SuperKEKB and Belle II

Chunhua LI On behalf of the Belle II collaboration HQL May 22-27, 2016

Outline:

- Introduction
- SuperKEKB
- Belle II Detector
- Physics at Belle II

B-factory Achievements

- Belle (KEKB@KEK) and BaBar (PEPII@SLAC)
- Integrated luminosity: Belle >1 ab⁻¹, BaBar ~550 fb⁻¹

Search for new physics

- There is still space for new physics contributions
- Open questions, e.g.
 - New CPV phases?
 - Sources of LFV beyond the SM?
 - Multiple Higgs bosons, dark sectors?
 - Discrepancies between experimental results and SM predictions (e.g enhancements in semitauonic decays)?

SuperKEKB

An asymmetric electron-positron collider at KEK, Japan e⁺~ 4GeV e⁻~ 7GeV

Nano-Beam Scheme

SuperKEKB Master Schedule

Phase 1 Commissioning

- Feb. 1st Feb. 7th
 - Tuning of Beam Transport Lines (e-/e+)
- Feb. 8th Feb. 21st
 - Commissioning of LER (e+ ring)
 - Circumference check with wigglers
- February 22nd Mar. 5th
 - Commissioning of HER (e- ring)
 - In parallel with LER vacuum scrubbing and possible studies at LER
- Current status:
 - Current: HER~0.6A, LER~0.7A
 - Vacuum scrubbing
 - Optics study
 - Background study with BEAST II.
 - Expected highest HER and LER current 1A

8

SuperKEKB commissioning detector

- Beam Exorcism for a Stable ExperimenT II (BEAST II):
 - characterize beam backgrounds near the interaction point (IP)
 - Independent detectors to measure beam backgrounds

Beam Gas Background in LER vs time

- Beam backgrounds
 - Touschek effect (inverse beam size, current)
 - Beam-gas interactions (current, vacuum level)
 - Synchrotron radiation
 - Radiative Bhabha scattering (Lum.)
 - 4-fermion final state QED process (Lum.)
 - Total background 40 times larger than Belle

Belle II Detector

EM Calorimeter: CsI(Tl), waveform sampling (barrel) Pure CsI + waveform sampling (end-caps)

electron (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

KL and muon detector: Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (end-caps)

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positron (4GeV)

Vertex Detector (PXD+SVD)

PXD: 1-2 layers

- 2 layers of pixel detectors
- Inner most layer very close to IP (r = 1.4cm)
- Excellent spatial granularity ($\sigma \le 15 \mu m$)

SVD: 3-6 layers

- 4 layers of strip detectors
- Excellent timing resolution ($\sigma \sim 2-3$ ns)
- covers the full Belle II angular acceptance of $17^{\circ} < \theta < 150^{\circ}$

10

Central Drift Chamber (CDC)

- Upgrade
 - Extended outer radius
 - Smaller cell size
 - More layers for dE/dx measurements
 - Faster readout electronics
 - 3D trigger information
- Current status
 - Ready for installation

11

	Belle	Belle II
Radius of inner boundary (mm)	88	168
Radius of outer boundary (mm)	863	1111
Number of layers	50	56
Number of total sense wires	8400	14336
Gas	He-C ₂ H ₆	He-C ₂ H ₆
Diameter of sense wire (mm)	30	30

Particle ID (Barrel)

- Time Of Propagation (TOP)
 - Cherenkov detector, quartz radiator
 - Cherenkov ring imaging with precision time measurement
 - Resolution for signal photons < 100ps
- Installation completed on May 11, 2016!

Particle ID

- Forward endcap: Aerogel RICH:
- K/ π separation: 6 σ at 4 GeV/c
- Successful magnetic field test, installation in Autumn.

