Hadronic B-Meson Decays at Belle II

K. Trabelsi (IJCLab) karim.trabelsi @in2p3.fr

- We plan to ultimately collect many ab^{-1} of e^+e^- collisions at (or close to) the Y(4S) resonance, so that we have:
 - a (Super) B-factory (~ $1.1 \times 10^9 \text{ B}\overline{\text{B}}$ pairs per ab⁻¹)

 exploit the clean e⁺e⁻ environment to probe the existence of exotic hadrons, dark photons/Higgs, light Dark Matter particles, ALPs, LLPs ...

Belle II run I (2019-2022)

data taking from March 2019 to June 2022

→ despite difficult conditions since March 2020 (Covid, war in Ukraine, energy cost...)

luminosity: 4.7×10^{34} /cm²/s! > 2 fb⁻¹ per day!

Belle II run I (2019-2022)

 \Rightarrow 362 fb⁻¹ at the Y(4S) resonance (rest off resonance, and scan)

⇒ Belle II results presented here with either 189 fb⁻¹ or 362 fb⁻¹, sometimes adding Belle data sample

Topics covered

- $\circ \mathbf{B} \rightarrow \mathbf{D}^{(*)} \mathbf{K}^{-} \mathbf{K}_{\mathrm{S}}$
- $B \rightarrow DK$ and γ
- $\mathbf{B} \rightarrow \pi \pi$, $\rho \rho$ and α
- $\circ \quad \mathbf{B} \rightarrow \mathbf{K} \, \pi$

- \Rightarrow 362 fb⁻¹ at the Y(4S) resonance (rest off resonance, and scan)
- ⇒ Belle II results presented here with either 189 fb⁻¹ or 362 fb⁻¹, sometimes adding Belle data sample

Belle II with 362 fb⁻¹, previous measurement Belle with 29 fb⁻¹ [arXiv:2305.01321]

 $B \rightarrow D^{(*)} K K^{(*)}$ quite unexplored sector: few% of the total B BR, only 0.3% measured

- part of an on-going effort to improve simulation and hadronic B-tagging
- can study the structures observed

(famous efficiency < 1%)

First observation for 3 modes

– use the $B \rightarrow D^{(*)}D_s$ modes as control samples

 \circ Resonances $\rho(1450)$ ⁺ and $\rho(1700)$ ⁺ in B→DKK decays ? (see for example arXiv:2201.06881)

 $\mathbf{B} \rightarrow \mathbf{D}^{(*)} \mathbf{K}^{-} \mathbf{K}_{\mathbf{S}}^{\mathbf{0}}$

Belle II with 362 fb^{-1} , previous measurement Belle with 29 fb^{-1} [arXiv:2305.01321]

 $B \rightarrow D^{(*)} K K^{(*)}$ quite unexplored sector: few% of the total B BR, only 0.3% measured

– part of an on-going effort to improve simulation and B-tagging techniques

- can study the structures observed
- use the $B \rightarrow D^{(*)}D_s$ modes as control samples

First observation for 3 modes

γ measurements from $B^{\pm} \rightarrow DK^{\pm}$

- Theoretically pristine $B \rightarrow DK$ approach
- Access γ via interference between $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow \overline{D}^0 K^-$

 $D \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-}...$ $D \rightarrow K_{S}\pi^{0}, K_{S}\eta...$ $D \rightarrow KK\pi^{0}, \pi\pi\pi^{0}...$ $D \rightarrow K_{S}\pi\pi, K_{S}KK$ $D \rightarrow K_{S}\pi\pi\pi^{0}$ $D \rightarrow ...$

BPGGSZ study $\mathbf{B} \rightarrow \mathbf{D}(\mathbf{K}_{\mathbf{S}}^{\mathbf{0}}\mathbf{h}^{+}\mathbf{h}^{-})\mathbf{h}^{-} \quad h = \pi, K$

• Analysis with 711 fb⁻¹ Belle data and 128 fb⁻¹ Belle II data

(Belle/Belle II collaboration) [arXiv:2110.12125, JHEP (2022) 63]

 $\circ~$ Unbinned 2D simultaneous fit of ΔE versus C $^{\prime}$

GLW study for $B \rightarrow D(KK)K$ and $D(K_S^0 \pi^0)K$

Using Belle (711 fb^{-1}) and Belle II (189 fb^{-1}) , (previous measurement with Belle only 250 fb⁻¹) Fitting simultaneously the B \rightarrow D π and DK samples, D \rightarrow K π and...

with asymmetry ~ 0 for $B \rightarrow D(K \pi)K$ modes

GLW study for $B \rightarrow D(KK)K$ and $D(K_S^0 \pi^0)K$

Fitting simultaneously the $B \rightarrow D\pi$ and DK samples, $D \rightarrow K\pi$ and ... $D \rightarrow KK$ and $K_S^0 \pi^0$

