

Quark Flavor Physics Experiments: CP Violation

Shohei Nishida KEK, SOKENDAI, Niigata

ICFA Seminar 2023

S. Nishida (KEK) Nov. 29, 2023 Quark Flavor Physics Experiments: CP Violation

Contents

- Introduction
 - ✓ Status of SuperKEKB, Belle II
- Measurements on Unitarity Triangle
 - \checkmark sin(2 ϕ_1) / sin(2 β)
 - ✓ ¢s
 - ✓ γ / φ₃
- Other Measurements, Prospects
- Summary

- pp collision @ LHC.
- Forward detector optimized for b and c studies.

S. Nishida (KEK) Nov. 29, 2023 Quark Flavor Physics Experiments: CP Violation

SuperKEKB and Belle II

- e^+e^- collider (4 GeV e^+ + 7 GeV e^-) at KEK. $\checkmark e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$
- Run1 Operation 2019-2022.
- Long shutdown (LS) 1 from summer 2022 to fully install the pixel detector (PXD).
- Run2 Operation starts from Jan. 2024.

Energy scan data above $\Upsilon(4S)$ is taken for bottomonium study.

- Luminosity 4.7 × 10³⁴ cm⁻² s⁻¹ achieved (Jun. 2022):
 - ✓ World record (~ ×2 of KEKB)
 - ✓ Aiming one order higher.
- 424 fb⁻¹ of data accumulated so far.
 - $\checkmark\,$ Similar to BaBar data set.
 - ✓ Belle: 1 ab^{-1} in 11 years.
 - ✓ Belle II target: 50 ab⁻¹.

Quark Flavor Physics Experiments: CP Violation

3

CP Violation and KM theory

- CP violation: a key for the matter-antimatter asymmetry.
- Kobayashi-Maskawa theory (1973)
 - ✓ CP violation in the Standard Model (SM)
 - ✓ Complex phase in the quark mixing matrix

CKM (Cabibbo-Kobayashi-Maskawa) Matrix

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

From the unitarity of the matrix:

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

- Triangles in the complex plane.
- Other triangles exist.

S. Nishida (KEK) Nov. 29, 2023 Quark Flavor Physics Experiments: CP Violation ICFA Seminar 2023

4

CP Violation in B Meson

S. Nishida (KEK) Nov. 29, 2023

Quark Flavor Physics Experiments: CP Violation

Unitarity Triangle

excluded area has CL > 0.95

Observation CP violation in B mesons (2001): BaBar and Belle $sin(2\beta) = 0.687 \pm 0.028 \pm 0.012$ (BaBar [PRD79, 072009 (2009)]) $sin(2\phi_1) = 0.667 \pm 0.023 \pm 0.012$ (Belle [PRL108, 171802 (2012)])

1.0

2008 Nobel Prize

$\phi_1 = \beta$ $\phi_2 = \alpha$ $\phi_3 = \gamma$

- Precise measurement of the Unitarity Triangle \rightarrow Test of the SM
 - \checkmark "Over-constrain" the triangle.
 - ✓ Still room of New Physics effects.

S. Nishida (KEK) Nov. 29, 2023

luded area has < 0.05 Cl

Quark Flavor Physics Experiments: CP Violation

$sin(2\beta)$ at LHCb

• $B \rightarrow J/\psi (\rightarrow \mu^+\mu^-, e^+e^-) K_S, \psi(2S) (\rightarrow \mu^+\mu^-) K_S.$

S. Nishida (KEK) Nov. 29, 2023

Quark Flavor Physics Experiments: CP Violation

ICFA Seminar 2023

[arXiv:2309.09728]

CPV in $B^0 \to \eta' K_S$ at Belle II

- b \rightarrow s penguin process: sensitive to NP
- $S = -\xi \sin(2\phi_1)$ in the SM, but NP contribution can modify S.
- The theoretical uncertainty depends on the final states. $\eta' K^0$ is one of the cleanest modes.
- + $B \to \eta^{\prime} K_{S}$ from Belle II with 362 fb^{-1}

