# Suppression of Continuum Background with Neural Networks for Belle II

Bela Urbschat

Max Planck Institute for Physics, Technical University of Munich

December 19, 2023

CS with NNs for Belle II

Suppression of Continuum Background with Neural Networks for Belle II

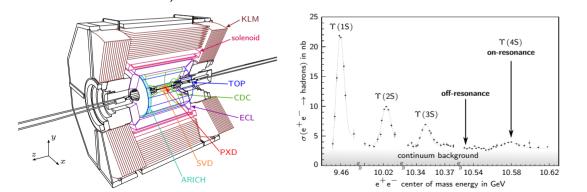
Bela Urbsci

Max Planck Institute for Physics, Technical University of

December 19, 2023

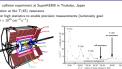
# Belle II/SuperKEKB Overview

- e<sup>+</sup> e<sup>-</sup> collision experiment at SuperKEKB in Tsukuba, Japan
- Operation at the  $\Upsilon(4S)$  resonance
- Aim for high statistics to enable precision measurements (luminosity goal:  $\mathcal{L}=6\times10^{35}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}$ )



CS with NNs for Belle II

Belle II/SuperKEKB Overview

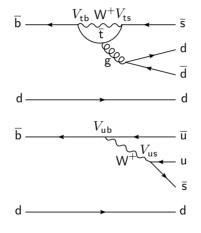


### Theoretical Motivation

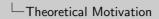
# SM Null Test ("Isospin Sum Rule")

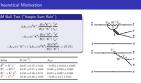
$$2\mathcal{A}_{CP}(\pi^{0}\mathsf{K}^{+})\frac{\mathcal{B}(\pi^{0}\mathsf{K}^{+})}{\mathcal{B}(\pi^{-}\mathsf{K}^{+})}\frac{\tau_{\mathsf{B}^{0}}}{\tau_{\mathsf{B}^{+}}}$$
$$-\mathcal{A}_{CP}(\pi^{+}\mathsf{K}^{0})\frac{\mathcal{B}(\pi^{+}\mathsf{K}^{0})}{\mathcal{B}(\pi^{-}\mathsf{K}^{+})}\frac{\tau_{\mathsf{B}^{0}}}{\tau_{\mathsf{B}^{+}}}$$
$$-\mathcal{A}_{CP}(\pi^{-}\mathsf{K}^{+}) + 2\mathcal{A}_{CP}(\pi^{0}\mathsf{K}^{0})\frac{\mathcal{B}(\pi^{0}\mathsf{K}^{0})}{\mathcal{B}(\pi^{-}\mathsf{K}^{+})} = \mathcal{O}(1\%)$$

| decay                                            | $\mathcal{B} [10^{-6}]$   | $\mathcal{A}_{CP}$           |
|--------------------------------------------------|---------------------------|------------------------------|
| $B^0 	o K^+\pi^-$                                | $20.67 \pm 0.37 \pm 0.62$ | $-0.072 \pm 0.019 \pm 0.007$ |
| $B^+ \to K^0 \pi^+$                              | $24.37 \pm 0.71 \pm 0.86$ | $0.046 \pm 0.029 \pm 0.007$  |
| $B^+\toK^+\pi^0$                                 | $13.93 \pm 0.38 \pm 0.71$ | $0.013 \pm 0.027 \pm 0.005$  |
| $\operatorname{B}^0 \to \operatorname{K}^0\pi^0$ | $10.40 \pm 0.66 \pm 0.60$ | $-0.06 \pm 0.15 \pm 0.04$    |



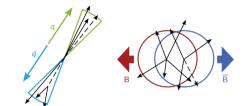
CS with NNs for Belle II

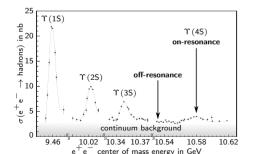




- 1. Sum rule as null-test to the SM.
- 2. Holds in isospin symmetry limit (equal quark masses) (right?)
- 3. Not exactly = 0, but expected deviation from zero is still much smaller then experimental uncertainties.
- 4. Highlight the B  $\rightarrow$  K $\pi$  decay modes appearing in sum rule.
- 5. Highlight that  $B^0 \to K^0 \pi^0$  is measured worst (also as not self tagging)
- 6. NP (particles) could contribute to loops.