 $\mathcal{R}_{CP+} = 1.164 \pm 0.081 \pm 0.036,$ $\mathcal{R}_{CP-} = 1.151 \pm 0.074 \pm 0.019,$ $\mathcal{A}_{CP+} = (+12.5 \pm 5.8 \pm 1.4)\%,$ $\mathcal{A}_{CP-} = (-16.7 \pm 5.7 \pm 0.6)\%.$

only to B-factories

Direct evidence of opposite $A_{\rm CP}$ for even and odd states

<u>α determination</u>

 ϕ_2/α is by now the less know UT angle with 4°-5° precision

from time dependent CP , we can measure α_{eff} , but we want α !

expanding in r: $\mathbf{S}_{\pi^{+}\pi^{-}} = \sin 2\alpha + 2r \cos \delta \sin(\beta + \alpha) \cos 2\alpha + O(r^{2})$

time dependent decay width:

 $\Gamma(\mathbf{B}^{0}(t)) \propto \Gamma_{\pi^{+}\pi^{-}} \left[1 + C_{\pi^{+}\pi^{-}} \cos\Delta m t - S_{\pi^{+}\pi^{-}} \sin\Delta m t\right]$

3 measurables vs. 4 unknowns: T, r, δ , γ

→ additional inputs required to determine the penguin pollution to fix r isospin analysis: combining with the information from other $\pi\pi$ modes

α (inputs from $B \rightarrow \pi \pi$)

 $\pi^0 \pi^0$: most challenging charmless decay. Only photons in the final state, completely swamped by continuum from real π^0 [arXiv:2303.08354]

$\alpha (inputs from B \rightarrow \rho \rho)$

Preliminary results reported last year for $B^+ \rightarrow \rho^0 \rho^+$ and $B^0 \rightarrow \rho^+ \rho^-$ with 189 fb⁻¹ [arXiv:2206.12362], [arXiv:2208.03554]

 \Rightarrow updates to full Run I sample ongoing ...

Isospin sum-rule and $K_S^0 \pi^0$

Isospin symmetry can be exploited to construct sum rules: linear combinations of branching fractions and CP asymmetries, and with the set of $B \rightarrow K \pi$ decays:

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}$$

- Predicted to be zero with 1% in the SM (null test)
- Experimentally consistent with zero $(I_{K\pi} = (-13 \pm 11)\%)$
- \Rightarrow with 10% precision limited by the $K_S^0 \pi^0$ observables

Isospin sum-rule and $K_S^0 \pi^0$

Two analyses for $B^0 \rightarrow K_S^0 \pi^0$, one decay-time integrated and the other decay-time dependent [arXiv:2305.07555], Time-dependent CP Violation Measurements at Belle II: S.Hazra combined to enhance sensitivity:

 $\begin{aligned} \mathscr{B} &= (10.50 \pm 0.62 \pm 0.67) \times 10^{-6} \\ A_{CP} &= -0.01 \pm 0.12 \pm 0.05 \\ S_{CP} &= 0.75^{+0.20}_{-0.23} \pm 0.04 \end{aligned}$

Putting all $K\,\pi$ results together , the Belle II isospin sum-rule gives :

 $I_{K\pi} = (-3 \pm 13 \pm 5)\%$

Agrees with SM. Competitive with world average of $(-13\pm11)\%$

 $B^0 \to K_S^0 \pi^0$

Belle II run I (2019-2022)

⇒ what about run II ?

Long-shutdown (LS1) activity and plans

Belle II stopped taking data in Summer 2022 for a long shutdown

- accelerator improvements: injection, non-linear collimators, monitoring...
- additional shielding and increased resilience against beam bckg
- replacement of beam-pipe
- installation of 2-layered pixel vertex detector
- replacement of photomultipliers of the central PID detector (TOP)
- completed transition to new DAQ boards (PCIe40)
- work on other detectors as CDC, KLM...
- improved data-quality monitoring and alarm system

VXD extraction in May

TOP MCP-PMT replacement work

PXD2 at KEK since March

CDC FE reinstallation work

Summary

- Belle II has now on tape a sample equivalent to that of BaBar, half of Belle
- Allow to refine our tools, improve our analyses, understanding our detector
- Some first competitive results: a selection of hadronic B decays shown today
- Currently preparing the detector and the machine to ramp-up at full speed.
- Will resume data-taking next Winter, on our way to the $10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ world

Belle II calendar

run 1 (\rightarrow June 2022): integrated luminosity ~0.43 ab⁻¹, 4-5×10³⁴/cm²/s PXD complete (2 layers) to be installed during LS1 (2022-2023) (+beampipe + TOP PMTs) run 2 (\rightarrow 2027): integrated luminosity 5-10 ab⁻¹, 2×10³⁵/cm²/s 2027: collider upgrade (QCS+RF) \rightarrow installation upgraded detector run 3 (\rightarrow 2035): 50 ab⁻¹

SuperKEKB, the first new collider in particle physics since the LHC in 2008 (electron-positron (e⁺ e⁻) rather than proton-proton (p-p))

Phase 1

Background , Optics commissioning Feb - June **2016** Brand new 3km positron ring

Phase 2: Pilot run

Superconducting Final Focus add positron damping ring First Collisions (0.5 fb⁻¹) April 27-July 17, **2018**

Phase 3: Physics run Since April, 2019