$S = 0.67 \pm 0.10 \pm 0.04$
$C = -0.19 \pm 0.08 \pm 0.03$
$(B \rightarrow \eta' K_L \text{ or } \eta \rightarrow \pi^+ \pi^- \pi^0 \text{ modes})$

are not included yet)

S. Nishida (KEK) Nov. 29, 2023

Quark Flavor Physics Experiments: CP Violation

CPV in $B^0 \rightarrow K_S \pi^0 \gamma$ at Belle II

S. Nishida (KEK) Nov. 29, 2023

Quark Flavor Physics Experiments: CP Violation

ICFA Seminar 2023

9

$\mathsf{B}_{\mathsf{s}}\to\mathsf{J/}\psi\;\varphi$

Another combination of the unitarity of the CKM matrix makes a squashed triangle.

 $V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0$

• β_s can be measured in mixing-induced CP violation in B_s decays like $B_s \rightarrow J/\psi \phi$. $\phi_s = \phi_{mix} - 2 \phi_d = -2 \beta_s$ (in SM) $\phi_s = -36.8 \substack{+0.9\\-0.6}$ mrad (SM)

- Excellent time resolution (<100fs) necessary because of fast B_s oscillation
- Flavor tagging
- Two vectors in the final state.
 - ✓ Use angular distributions to extract the CP eigenstate.

 $\phi_s^{J/\psi KK}$ [rad] HFLAV 2021

S. Nishida (KEK) Nov. 29, 2023

$B_s \rightarrow J/\psi \phi$ at LHCb

11

Nov. 29, 2023

CP Violation

- Only tree contributions: theoretically clean.
- Several decay modes (final states) possible to extract γ / ϕ_3 .
- Amplitude ratio r_B and strong phase δ_B are mode-dependent.
 - $\checkmark\,$ sensitivity depends on the decay modes.

• GLW (Gronau-London-Wyler) [PLB 253 (1991) 483, PLB 265 (1991) 172]

 $\checkmark \ B^{\pm} \rightarrow D^0{}_{CP} \ K^{\pm}$

- ✓ Use CP eigenstate of D meson.
- ADS (Atwood-Dunietz-Soni) [PRL 78, 3357 (1997), PRD 63. 036005 (2001)]
 - ✓ Enhancement of CP violation by using doubly Cabibbo suppressed decays.
- BPGGSZ (Bondar-Poluektov-Giri-Grossmann-Soffer-Zupan) [PRD 68. 054018 (2003)]
 - \checkmark 3 (or multi-) body final state.
 - ✓ Different amplitude and strong phase in different region of Dalitz plot.
- GLS (Grossmann-Ligeti-Soffer) [PRD 67. 071301 (R) (2003)]
 - ✓ Singly Cabibbo suppressed D decay ($K_SK\pi$)

Note) D decay parameters (information on the strong phase) are necessary inputs from CLEO-c, BESIII. Need improvements by BESIII for more precise measurement of γ / ϕ_3 .

3

LHCb Combined γ (= ϕ_3)