PID impact on Rare $b \rightarrow d$ Penguins:

EM Calorimeter

Cope with higher particle rate

- 1. Electronics upgrade: waveform sampling & fitting
- 2. Endcap crystal update: (baseline option) pure CsI (short decay time)+ photopentode

Early prototype tested at Belle

K_L and Muon Systems (KLM)

- Endcaps and two innermost barrel RPC layers of Belle were replaced with scintillators due to the increased backgrounds.
- Installation completed
- Commissioning in progress with cosmic rays

Trigger and DAQ

- Challenge
 - High luminosity, high background
 - Low multiplicity signatures challenge trigger
- Trigger
 - Hardware based Level 1 (L1) + software based High Level Trigger (HLT)
 - Develop trigger menu
- DAQ
 - Maximum readout rate ~30 kHz
 - Event rate after HLT ~10 kHz
 - Parallel processing ~ 3000 cores

Physics Prospects

- B and D decays
 - precision measurements of CKM elements
 - rare B and D decays
- Beyond the Standard Model
 - new Higgs
 - dark photons or other dark matter particles
 - LFV
- Hadron spectroscopy
 - 4-quark states
 - bottomonium spectrum
 - exotics states

Penguin b→s decays

- Precision measurements of sin(2β) is important for the search of new sources of CPV
- $b \rightarrow s$ transition via penguin diagram
- sensitive to possible new heavy particle contributions

$sin(2\beta)$	σ(stat)@ Belle	σ(stat)@Bell e II 50 ab ⁻¹
$B \rightarrow \Phi K^0$	0.09	0.018
$B \rightarrow \eta' K^0$	0.07	0.011
B→KsKsKs	0.32	0.033

tant	for	bS		$\frac{s}{q}$
	SIL	$n(2\beta) \equiv$	$\sin(2\phi_1$	Moriond 2014
h 5000	World Ave	erade	i	0.68 + 0.02
	BaBar	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		$0.66 \pm 0.17 \pm 0.07$
¥	Belle			0.90 +0.09
-	Average i			0.74 +0.11
Ŷ	BaBar		-	$0.57 \pm 0.08 \pm 0.02$
<u>×</u>	Belle			$0.68 \pm 0.07 \pm 0.03$
	o Average			0.63 ± 0.06
<u> </u>				$-$ 0.94 $_{-0.24} \pm 0.06$
7			T S	$0.30 \pm 0.32 \pm 0.08$ 0.72 ± 0.19
	BaBar			0.72 ± 0.19
Ľ –	Belle		$\overline{\langle}$	$0.67 \pm 0.20 \pm 0.00$
β	Average			0.57 ± 0.17
	တ BaBar			$.35_{-0.31}^{+0.26} \pm 0.06 \pm 0.03$
<u>×</u>	Belle			$.64_{-0.25}^{+0.19} \pm 0.09 \pm 0.10$
) °c	Average :			0.54 +0.18
Ś	BaBar			$0.55_{-0.29}^{+0.20} \pm 0.02$
×	Belle			$-0.91 \pm 0.32 \pm 0.05$
	Average :			0.71 ± 0.21
	Average !			0.69 +8:18
····ر	BaBar	<mark>d-</mark>	1 104	$B \pm 0.52 \pm 0.06 \pm 0.10$
× N	Average			0.48 ± 0.53
·····•	n BaBar		0.2	0 ± 0.52 ± 0.07 ± 0.07
<u>ر</u> م	🗙 Average		<u> </u>	0.20 ± 0.53
<u></u>	B <mark>aBar </mark>			-0.72 ± 0.71 ± 0.08
В	თ A <mark>verage :</mark>			-0.72 ± 0.71
ੇ ਸ਼ੁੱ	- BaBar		1	0.97
	Average			0.97 -0.52
× ÷			2.0	$1 \pm 0.31 \pm 0.05 \pm 0.09$
	BaBar	·····		0.01 ± 0.03
+ ₂ Ū	Belle			$0.76^{+0.14}$
~ ×	Average			0.88
<u> </u>		i		
-2	-1	0	1	2

- -

EWP: $B \rightarrow K^{(*)} \nu \nu$

- SM: penguin + box digram
 B_{SM}(B⁺→ K⁺vv) = (4.0±0.5)x10⁻⁶
 B_{SM}(B⁰→K^{*0}vv)= (9.2±1.0)x10⁻⁶
 arXiv: 1409.4557
 - Belle: B(B⁺ \rightarrow K⁺vv) <5.5x10⁻⁵, Nsig=13.3+7.4-6.6, 2.0 σ B(B⁰ \rightarrow K*⁰vv)<5.5x10⁻⁵

Belle II: Nsig~91.5±32.2@50 ab⁻¹

Events/0.1

19

Semi-leptonic B decays

Semi-tauonic decay modes are highly sensitive to new physics

 $B \rightarrow D^{(*)} \tau v$: WA is ~4 σ from the SM!

