

University *of Ljubljana* Faculty *of <u>Mathematics</u> and Physics*

CP violation in charmless B decays

Luka Šantelj,

Jozef Stefan Institute and University of Ljubljana

On behalf of the Belle II and LHCb collaborations

Heavy Quarks and Leptons (HQL2023) Mumbai, 2.12.2023

Charmless B decays

- b u tree and b d,s loop transitions are rare charmless $~{\cal B} \sim 10^{-6}$
- relatively large loop contributions give sensitivity to NP
- probe the SM via:
 - → over-constraining the CKM triangle: ϕ_1/β via TDCPV in b→s decays (→ see S. BAHINIPATI talk, Friday @ 12.15) ϕ_2/α via isospin analyses $B \to \pi \pi/\rho\rho$
- in decays to fully hadronic final states often poor theory predictions due to non-factorizable amplitudes
 → suppress theory uncertainties by performing measurements of isospin related modes

Showing today

- recent results related to $B
 ightarrow \pi \pi /
 ho
 ho$ @ Belle II
- recent test of isospin sum rule in $B \to K \pi$ @ Belle II
- recent measurement of CP violation in three-body charmless B decays @ LHCb

Belle II @ SuperKEKB – B factory of 2nd generation

- SuperKEKB: asymmetric e^+e^- collider operating nominally at $\Upsilon(4S) = 10.58$ GeV

(+ large number of D, τ !)

- Belle II: general purpose spectrometer
 - $\rightarrow 4\pi$ coverage
 - \rightarrow clean e^+e^- environment with known initial state!
 - → good charged track reconstruction efficiency, excellent particle identification, gamma reconstruction
 - $\rightarrow\,$ excellent vertexing ($\sigma\sim 60\mu{\rm m},$ for B,D vertices)

Up to now collected ~362 fb^-1 of data @ $~\Upsilon(4S)$ (~BaBar, ~1/2 of Belle)

 $\rightarrow\,$ some results based on 190 fb^-1 only

LHCb experiment

- single arm spectrometer @ LHC
 - \rightarrow high-precision tracking \rightarrow particle identification \rightarrow decay vertex system

 \rightarrow analyses presented today based on RUN 2 data

 $\mathcal{L} = 5.9~{
m fb}^{-1}~$ p-p collisions @ 13 TeV CM energy (2015-2018)

4

Analysis workflow @ Belle II

- 1. Reconstruction
 - combine final state particle candidates in kinematic fits to form B candidates
- 2. Selection
 - optimize event-shape multivariate classifier + particle ID criteria

- base fit templates on the distributions from MC (+ calibrate on data)
- · fit to data to extract physics quantities
- 4. Systematic uncertainties
 - toy studies + control modes

Determination of ϕ_2/α from $B \to \pi\pi / \rho\rho$

→ ϕ_2 can be determined from TDCPV in $B^0 \to \pi^+ \pi^- / \rho^+ \rho^$ but due to sizable b→d penguin contribution $S \propto \sin(2\phi_2 + 2\Delta\phi_2)$

 $ightarrow \Delta \phi_2$ can be accessed based on the isospin relations

$$\stackrel{\rightarrow}{\rightarrow} \mathcal{B}, \ \mathcal{A}_{CP} \quad \text{in } B^+ \rightarrow \pi^0 \pi^+, \ B^0 \rightarrow \pi^0 \pi^0$$
$$\stackrel{\rightarrow}{\rightarrow} \mathcal{B}, \ \mathcal{A}_{CP}, \ f_L \quad \text{in } B^+ \rightarrow \rho^0 \rho^+, \ B^0 \rightarrow \rho^0 \rho^0$$

- $\rightarrow ~\rho\rho~$ less ambiguity in $\phi_2~$ due to smaller penguin contribution
- \rightarrow possible to measure TDCPV in $~\rho^0\rho^0$
- \rightarrow low \mathcal{B} : $10^{-6} 10^{-5}$ (+ large contributions from continuum backgrounds)

Several recent measurements @ Belle II providing new inputs for ϕ_2

$B \to \pi \pi$ decays

Belle II

- \rightarrow compatible and competitive with W.A.
- \rightarrow modes with π^0 systematically limited by the π^0 reconstruction efficiency systematics (will reduce with more data available)

8

- \rightarrow very very challenging measurement due to solely 4 photons in the final state
- \rightarrow signal swamped by large backgrounds (mostly true π^0 combination from $q\bar{q}$ events)
- → still, uniquely accessible @ Belle II
- \rightarrow 4D fit is performed to extract ${\cal B}$ and A_{CP}

$$\mathcal{B}(B^0 \to \pi^0 \pi^0) = (1.38 \pm 0.27 \pm 0.22) \times 10^{-6}$$
$$\mathcal{A}_{CP}(B^0 \to \pi^0 \pi^0) = 0.14 \pm 0.46 \pm 0.07$$

Precision comparable to Belle is achieved using \sim 1/3 of data size!