B decay	D decay	Ref.	Dataset		1					1	[] HCh-CO	NF-202	2-0031
		11							TITCI	-			2 000]
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+h^-$	29	Run 1&2	Ŷ	B ⁰				LHCD -	1		_	
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	30	Run 1		2 0 ² 3		1		Preliminary -	1			НСО
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K^{\pm}\pi^{\mp}\pi^{\mp}\pi^{-}$	18	Run 1&2	-	0.8 B ⁰				October 2022-	1			HCF
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+h^-\pi^0$	19	Run 1&2					-1		1		•	
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_{S}^{0}h^{+}h^{-}$	31	Run 1&2		B ⁺		1	- / · · · · ·]			
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_S^0 K^{\pm} \pi^{\mp}$	32	Run 1&2					1] r			
$B^{\pm} \rightarrow D^{*}h^{\pm}$	$D \rightarrow h^+ h^-$	29	Run 1&2		0.0 All Modes		1	1				~ -	
$B^{\pm} \rightarrow DK^{\star\pm}$	$D \rightarrow h^+ h^-$	33	Run $1\&2(*)$		L		X	1			(0)	o +3.5 v	
$B^{\pm} \rightarrow DK^{\star\pm}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	33	Run $1\&2(*)$					1			$\gamma = (03.0)$) ĭ
$B^{\pm} \rightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D \rightarrow h^+ h^-$	34	Run 1		0.4					4	1	-3.7	′
$B^0 \rightarrow DK^{*0}$	$D \rightarrow h^+ h^-$	35	Run $1\&2(*)$		- 68.3%	1 1						• • •	
$B^0 \rightarrow DK^{*0}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	35	Run 1&2(*)										
$B^0 \rightarrow DK^{*0}$	$D \rightarrow K_S^0 \pi^+ \pi^-$	36	Run 1							i i			
$B^0 \rightarrow D^{\mp} \pi^{\pm}$	$D^+ \rightarrow K^- \pi^+ \pi^+$	37	Run 1		0.2						abal fit by		fittor
$B_s^0 \to D_s^{\mp} K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	38	Run 1		0.0		XX			יוט ו	odal III dy		muer
$B_s^0 \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ \rightarrow h^+ h^- \pi^+$	39]	Run 1&2		95.4%		11				,		
D decay	Observable(s)	Ref.	Dataset		0	and a second	1					1	1 .
					50	60	70	80	90		v = (6)	55''	<u>'</u>)°
$D^0 ightarrow h^+ h^-$	ΔA_{CP}	24.40,41	Run 1&2						4 [°]	1	γ - (U	-2	7/
$D^0 \rightarrow K^+ K^-$	$A_{CP}(K^+K^-)$	16.24, 25	Run 2						7 []			<u> </u>	•
$D^0 \rightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^-\pi^+}$	42	Run 1										
$D^0 ightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^{-}\pi^{+}}$	15	Run 2		• I ead	tina t	the v	mea	surem	ent			
$D^0 ightarrow h^+ h^-$	ΔY	43 - 46	Run 1&2		Loui	in g		mou	ouronn				
$D^0 \rightarrow K^+ \pi^-$ (Single Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	47]	Run 1		. Initia			10	0001100		at a abiav	~ d	
$D^0 \to K^+ \pi^-$ (Double Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	48	Run 1&2(*)		• IIIIIi	ll gua	al 01 4	4 1116	easure	me		eu.	
$D^0 \rightarrow K^{\pm} \pi^{\mp} \pi^+ \pi^-$	$(x^2 + y^2)/4$	49	Run 1			U							
$D^0 \rightarrow K^0_S \pi^+ \pi^-$	x, y	50	Run 1								- 3.0 -		
$D^0 \rightarrow K^0_S \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	51	Run 1									o,	
$D^0 \rightarrow K_S^0 \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	52	Run 2								9 25		LHCh
$D^0 \to K_{\rm S}^0 \pi^+ \pi^- (\mu^- \text{ tag})$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	17	Run 2								<u>o</u>		9fb^{-1}
											$\widehat{}$, 10

• A few more new results came this year (not included above) \checkmark e.g., B⁰ \rightarrow D K* with D \rightarrow K_Sh⁺h⁻ [arXiv:2309.05514].

$$\gamma = (49^{+22}_{-19})^{\circ}$$

S. Nishida (KEK) Nov. 29, 2023

Quark Flavor Physics Experiments: CP Violation

ICFA Seminar 2023 14

1.5

1.0

2.0

 $m^2(K_S^0\pi^+)$ [GeV²/c⁴]

3.0

 $m^{2}(K_{S}^{0})$

1.0

0.5

Belle + Belle II Combined ϕ_3 (= γ)

 $\phi_3 = (78.6 \pm 7.3)^\circ$ Consistent with WA.