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)} \tau \,\bar{\nu}_{\tau})}{\mathcal{B}(B \to D^{(*)} \,\ell \,\bar{\nu}_{\ell})}$$

Error	stat.	tot.	
B-Factories	13%	16.2%	
Belle II 5/ab	3.8%	5.6%	
Belle II 50/ab	1.2%	3.4%	

 $R(D^*)$

Error	stat.	tot.	
B-Factories	7.1%	9.0%	
Belle II 5/ab	2.1%	3.2%	
Belle II 50/ab	0.7%	2.1%	

$LFV \,\tau \, decays$

• Lepton Flavour Violation is highly suppressed in the SM (e.g. $Br(\tau \rightarrow \mu\gamma) \sim 10^{-40}$), LFV τ decays are clean probes for New Physics effects

• Belle II : Sensitivity for LFV decay rates is at least one order higher than Belle

Dark Sector

• Dark photon A', motivated be in MeV-GeV mass

A' →ll

- probe leptonicaly decaying dark photons through mixing
- probe sub-GeV dark matter in invisible decays

- Rich physics at Belle II, e.g. new CPV phases, LFV, dark sectors, exotic states.
- Many upgrades: accelerator, detector, trigger, and DAQ etc.
- SuperKEKB phase 1 commissioning has started.
- Belle II will start physics data taking in 2017 with part detectors (no VXD) and with all detectors in 2018.

Backup

[SR Channel]

[Beam Channel]

To obtain x40 higher luminosity

Belle II Collaboration

570 Members98 Institutions23 Countries/regions

	Observables	Belle or LHCb*	Belle II		LHCb	
		(2014)	$5 {\rm ~ab^{-1}}$	$50 {\rm ~ab^{-1}}$	$8 {\rm fb^{-1}(2018)}$	50 fb^{-1}
UT angles	$sin 2\beta$	$0.667 \pm 0.023 \pm 0.012 (0.9^{\circ})$	0.4°	0.3	0.6°	0.32
	a [*]	85 ± 4 (Belle+BaBar)	2	1		
	$\gamma [\circ] (B \rightarrow D^{(*)}K^{(*)})$	68 ± 14	6	1.5	4	1
	$2\beta_s(B_s \rightarrow J/\psi \phi)$ [rad]	$0.07 \pm 0.09 \pm 0.01^{\circ}$			0.025	0.009
Gluonic penguins	$S(B \rightarrow \phi K^0)$	0.90+0.09	0.053	0.018	0.2	0.04
	$S(B \rightarrow \eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	0.028	0.011		
	$S(B \rightarrow K_S^0 K_S^0 K_S^0)$	$0.30 \pm 0.32 \pm 0.08$	0.100	0.033		
	$\beta_s^{\text{eff}}(B_s \rightarrow \phi \phi) \text{ [rad]}$	$-0.17 \pm 0.15 \pm 0.03^*$			0.12	0.03
	$\beta_s^{\text{eff}}(B_s \rightarrow K^{*0}\bar{K}^{*0})$ [rad]	-			0.13	0.03
Direct CP in hadronic Decay	$\approx \mathcal{A}(B \rightarrow K^0 \pi^0)$	$-0.05\pm 0.14\pm 0.05$	0.07	0.04		
UT sides	V _{cb} incl.	$41.6 \cdot 10^{-3} (1 \pm 2.4\%)$	1.2%			
	$ V_{ab} $ excl.	$37.5 \cdot 10^{-3} (1 \pm 3.0\%_{ex.} \pm 2.7\%_{th.})$	1.8%	1.4%		
	$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} (1 \pm 6.0\%_{ex.} \pm 2.5\%_{th.})$	3.4%	3.0%		
	$ V_{ub} $ excl. (had. tag.)	$3.52 \cdot 10^{-3} (1 \pm 10.8\%)$	4.7%	2.4%		
Leptonic and Semi-tauonic	$\mathcal{B}(B \rightarrow \tau \nu) [10^{-6}]$	96(1±26%)	10%	5%		
	$\mathcal{B}(B \rightarrow \mu\nu) [10^{-6}]$	< 1.7	20%	7%		
	$R(B \rightarrow D\tau \nu)$ [Had. tag]	$0.440(1 \pm 16.5\%)^{\dagger}$	5.6%	3.4%		
	$R(B \rightarrow D^* \tau \nu)^{\dagger}$ [Had. tag]	$0.332(1 \pm 9.0\%)^{\dagger}$	3.2%	2.1%		
Radiative	$B(B \rightarrow X_s \gamma)$	$3.45 \cdot 10^{-4} (1 \pm 4.3\% \pm 11.6\%)$	7%	6%		
	$A_{CP}(B \rightarrow X_{s,d}\gamma)$ [10 ⁻²]	$2.2 \pm 4.0 \pm 0.8$	1	0.5		
	$S(B \rightarrow K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	0.11	0.035		
	$2\beta_s^{\text{eff}}(B_s \rightarrow \phi \gamma)$	-			0.13	0.03
	$S(B \rightarrow \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	0.23	0.07		
	$\mathcal{B}(B_s \rightarrow \gamma \gamma) [10^{-6}]$	< 8.7	0.3	-		
Electroweak penguins	$\mathcal{B}(B \rightarrow K^{*+}\nu \mathcal{P})$ [10 ⁻⁶]	< 40	< 15	30%		
	$\mathcal{B}(B \rightarrow K^+ \nu \overline{\nu}) [10^{-6}]$	< 55	< 21	30%		
	$C_7/C_9 (B \rightarrow X_*\ell\ell)$	~20%	10%	5%		
	$\mathcal{B}(B_s \rightarrow \tau \tau) [10^{-3}]$	-	< 2	-		
	$\mathcal{B}(B_s \rightarrow \mu \mu)$ [10 ⁻⁹]	2.9+13*			0.5	0.2