 \rightarrow due to improved π^0 eff. and continuum rejection

Systematics dominated by $\pi^0\,\mathrm{eff.},$ followed by continuum modeling

- \rightarrow due to large width of ρ limited signal/background separation capabilities
- \rightarrow four pions in the final state \rightarrow multiple non-negligible peaking background contributions
- \rightarrow angular analysis needed to disentangle longitudinal and transverse polarizations

→ update to full dataset and time-dependent CPV in $\rho^+\rho^-$ ongoing

 \rightarrow Stringent null test of SM, sensitive to presence of non-SM dynamics.

$$I_{K\pi} = \mathscr{A}_{CP}^{K^{+}\pi^{-}} + \mathscr{A}_{CP}^{K^{0}\pi^{+}} \frac{\mathscr{B}(K^{0}\pi^{+})}{\mathscr{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathscr{A}_{CP}^{K^{+}\pi^{0}} \frac{\mathscr{B}(K^{+}\pi^{0})}{\mathscr{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathscr{A}_{CP}^{K^{0}\pi^{0}} \frac{\mathscr{B}(K^{0}\pi^{0})}{\mathscr{B}(K^{+}\pi^{-})} \approx 0 \quad \text{(within ~1\%)}$$

 \rightarrow experimentally consistent with 0 at 10% level, limited by $K_S^0 \pi^0$ mode

$\rightarrow\,$ Belle II in unique position to measure all observables at single experiment

$$\begin{array}{ll}
B^{0} \to K^{+}\pi^{-} & B^{+} \to K^{+}\pi^{0} \\
\mathscr{B}(K^{+}\pi^{-}) &= (20.67 \pm 0.37 \pm 0.62) \times 10^{-6} \\
\mathscr{A}_{CP}(K^{+}\pi^{-}) &= -0.072 \pm 0.019 \pm 0.007 \\
\end{array}$$

$$\begin{array}{ll}
\mathcal{B}^{+} \to K^{0}\pi^{+} & R^{0} \to K^{0}\pi^{0} \\
\mathcal{B}^{+} \to K^{0}\pi^{0} &= R^{0} \to K^{0}\pi^{0}
\end{array}$$

$$\mathcal{B} \longrightarrow K_S \pi$$
$$\mathcal{B}(K_S^0 \pi^+) = (24.40 \pm 0.71 \pm 0.86) \times 10^{-6}$$
$$\mathcal{A}_{CP}(K_S^0 \pi^+) = + 0.046 \pm 0.029 \pm 0.007$$

 $I_{K\pi} = -0.03 \pm 0.13 \pm 0.05$

(world average 0.13 ± 0.11)

$$B^{0} \to K_{S}^{0} \pi^{0}$$
$$\mathscr{B} = (10.50 \pm 0.62 \pm 0.67) \times 10^{-6}$$

 $-0.01 \pm 0.12 \pm 0.05$

world's best

precision on par with W/A! \rightarrow 5% uncertainty achievable @ 10 ab⁻¹

Belle II

Isospin sum rule test

Studies of three-body charmless B decays @ LHCb

Studies of three-body charmless B decays @ LHCb

 \rightarrow two recent measurements, based on the RUN 2 data (5.9 fb⁻¹)

Direct CP violation in charmless three-body decays of B^{\pm} mesons

$$B^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}$$
$$B^{\pm} \to K^{\pm} \pi^{+} \pi^{-}$$
$$B^{\pm} \to \pi^{\pm} K^{+} K^{-}$$
$$B^{\pm} \to K^{\pm} K^{+} K^{-}$$

[PRD.108.012008(2023)]