Prospect: 1.5° at 50 ab⁻¹ [arXiv:2203.11349]

ICFA Seminar 2023 15

100

95.4%

φ_ [°]

150

Quark Flavor Physics Experiments: CP Violation

0.2

0

0

50

S. Nishida (KEK) Nov. 29, 2023

Other Measurements

S. Nishida (KEK) Nov. 29, 2023

Quark Flavor Physics Experiments: CP Violation

Prospects

Further improvements (higher precisions, studies of new modes, observables) are expected with more than one order larger data samples.

- LHCb (9 fb⁻¹ \rightarrow 300 fb⁻¹)
 - ✓ precision of γ : 4° → 0.35°
 - ✓ precision of ϕ_s (from $B_s \rightarrow J/\psi \phi$): 22 mrad → 4 mrad
- Belle II (1 $ab^{-1} \rightarrow 50 ab^{-1}$)
 - $\checkmark~precision~of~S(\eta'K_S): 0.08 \rightarrow 0.015$

[LHCb-PUB-2022-012, arXiv:2203.11349]

S. Nishida (KEK) Nov. 29, 2023 Quark Flavor Physics Experiments: CP Violation

Summary and Conclusion

0.6

0.5

- Precise measurements of Unitarity Triangle provides an interesting test for New Physics.
- LHCb has been improving the measurements.
- Belle II started and has joined the game.
 - ✓ Unique measurements for some modes.
- Consistent with the SM or not ?

 $\Delta m_{d} \& \Delta m_{s}$

S. Nishida (KEK) Nov. 29, 2023

Quark Flavor Physics Experiments: CP Violation

Backup

S. Nishida (KEK) Nov. 29, 2023 Quark Flavor Physics Experiments: CP Violation

SuperKEKB and Belle II

$e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$

- Belle II experiment at KEK: flavor physics experiment, successor of Belle.
- SuperKEKB asymmetric electron-positron collider: 4 GeV e⁺ + 7 GeV e⁻.
- Nano beam scheme to achieve high luminosity.
- General purpose Belle II detector: 4π coverage
 - ✓ Key components: vertex detector, particle identification.

S. Nishida (KEK) Nov. 29, 2023

CPV in $B^0 \to J/\psi K_S$ at Belle II

 au_{B^0} and Δm_d (<u>PRD107(2023)9,L091102</u>) □ Measured in $B^0 \rightarrow D^{(*)-}\pi^+$

- \square Measured in $B^{\circ} \rightarrow D^{(*)} \pi^{+}$
- $\Box \tau_{B^0} = 1.499 \pm 0.013 \pm 0.008 \text{ ps}$
- $\Box \Delta m_d = 0.516 \pm 0.008 \pm 0.005 \text{ ps}^{-1}$
- S and C fit
 - $\Box \Delta t$ resolution considered in PDF
 - remove background from the fit (<u>sFit</u>)
 - $\square S = 0.724 \pm 0.035 \pm 0.014$
 - $\square C = 0.035 \pm 0.026 \pm 0.012$
 - HFLAV: $S = 0.695 \pm 0.019 C = 0.000 \pm 0.020$
 - LHCb: $S = 0.716 \pm 0.015 C = 0.012 \pm 0.012$

GFlaT reduces statistical uncertainty by ~8%

S. Nishida (KEK) Nov. 29, 2023

GFIaT: GNN Flavor Tagger

S. Nishida (KEK) Nov. 29, 2023

CPV in b \rightarrow s at Belle II

 $\mathsf{HFLAV:}\ C_{CP} = 0.01 \pm 0.14\ S_{CP} = 0.74^{+0.11}_{-0.13} \quad \mathsf{HFLAV:}\ C_{CP} = -0.15 \pm 0.12\ S_{CP} = -0.83 \pm 0.17 \quad \mathsf{HFLAV:}\ C_{CP} = 0.01 \pm 0.10\ S_{CP} = 0.57 \pm 0.17$