	Observables	Belle or LHCb [*]	Be	lle II	1	BCb
		(2014)	5 ab ⁻¹	50 ab-1	2008	50 fb ⁻¹
Charm Rare	$B(D_s \rightarrow \mu\nu)$	$5.31 \cdot 10^{-3} (1 \pm 5.3\% \pm 3.8\%)$	2.9%	0.9%		
	$\mathcal{B}(D_s \rightarrow \tau \nu)$	$5.70 \cdot 10^{-3} (1 \pm 3.7\% \pm 5.4\%)$	3.5%	2.3%		
	$\mathcal{B}(D^0 \rightarrow \gamma \gamma) [10^{-6}]$	< 1.5	30%	25%		
Charm CP	$A_{CP}(D^0 \rightarrow K^+K^-)$ [10 ⁻⁴]	$-32 \pm 21 \pm 9$	11	6		
	$\Delta A_{CP}(D^0 \rightarrow K^+K^-)$ [10 ⁻³]	3.4*			0.5	0.1
	$A_{\Gamma} [10^{-2}]$	0.22	0.1	0.03	0.02	0.005
	$A_{CP}(D^0 \rightarrow \pi^0 \pi^0)$ [10 ⁻²]	$-0.03 \pm 0.64 \pm 0.10$	0.29	0.09		
	$A_{CP}(D^0 \rightarrow K_S^0 \pi^0) [10^{-2}]$	$-0.21 \pm 0.16 \pm 0.09$	0.05	0.03		
Charm Mixing	$x(D^0 \rightarrow K_S^0 \pi^+ \pi^-)$ [10 ⁻²]	$0.56 \pm 0.19 \pm 0.07$	0.14	0.11		
	$y(D^0 \rightarrow K_S^0 \pi^+ \pi^-) [10^{-2}]$	$0.30 \pm 0.15 \pm 0.05$	0.08	0.05		
	$ q/p (D^0 \rightarrow K_S^0 \pi^+ \pi^-)$	$0.90 \pm 0.15 \pm 0.08$	0.10	0.07		
	$\phi(D^0 \rightarrow K^0_S \pi^+ \pi^-)$ [⁺]	$-6 \pm 11 \pm \frac{4}{5}$	6	4		
Tau	$\tau \rightarrow \mu \gamma \ [10^{-9}]$	< 45	< 14.7	< 4.7		
	$\tau \rightarrow e\gamma [10^{-9}]$	< 120	< 39	< 12		
	$\tau \rightarrow \mu\mu\mu [10^{-9}]$	< 21.0	< 3.0	< 0.3		