# Continuum Background





- ullet e $^+$ e $^- 
  ightarrow qar{q}$  where  $q={\sf u,d,c,s}$
- dominating background for B decay measurements (other backgrounds easily rejected)
- excess energy results in hadronic iets
- topology distinct from signal decays

CS with NNs for Belle II





Continuum Background

- 1. Point to the event shape figure.
- 2. Explain uniform  $q\bar{q}$  background in resonances figure.

B. Urbschat (MPP/TUM)

CS with NNs for Belle II

December 19, 2023

3 4/

# Continuum Suppression

#### General Idea

Use topological differences to classify signal and background  $\rightarrow$  thrust frames

#### **Usual Approach**

- Variables *engineered* for continuum suppression
- BDT for classification

### Proposed Approach

- Low level momentum and decay vertex variables
- Attempt to use DNNs, expecting them to excel in extraction of information from low level variables

Past research: Common CS variables augmented with low level variables. Never low level variables exclusively.

B. Urbschat (MPP/TUM) CS with NNs for Belle II December 19, 2023 5/17

CS with NNs for Belle II

Continuum Suppression

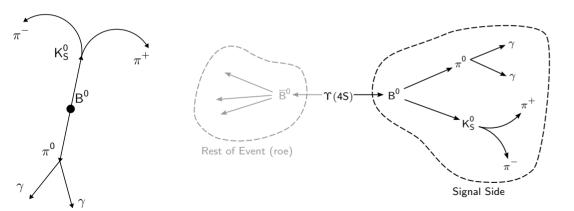


- 1. Make sure to explain thrust frames!
- 2. Momentum/vertex variables in theory should contain all the information of event shape.

#### Reconstruction and Data

Chose  $B^0 \to K_S^0(\pi^+\pi^-)\pi^0(\gamma\gamma)$  as an example

- Reconstruct charged tracks and calorimeter clusters
- Tracks/clusters not matched to B decay form the rest of event (roe)



CS with NNs for Belle II

Reconstruction and Data



1. Explain signal thrust/roe thrust using figure on the right

B. Urbschat (MPP/TUM) CS with NI

CS with NNs for Belle II

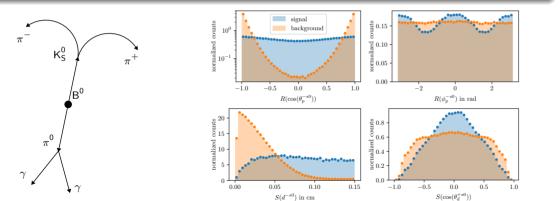
December 19, 2023

6 / 17

# Continuum Suppression Variables

B. Urbschat (MPP/TUM)

- Momentum vector: p,  $\theta_p$ ,  $\phi_p$ , decay vertex position: d,  $\theta_d$ ,  $\phi_d$
- Use same number of tracks/clusters from roe as available for signal
- $\rightarrow$  Fit variables:  $\Delta E$ , probability integral transform (denoted  $\mu$ )

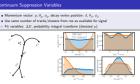


CS with NNs for Belle II

December 19, 2023

CS with NNs for Belle II





- 1. Note that we attempted to use more variables from roe which did not result in a significant performance gain
- 2. Explain chosen orders tracks/clusters for variables
- 3. Explain notation (briefly)
- 4. Explain variables that do not fall under the naming scheme
- 5. Explain intuition for polar angle distribution based on antiparallel/random alignment of thrust axes.

