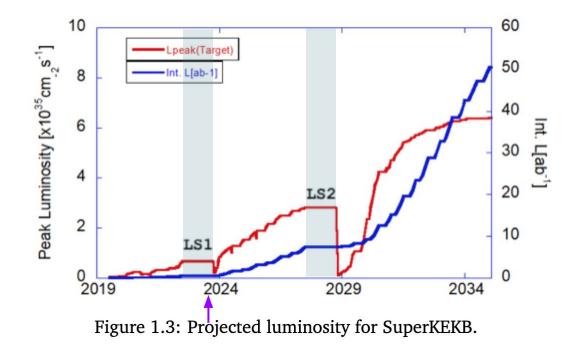


Peter Mandeville Lewis | University of Hawaii

on behalf of the Belle II collaboration

World-record luminosity...

... but there's still a long way to go...

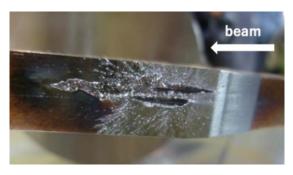

World-record luminosity...

We need:

- **120-fold** increase in integrated luminosity $(0.4 \rightarrow 50 \text{ ab}^{-1}) \text{ via}...$
- **16-fold** increase in instantaneous luminosity $(0.4 \rightarrow 6 \times 10^{35} \text{cm}^{-2} \text{s}^{-1})$

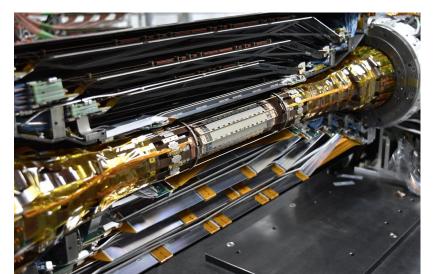
This is an enormous challenge for the **accelerator** and **detector**...

...and **backgrounds** are higher than anticipated

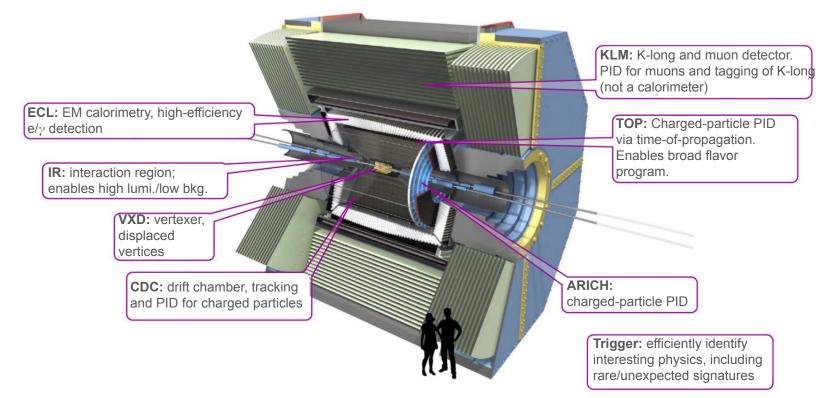

Here's what we're doing to meet this challenge...

Upgrades

LS1 upgrades (now)


Machine

- New beam-loss monitors
- More-resilient collimators
- Improved neutron shielding
- RF cavity replacement, faster kicker magnets at injector
- Operations restart in **January 2024**


Detector

- Installation of **complete pixel detector**
- Replacement of ~50% of TOP MCP-PMs
- Improved CDC gas distribution and monitoring
- DAQ system upgrade to PCIe40

Subdetectors KL and muon detector Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers) **EM Calorimeter** CsI(TI), waveform sampling electronics Particle Identification electrons (7 GeV) Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (forward) Vertex Detector 2 layers Si Pixels (DEPFET) + 4 layers Si double sided strip DSSD positrons (4 GeV) **Central Drift Chamber** Smaller cell size, long lever arm

Subdetectors and their physics impact

Belle II upgrades

LS2 and longer-term upgrades

ECL: replace crystals with pure Csl; APD readout; add pre-shower detector.

IR: accommodate QCS replacement and repositioning

VXD: all pixels DMAPS

> CDC: replace r/o ASIC+FPGA New tracker (pixels, gas)

More distant future: ~mid-2030's ✓ Detector R&D for extreme-*L* environment KLM: replace RPCs with scintillators in barrel (some with fast timing for K_L time-of-flight); replace readout

TOP: replace readout to reduce size & power; replace ~50% MCP-PMTs with life-extended ALDs (or SiPMs?)

ARICH: possible photosensor upgrade

LS2 and longer-term upgrades

ECL: replace crystals with pure Csl; APD readout; add pre-shower detector

IR: accommodate QCS replacement and repositioning

VXD: all pixels DMAPS

> CDC: replace r/o ASIC+FPGA New tracker (pixels, gas)

More distant future: ~mid-2030's ✓ Detector R&D for extreme-*L* environment KLM: replace RPCs with scintillators in barrel (some with fast timing for K_L time-of-flight); replace readout

TOP: replace readout to reduce size & power; replace all PMTs with extendedlifetime ALDs (or SiPMs?)