S. Nishida (KEK) Nov. 29, 2023

Belle + Belle II Combined ϕ_3 (= γ)

[JHEP09(2023)146]

- $B^{\pm} \rightarrow DK^{\pm}$, $D\pi^{\pm}$ with $D \rightarrow K_S K^{\pm} \pi^{\mp}$ (GLS method)
- Belle 711 fb⁻¹ + Belle II 362 fb⁻¹
- The results alone do not determine ϕ_3 , Combined with other results.

 $R_{\rm SS/OS}^{D\pi} = 2.412 \pm 0.132 \pm 0.019,$

Table 2. The auxiliary input observables and their values used in the ϕ_3 combination.

Decay	Observable	Value	Source	Reference	
	$R_D^{K\pi}$	$(3.44 \pm 0.02) \times 10^{-3}$	HELAV	[5]	
$D \to K^+ \pi^-$	$\delta_D^{K\pi}$	$(191.7 \pm 3.7)^{\circ}$	III LAV		
	$r_D^{K\pi}\cos(\delta_D^{K\pi})$	-0.0562 ± 0.0081	BESHI	[97]	
	$r_D^{K\pi} \sin(\delta_D^{K\pi})$	-0.011 ± 0.012	DESIII	[27]	
$D \rightarrow K^+ \pi^- \pi^0$	$r_D^{K\pi\pi^0}$	0.0447 ± 0.0012			
	$R_D^{K\pi\pi^0}$	0.81 ± 0.06	CLEO + LHCb	[28]	
	$\delta_D^{K\pi\pi^0}$	$(198 \pm 15)^{\circ}$			
$D \rightarrow K^{+} h^{-} h$	$r_D^{K\pi\pi^0}$	0.0440 ± 0.0011			
	$R_D^{K\pi\pi^0}$	0.78 ± 0.04	BESIII	[29]	
	$\delta_D^{K\pi\pi^0}$	$(196 \pm 15)^{\circ}$			
	$(r_D^{K_{\rm S}^0 K \pi})^2$	0.356 ± 0.034			
$D \rightarrow K^0_{\rm s} K^- \pi^+$	$\kappa_{D_o}^{K_{ m S}^0K\pi}$	0.94 ± 0.12	CLEO	[30]	
	$\delta_{D_{o}}^{K_{\mathrm{S}}^{0}K\pi}$	$(-16.6 \pm 18.4)^{\circ}$			
	$(r_D^{K^0_{\rm S}K\pi})^2$	0.370 ± 0.003	LHCb	[31]	
$B^+ \to Dh^+$	$R_{\rm GLS}$	$0.0789 {\pm} 0.0027$	PDG	[32]	

S. Nishida (KEK) Nov. 29, 2023

Quark Flavor Physics Experiments: CP Violation

$B \rightarrow K\pi$ (sum-rule)

$B \rightarrow K\pi$

S. Nishida (KEK)

Nov. 29, 2023

- Rare decay, but relatively high branching fraction (~10⁻⁵)
- Tree diagram (with V_{ub}) + penguin diagram
 - ✓ Direct CP violation is possible (observed)
- The sum-rule provides precise prediction of the relation of the branching fractions and A_{CP}.

[M.Gronau, PLB627 (2005) 82]

Quark Flavor Physics Experiments:

CP Violation

$$I_{K\pi} = \mathcal{A}_{CP}^{K^{+}\pi^{-}} + \mathcal{A}_{CP}^{K^{0}\pi^{+}} \frac{\mathcal{B}_{K^{0}\pi^{+}}}{\mathcal{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{CP}^{K^{+}\pi^{0}} \frac{\mathcal{B}_{K^{+}\pi^{0}}}{\mathcal{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{CP}^{K^{0}\pi^{0}} \frac{\mathcal{B}_{K^{0}\pi^{0}}}{\mathcal{B}_{K^{+}\pi^{-}}}$$

- $I_{K\pi}$ is predicted to be 0 within 1%
- Belle II can measure all the observables.