Search for direct CP violation in charged charmless $\mathbb{B} \to \mathbb{VP}$ decays $B^{\pm} \to (\rho^0 \to \pi^+\pi^-)\pi^{\pm}$ $B^{\pm} \to (\rho^0 \to \pi^+\pi^-)K^{\pm}$ $B^{\pm} \to (K^{*0} \to K^+\pi^-)\pi^{\pm}$

$$B^{\pm} \to (K^{*0} \to K^+ \pi^-) K^{\pm}$$
$$B^{\pm} \to (\phi \to K^+ K^-) K^{\pm}$$

[PRD.108.012013(2023)]

Studies of three-body charmless B decays @ LHCb

- → motivated by large asymmetries observed in RUN 1 measurements of $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}(h = K, \pi)$ (PhysRevD.90.112004, PhysRevLett.124.031801(2020), PhysRevLett.123.231802(2019), PhysRevD101012006(2020))
- \rightarrow condition for direct CPV: interference between amplitudes with different strong and weak phases (leading to the same final state)
- \rightarrow in three body charmless decays interference from:
 - penguin and tree diagrams
 - intermediate resonances
 - final-state-interactions (FSI)

hadronic rescattering: $\pi\pi \leftrightarrow KK$ \rightarrow coupling final states with same quantum numbers e.g. $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-} \& B^{\pm} \rightarrow \pi^{\pm}K^{+}K^{-}$

→ providing a way to understand the role of short- and long-distance contributions to the strong phase difference needed for CPV

L. Falcão @ CKM 2023

Direct CPV in $B^{\pm} \rightarrow h^{\pm} h^+ h^-$

[PRD.108.012008(2023)]

- \rightarrow event selection:
 - multivariate selector (BDT) based on 10 topological/kinematic observables
 - stringent PID requirements to reduce cross contamination to % level
 - charm vetoes
- → fit $m(h^{\pm}h^{+}h^{-})$ distributions to determine signal yields and raw asymmetries
- → raw asymmetries are corrected for reconstruction efficiency and the B^{\pm} production asymmetry determined from $B^{\pm} \rightarrow J/\psi K^{\pm}$ control channel

$$A_{CP} = \frac{A_{raw}^{corr} - A_P}{1 - A_{raw}^{corr} A_P}$$

Decay mode	Total yield	$A_{ m raw}$
$B^{\pm} \rightarrow K^{\pm} \pi^+ \pi^-$	499200 ± 900	$+0.006 \pm 0.002$
$B^\pm \to K^\pm K^+ K^-$	365000 ± 1000	-0.052 ± 0.002
$B^\pm \to \pi^\pm \pi^+ \pi^-$	101000 ± 500	$+0.090\pm0.004$
$B^\pm \to \pi^\pm K^+ K^-$	32470 ± 300	-0.132 ± 0.007

 \rightarrow obtained phase space integrated asymmetries:

$$\begin{array}{cccc} & \text{stat.} & \text{syst.} & J/\psi K \\ A_{CP}(B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}) = +0.011 \pm 0.002 \pm 0.003 \pm 0.003 \\ A_{CP}(B^{\pm} \to K^{\pm}K^{+}K^{-}) = -0.037 \pm 0.002 \pm 0.002 \pm 0.003 \\ A_{CP}(B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}) = +0.080 \pm 0.004 \pm 0.003 \pm 0.003 \\ A_{CP}(B^{\pm} \to \pi^{\pm}K^{+}K^{-}) = -0.114 \pm 0.007 \pm 0.003 \pm 0.003 \\ \end{array} \xrightarrow{} \begin{array}{c} \text{Syst.} & J/\psi K \\ \implies 2.4\sigma \\ \implies 8.5\sigma & \rightarrow \text{First observation!} \\ \implies 14.1\sigma \\ \implies 13.6\sigma & \rightarrow \text{First observation!} \end{array}$$

 \rightarrow localized asymmetries: using sPlot technique, asymmetry maps in Dalitz space are made

- \rightarrow localized asymmetries ranging from (-80%, 80%), with several asymmetry flips
- → closer look into region (1.0, 2.25) GeV²/ c^4 where the S-wave $\pi\pi \leftrightarrow KK$ rescattering effect is seen in elastic scattering experiments confirms large CPV in this region in all four modes

