upsilon(1S) \pi^{+}\pi^{-} \text{ in S wave} \\ &+ \frac{1}{2} |S_{b\bar{b}} = 1, J_{q\bar{q}} = 1\rangle \rightarrow \Upsilon(1S) \eta \\ &+ \frac{\sqrt{5}}{2\sqrt{3}} |S_{b\bar{b}} = 1, J_{q\bar{q}} = 2\rangle \rightarrow \Upsilon(1S) \pi^{+}\pi^{-} \text{ in D wave} \\ &+ \frac{1}{2} |S_{b\bar{b}} = 0, J_{q\bar{q}} = 1\rangle \rightarrow h_{b}(1P) \eta \end{split}$$

Rescattering \Rightarrow many transitions are allowed.

Transition	Partial width (keV
$\Upsilon(4S) \rightarrow$	
$\Upsilon(1S) \pi^+ \pi^-$	1.7 ± 0.2
$\Upsilon(1S)\eta$	4.0 ± 0.8
$\Upsilon(2S) \pi^+ \pi^-$	1.8 ± 0.3
$h_b(1P)\eta$	45 ± 7
$\Upsilon(5S) \rightarrow$	
$\Upsilon(1S) \pi^+ \pi^-$	238 ± 41
$\Upsilon(1S)\eta$	39 ± 11
$\Upsilon(1S)K^+K^-$	33 ± 11
$\Upsilon(2S) \pi^+ \pi^-$	428 ± 83
$\Upsilon(2S) \eta$	204 ± 44
$\Upsilon(3S) \pi^+ \pi^-$	153 ± 31
$\chi_{b1}(1P)\omega$	84 ± 20
$\chi_{b1}(1P) (\pi^+ \pi^- \pi^0)_{\text{non-}\omega}$	28 ± 11
$\chi_{b2}(1P)\omega$	32 ± 15
$\chi_{b2}(1P) (\pi^+\pi^-\pi^0)_{\text{non-}\omega}$	33 ± 20
$\Upsilon_J(1D) \pi^+ \pi^-$	~ 60
$\Upsilon_J(1D)\eta$	150 ± 48
$Z_b(10610)^{\pm}\pi^{\mp}$	2070 ± 440
$Z_b(10650)^{\pm}\pi^{\mp}$	1200 ± 300
$\Upsilon(6S) \rightarrow$	
$\Upsilon(1S) \pi^+ \pi^-$	137 ± 32
$\Upsilon(2S) \pi^+ \pi^-$	183 ± 43
$\Upsilon(3S) \pi^+ \pi^-$	77 ± 28
$Z_b(10610, 10650)^{\pm}\pi^{\mp}$	1300 - 6600

Bondar, RM, Voloshin MPLA 32, 1750025 (2017)

Variety of transitions – support for molecular admixture interpretation.

Measurements at a single energy

- non-resonant contributions?
- other resonances? Need energy scan

10

Belle arXiv:1609.08749 JHEP 06, 137 (2021)

 $B_s^* \overline{B}_s^*$ – peak of $\Upsilon(5S)$, non-resonant contribution is small.

 $B^{(*)}\overline{B}^{(*)}$ – no clear $\Upsilon(5S)$ peak, "oscillatory" non-resonant contribution?

Peaks of $\Upsilon(5S)$, $\Upsilon(6S)$ and new state $\Upsilon(10753)$; non-resonant contribution is small.

Measured channels: $B^{(*)}\bar{B}^{(*)}$, $B_{s}^{(*)}\bar{B}_{s}^{(*)}$, $\Upsilon(nS) \pi^{+}\pi^{-}$, $h_{b}(nP) \pi^{+}\pi^{-}$.

Major unmeasured contribution is $B^{(*)}\overline{B}^{(*)}\pi$ – can be found as a residual between total cross section and the sum of measured contributions.

 \Rightarrow Total $b\overline{b}$ cross section is decomposed.

Coupled-channel analysis

σ (pb)

Hüsken, Mitchell, Swanson, PRD 106, 094013 (2022)

K-matrix: scattering via $\Upsilon(4S)$, $\Upsilon(10753)$, $\Upsilon(5S)$, $\Upsilon(6S)$ or non-resonantly.

All available scan data.

Results: pole positions, branching fraction, energy dependence of scattering amplitudes.

Accuracy above $\Upsilon(6S)$ and near $\Upsilon(10753)$ needs improvement.

Belle II energy scan

Belle II: preliminary

$$e^+e^- \rightarrow \Upsilon(nS) \pi^+\pi^-$$

 $e^+e^- \rightarrow \eta_b(1S)\omega, \chi_{b0}(1P) \omega$
 $e^+e^- \rightarrow B\bar{B}, B\bar{B}^*, B^*\bar{B}^*$

Resonant substructure of $\Upsilon(10753) \rightarrow \Upsilon(nS) \pi^+\pi^-$

- No Z_b states.
- Large values of $M(\pi^+\pi^-)$ are enhanced in $\Upsilon(2S)\pi^+\pi^-$.