 B^0

$B \rightarrow K\pi$ (sum-rule) from Belle II

 $B(B^{0}\rightarrow K^{+}\pi^{-}) = (20.67 \pm 0.37 \pm 0.62) \times 10^{-6}$ $A_{CP}(B^{0}\rightarrow K^{+}\pi^{-}) = -0.072 \pm 0.019 \pm 0.007$

 $I_{K\pi} = -0.03 \pm 0.13 \pm 0.04$

 $\begin{array}{l} \mathsf{B}(\mathsf{B}^{0}{\rightarrow}\mathsf{K}^{0}\pi^{0}) = (10.40 \pm 0.66 \pm 0.60) \times 10^{-6} \\ \mathsf{A}_{\mathsf{CP}}(\mathsf{B}^{0}{\rightarrow}\mathsf{K}^{0}\pi^{0}) = -0.06 \pm 0.15 \pm 0.04 \end{array}$

from the time-integrated analysis. This is combined with the time-dependent analysis.

- Consistent with the SM prediction (null).
- Competitive with world average (-0.13 ± 0.11)

even with smaller dataset than Belle

S. Nishida (KEK) Nov. 29, 2023

Physics at Belle II

- Intensity frontier experiment: Search for New Physics with precise measurements.
- Rich physics programs with B, charm, τ .

 $(e^+e^- \text{ collider})$: advantage for the final states with neutral particles and missing particles. \checkmark e.g. B⁺ \rightarrow K⁺ $v\bar{v}$

S. Nishida (KEK) Nov. 29, 2023

Quark Flavor Physics Experiments: CP Violation

LS1 @ SuperKEKB, Belle II

Quark Flavor Physics Experiments: CP Violation

LS1 @ SuperKEKB, Belle II

- Laser system has worked fine without any significant trouble.
- DOE was installed also at 2nd laser line in the last summer maintenance, and it has worked fine.
- In the run 2022a/b, bunch charge of 2 nC can be kept with bunch charge feedback.
- 5 nC from gun was demonstrated. Further beam study is on-going during LS1.
- New DOE with large area improve energy spread and emittance until HER injection.
- BTe-ECS is planned to install at FY2024
- e+ beam
 - · The new FC is working fine.
 - Reached bunch charge of 3.5 nC at BT end (final design 4 nC).
- Upgrade work during LS1
 - · Pulsed Quads (x8) at J-ARC for the simultaneous dedicated matching of HER/LER injection beam
 - Pulsed Quads (x4) at Sector1, 2 for low beta optics of HER injection beam
 - New accelerating structure
 - · Replacement of air conditioners at SectorA, B (in the accelerator tunnel)
 - Fast kicker for 2nd bunch orbit correction
- Issues

LINAC

MR

- Emittance growth at end of BT2 for both of e- and e+ beam (BT report, Injection report)
- Low e- injection efficiency of 2nd bunch
- · Increase the e- bunch charge while keeping small emittance

· Many upgrade & maintenance works are progressed during LS1.

- · LS1 started in July 2022 and will end in November 2023.
- Next beam operation is scheduled to restart in December 2023.

· Progress of "IR works" & "NLC construction" were reported.

- · And also, damaged collimator heads were replaced with new ones.
- · Most planed works will be completed by October 2023.
- · Beam operation will resumed from December 2023.
- · Sudden Beam Loss (SBL) is one of the concerned issues to be solved.
- · Frequently, the beam suddenly disappears within few turns just before the abort.
- · The cause of SBL is still unknown. (Several candidates for the cause are considered.)
- · Continuation of investigation or study of SBL is needed to avoid it.

S. Nishida (KEK) Nov. 29, 2023