ARICH: possible photosensor upgrade

Interaction region

Potential upgrade

- Limit beam-beam effects, preserve beam lifetime
- Redesign final focus:
 - \circ ~ Extend final magnet closer to IP
 - New anti-solenoid Niobium-tin coil placed between final magnet and IP; complex R&D ongoing
 - Overall: nearly double the Touschek lifetime in simulations

 \rightarrow *if adopted*, the envelope for inner detector services will change

LS2 and longer-term upgrades

ECL: replace crystals with pure Csl; APD readout; add pre-shower detector

IR: accommodate QCS replacement and repositionin

VXD: all pixels DMAPS

> CDC: replace r/o ASIC+FPGA New tracker (pixels, gas)

More distant future: ~mid-2030's ✓ Detector R&D for extreme-*L* environment KLM: replace RPCs with scintillators in barrel (some with fast timing for K_L time-of-flight); replace readout

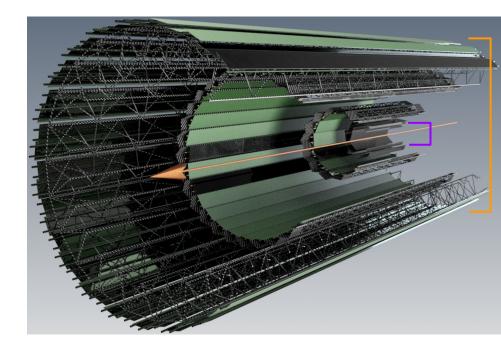
TOP: replace readout to reduce size & power; replace all PMTs with extendedlifetime ALDs (or SiPMs?)

ARICH: possible photosensor upgrade

VXD upgrade

Motivation

- Handle high background rates
- *Improved* tracking and vertex resolution
- Simplify vertex system (pixels + strips → pixels)
- Contribute to L1 trigger
- Operation without data reduction

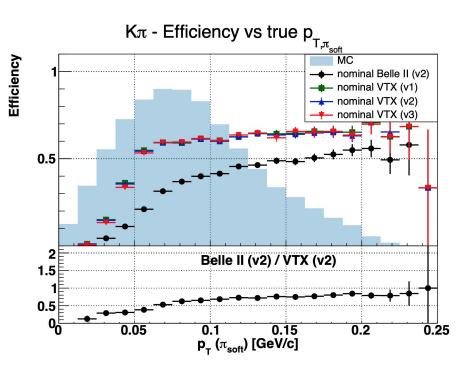

Specifications

Chip	
Pixel pitch	30-40 μm
Integration time	≤ 100 ns
Performance	
Single-point resolution	< 15 µm
Material budget	$0.1\%-0.8\%$ X $_0$ (inner-outer layers)
Environment	
Hit rate	120 MHz/cm ²
Total ionizing dose	100 Mrad
NIEL fluence	$5x10^{14} n_{eq}^{2}/cm^{2}$

VTX

All-layer DMAPS pixel detector

- Monolithic active CMOS pixels in 5 layers
- Sensitive layer thickness < 50 μm (~4000e from MIPs vs. 200-250e threshold)
- Sensor thickness < 100 μm
- **iVTX**: innermost 2 layers, self-supported, air-cooled
- **oVTX**: outer 3 layers, CF structure, single-phase coolant
- Prototype (TJMonopix2) has largely met these specifications, including irradiation tests



VTX

Physics impact, illustrated

- $B^0 \rightarrow D^{*-}\ell^+\nu$: "bread-and-butter" physics for Belle II (R(D*), angular analysis, $|V_{cb}|$, *B*-tagging, ...)
- Slow pion from D* decay: low- $p \rightarrow$ low-efficiency
- ~70% improvement in efficiency; like a massive lumi. boost
- Also: ~35% better B-decay vertex resolution

...while also being far more robust against backgrounds

LS2 and longer-term upgrades

ECL: replace crystals with pure Csl; APD readout; add pre-shower detector

IR: accommodate QCS replacement and repositioning

VXD: all pixels DMAPS

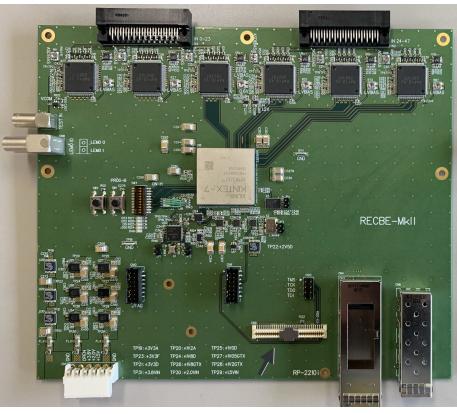
> CDC: replace r/o ASIC+FPGA New tracker (pixels, gas)

More distant future: ~mid-2030's ✓ Detector R&D for extreme-*L* environment KLM: replace RPCs with scintillators in barrel (some with fast timing for K_L time-of-flight); replace readout

TOP: replace readout to reduce size & power; replace all PMTs with extendedlifetime ALDs (or SiPMs?)