CP violation in charged charmless B \rightarrow V P decays

- → novel method is used to extract direct CPV in quasi-two-body B → V P decays, which result in three-body final states (due to V decay) $(V = \rho^0, K^{*0}, \phi; P = \pi, K)$
- \rightarrow the method avoids full amplitude analysis, based on the key features of three-body B decays
 - 1) large available phase space
 - 2) dominance of scalar and vector resonances @ ~ 1 ${
 m GeV}/c^2$
 - 3) clear signatures of the resonant amplitudes in the Dalitz plot
- \rightarrow method description:

In $B^{\pm} \to R(\to h_1^- h_2^+) h_3^{\pm}$ a narrow band in $m^2(h_1^- h_2^+)$ around the resonance is selected

The distribution of $m^2(h_1^-h_3^+)$ in a band reflects the angular distribution of decay products:

Vector: \rightarrow parabolic(decay width $\propto \cos^2 \theta_{hel}$)Scalar: \rightarrow uniform(isotropic in $\cos \theta_{hel}$)V+S inter.: \rightarrow linear($\propto \cos \theta_{hel}$)

 $B^{\pm} \rightarrow K^{\pm}K^{+}\pi^{-}$ MC

[PRD.108.012013(2023)]

Overlap between vector and scalar resonances

CP violation in charged charmless $B \rightarrow V P$ decays

I HU

[PRD.108.012013(2023)]

Complete set of results

Decay channel	\mathcal{A}_{CP} (this work)	Previous measurements
$\overline{B^{\pm} \rightarrow (\rho(770)^0 \rightarrow \pi^+ \pi^-) \pi^{\pm}}$	$-0.004 \pm 0.017 \pm 0.009$	$+0.007\pm 0.011\pm 0.016$ (LHCb)
$B^{\pm} \rightarrow (\rho(770)^0 \rightarrow \pi^+\pi^-) K^{\pm}$	$+0.150\pm 0.019\pm 0.011$	$+0.44 \pm 0.10 \pm 0.04$ (BABAR) $+0.30 \pm 0.11 \pm 0.02$ (Belle)
$B^{\pm} \rightarrow (K^*(892)^0 \rightarrow K^{\pm} \pi^{\mp}) \pi^{\pm}$	$-0.015 \pm 0.021 \pm 0.012$	$+0.032 \pm 0.052 \pm 0.011$ (BABAR) $-0.149 \pm 0.064 \pm 0.020$ (Belle)
$B^{\pm} \rightarrow (K^*(892)^0 \rightarrow K^{\pm} \pi^{\mp}) K^{\pm}$	$+0.007\pm 0.054\pm 0.032$	$+0.123\pm0.087\pm0.045$ (LHCb)
$B^\pm \to (\phi(1020) \to K^+K^-)K^\pm$	$+0.004\pm 0.014\pm 0.007$	$+0.128 \pm 0.044 \pm 0.013$ (BABAR)

[PRD.108.012013(2023)]

 \rightarrow significantly more precise than previous measurements

→ apart from $B^{\pm} \rightarrow \rho^0 K^{\pm}$ other modes consistent with zero, as expected from CPT constraint. [Phys. Rev. D94 (2016) 054028] → in $B^{\pm} \rightarrow \rho^0 K^{\pm}$ large \mathcal{A}_{CP} likely due to FSI.

Summary

 \rightarrow most precise $\mathcal{B}(B^0 \rightarrow \pi^+\pi^-)$

 \rightarrow updates to LS1 dataset ongoing

- test of $K\pi$ isospin sum rule @ Belle II \rightarrow in agreement with the SM, still statistically limited (by $K_s^0\pi^0$) \rightarrow precision competitive to W.A. \rightarrow world's best result on $\mathcal{A}_{CP}(K_s^0\pi^0)$

- recent measurements of observables sensitive to ϕ_2/α @ Belle II

 \rightarrow on par with world's best in $B^0 \rightarrow \pi^0 \pi^0$ and $B \rightarrow \rho \rho$

- measurement of CPV in three-body charmless B decays @ LHCb
 - → first observation of CPV in $B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}$ and $B^{\pm} \to K^{\pm}K^{+}K^{-}$
 - \rightarrow highly non-uniform asymmetries across the Dalitz space
 - \rightarrow indication of CPV involving $\pi\pi\longleftrightarrow KK$ rescattering
- measurement of CP asymmetries in B \rightarrow V P @ LHCb
 - \rightarrow novel method that allows to extract \mathcal{A}_{CP}^V w/o the full amplitude analysis
 - → first observation of CPV in $B^{\pm} \rightarrow \rho^0 (770) K^{\pm}$