Search for $\Upsilon(10753) \rightarrow \eta_b(1S) \omega / \chi_{b0}(1P) \omega$

Reconstruct ω ; use recoil mass.

 $σ(e^+e^- → η_b(1S) ω) < 2.5 pb 90\% CL$ c.f. $σ(e^+e^- → Υ(1,2S)π^+π^-) = (1-3) pb$ CPC 43, 123102 (2019) Tetraquark model of Υ(10753) predicts that η_b(1S) ω is enhanced. Data: no support.

 $\sigma(e^+e^- \rightarrow \chi_{b0}(1P)\,\omega) < 7.8\,pb$

c.f. $\sigma(\chi_{b1}(1P)\omega / \chi_{b2}(1P)\omega) = (3.6 / 2.8) pb$

Decay of Y(4230) to $\chi_{c0} \omega$ is enhanced w.r.t. $\chi_{c1}\omega / \chi_{c2}\omega$. No similar effect for Y(10753).

$e^+e^- \rightarrow B\overline{B}$, $B\overline{B}^*$, $B^*\overline{B}^*$

preliminary

Reconstruct one B in ~1000 final states, $\underline{\underline{9}}$ use its momentum to separate channels. $\underline{\underline{9}}$

Belle II data match and significantly supplement the Belle data.

Fit: polynomials; include total cross section to impose zeroth at $B^{(*)}\overline{B}^*$ thresholds.

Molecule near $B^*\overline{B}^*$ threshold

preliminary

20

Belle: $e^+e^- \rightarrow B_S \overline{B}_S X$

JHEP 10, 220 (2019) PRL 117, 142001 (2016) arXiv:1609.08749

 $\Upsilon(5S)$ peak in $B_s^* \overline{B}_s^*$ channel is shifted by 20 MeV w.r.t. bottomonium channels.

Two states near $\Upsilon(5S)$?

Hüsken, Mitchell, Swanson, PRD 106, 094013 (2022) Coupled-channel analysis:

 \Rightarrow Improve accuracy in $B_s^* \overline{B}_s^*$

$\sigma(e^+e^- \to B_s \overline{B}_s X)$ via inclusive method

JHEP 08, 131 (2023)

 $\begin{array}{ll} \text{Measure} & (60.2\pm6.2)\% & (11.3\pm0.6)\% \\ \sigma(e^+e^- \rightarrow b\bar{b} \rightarrow D_s X) = \sigma(e^+e^- \rightarrow B_s\bar{B}_s X) \ 2 \ Br(B_s \rightarrow D_s X) + \sigma(e^+e^- \rightarrow B\bar{B} X) \ 2 \ Br(B \rightarrow D_s X) \\ \sigma(e^+e^- \rightarrow b\bar{b} \rightarrow D^0 X) = \sigma(e^+e^- \rightarrow B_s\bar{B}_s X) \ 2 \ Br(B_s \rightarrow D^0 X) + \sigma(e^+e^- \rightarrow B\bar{B} X) \ 2 \ Br(B \rightarrow D^0 X) \\ & ?? & (66.7\pm1.8)\% \end{array}$

Using
$$\Upsilon(5S)$$
 data, we measure $\frac{Br(B_s \rightarrow D^0 X)}{Br(B_s \rightarrow D_s X)} = 0.415 \pm 0.094$

Resolve the system w.r.t. $\sigma(B_s \overline{B}_s X)$

 $e^+e^- \rightarrow B_s \overline{B}_s X$

- Clear peak of $\Upsilon(5S)$.
- hint of $\Upsilon(6S)$,
- non-resonant: small.

 $\sigma(B_s \overline{B}_s X) = \sigma(B_s^{(*)} \overline{B}_s^{(*)}) - \text{up to the } B_s \overline{B}_s \pi^0 \pi^0 \text{ threshold at } 11.004 \text{ GeV} - \text{most of the studied energy range.}$

Conclusions

Belle II performed energy scan from the $B^*\overline{B}^*$ threshold to the onset of $\Upsilon(5S)$. PRL ^{130, 091902 (2023)} preliminary Studied channels: $\chi_{bI}(1P)\omega$, $\Upsilon(nS)\pi^+\pi^-$, $\eta_b(1S)\omega$, $B\overline{B}$, $B\overline{B}^*$, $B^*\overline{B}^*$.

⇒ Confirmation of $\Upsilon(10753)$, observation of its new decay channel. Hint of a P-wave molecule at the $B^*\overline{B}^*$ threshold?

Belle: $\sigma(B_s^{(*)}\bar{B}_s^{(*)})$ peaks at $\Upsilon(5S)$, possibly at $\Upsilon(6S)$, no non-resonant contribution.

Ongoing analyses: $\eta_b(1S)\phi$, $\Upsilon(nS)\eta$, $\Upsilon(1S)K^+K^-$, $h_b(1P)\pi^+\pi^-$, $h_b(1P)\eta$, $\Upsilon_J(1D)\pi^+\pi^-$, $\Upsilon_J(1D)\eta$.

Belle II plans to collect significant part of data outside of the $\Upsilon(4S)$ peak.