ARICH: possible photosensor upgrade

CDC front-end electronics


Toward better tracking performance

- Reduce cross-talk, power consumption, and increase output bandwidth
- Improve radiation tolerance

New ASICs, new FPGA, optical module

- ASIC: timing and waveform digitization
- FPGA: online data processing for trigger and DAQ
- Rad-hard fiber transceivers

Prototype front-end board upgrade

LS2 and longer-term upgrades

ECL: replace crystals with pure Csl; APD readout; add pre-shower detector

IR: accommodate QCS replacement and repositioning

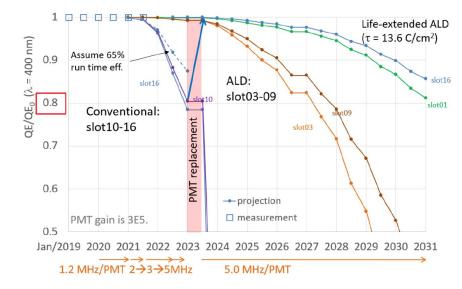
VXD: all pixels DMAPS

> CDC: replace r/o ASIC+FPGA New tracker (pixels, gas)

More distant future: ~mid-2030's ✓ Detector R&D for extreme-*L* environment **KLM**: replace RPCs with scintillators in barrel (some with fast timing for K_L time-of-flight); replace readout

TOP: replace readout to reduce size & power; replace ~50% MCP-PMTs with life-extended ALDs (or SiPMs?)

ARICH: possible photosensor upgrade


PID: Time of Propagation

Photosensor upgrade

- MCP-PMTs degrading under higher-than-expected backgrounds
- Complete residual ~50% MCP-PMT upgrade with life-extended ALD type
- (Potential replacement of MCP-PMTs with SiPMs)

Readout upgrades

- Frontend board: reduce size and power (to accommodate potential SiPM's)
- ASoC on ASIC boards with Gpbs to FPGA

LS2 and longer-term upgrades

ECL: replace crystals with pure Csl; APD readout; add pre-shower detector

IR: accommodate QCS replacement and repositioning

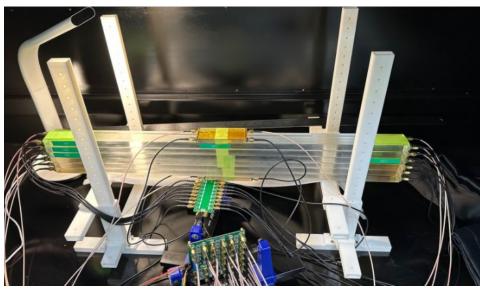
VXD: all pixels DMAPS

> CDC: replace r/o ASIC+FPGA New tracker (pixels, gas)

More distant future: ~mid-2030's ✓ Detector R&D for extreme-*L* environment KLM: replace RPCs with scintillators in barrel (some with fast timing for K_L time-of-flight); replace readout

TOP: replace readout to reduce size & power; replace all PMTs with extendedlifetime ALDs (or SiPMs?)

ARICH: possible photosensor upgrade


KLM: K_L^{0} and muon detector

New capability: K⁰_L energy measurement

- Replace remaining RPC's with scintillators + SiPM's (very complex operation)
- **Fast timing** (~100ps) gives $K_L^0 E$ via TOF
- Not settled: physics impact still under study

Readout upgrades

- Move feature extraction to frontend ASIC
- Replace many km of twisted-pair ribbon cables with a few fibers

LS2 and longer-term upgrades

ECL: replace crystals with pure Csl; APD readout; add pre-shower detector

IR: accommodate QCS replacement and repositioning

VXD: all pixels DMAPS

> CDC: replace r/o ASIC+FPGA New tracker (pixels, gas)

More distant future: ~mid-2030's ✓ Detector R&D for extreme-*L* environment KLM: replace RPCs with scintillators in barrel (some with fast timing for K_L time-of-flight); replace readout

TOP: replace readout to reduce size & power; replace all PMTs with extendedlifetime ALDs (or SiPMs?)

ARICH: possible photosensor upgrade

LS1, LS2, and beyond

- At Belle II, (physics output) ∝ (luminosity)×(detector performance at high lumi.)
- Achieving **both** is an iterative process...
- ... we have a rich set of short-, medium-, and long-term upgrades in the works

Look for the Belle II Upgrades CDR soon

Thankyou

OKEK