#### Classifiers Used

#### Boosted Decision Trees (BTDs)

- Robust classifiers
- Give good baseline for expected performance
- Here no in-depth hyperparameter tuning

# Deep Neural Networks (DNNs)

- Initial motivation: Possibly better at utilizing information from low level variables → better performance?
- Turn out to be much more delicate/difficult to handle
- Main subject of studies for this thesis

CS with NNs for Belle II

Classifiers Used

Classifiers Used

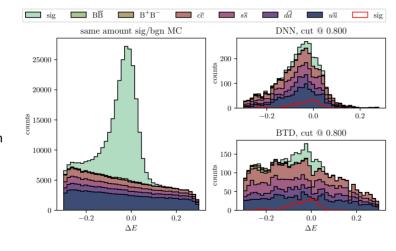
Robust classifiers
Give good baseline for expected

Give good baseline for expected utilizing information performance
 Here no in-depth hyperparameter tuning
 Turn out to be much

Turn out to be much more delicate/difficult to handle
Main subject of studies for this thesis

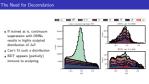
### The Need for Decorrelation

- If trained as is, continuum suppression with DNNs results in highly sculpted distribution of  $\Delta E$
- Can't fit such a distribution
- BDT appears (partially) immune to sculpting



CS with NNs for Belle II

The Need for Decorrelation



- 1. Explain expected shape using left plot.
- 2. Highlight that fit with observed level of sculpting is clearly impossible.

B. Urbschat (MPP/TUM)

CS with NNs for Belle II

December 19, 2023

# Tools(s) for Decorrelation

Distance Correlation

- Efficiently estimable correlation metric, capturing also non-linear correlations
- Only one further hyperparameter introduced

Total loss:

$$\mathcal{L}_{\mathsf{total}} = \mathcal{L}_{\mathsf{classifier}}(\overrightarrow{y}, \overrightarrow{y}_{\mathsf{true}}) + \lambda \cdot \mathsf{dCorr}(\overrightarrow{z}, \overrightarrow{y})$$

However tuning still difficult:

- Too large  $\lambda$  degrades performance
- Effectiveness of decorrelation also influenced by other hyperparameters (batch size, network architecture)
- Systematic tuning extremely difficult due to conflicting objectives
- → Studies with preliminary hyperparameters to better understand behavior

B. Urbschat (MPP/TUM) CS with NNs for Belle II December 19, 2023 10 / 17





 $\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{classifier}}(\vec{y}, \vec{y}_{\text{true}}) + \lambda \cdot \text{dCorr}(\vec{z}, \vec{y})$ 

However tuning still difficult:

- Too large λ degrades performance
   Effectiveness of decorrelation also influenced by other hyperparameters (batch size
- network architecture)

   Systematic tuning extremely difficult due to conflicting objectives
- 1. Also mention that adversary networks have been implemented, but could not be sufficiently tuned for this thesis.
- 2. Explain symbols in the equation!

└─Tools(s) for Decorrelation

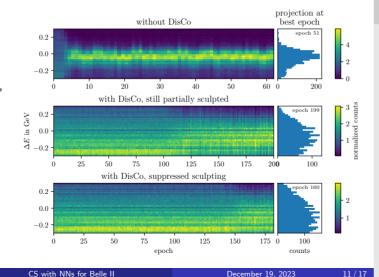
- 3. Mention that classifier loss is binary cross-entropy.
- 4. Explain the conflicting objectives of best performance and effective decorrelation (problem: performance always better for correlated classifier).

### Monitoring DNN Training

Evolution of  $\Delta E$  (Background) Distribution

- Preliminary hyperparameters with different values for  $\lambda$  (0, 1, 1.8)
- Achieved decorrelation still not satisfactory
- Sculpting (partially suppressed) suddenly starts after sufficient number of epochs

B. Urbschat (MPP/TUM)



- 1. Highlight that after sufficient training (or epochs), correlation (more or less suddenly) starts → decorrelation is unstable.
- 2. Mention that here the goal was to reach lower sculpting than BDT in hope of this improving fit quality (i.e. lowering the statistical uncertainties). Thus the best decorrelation is still not satisfactory.
- 3. Distributions are normalized at each epoch!

# Choice of Hyperparameters

|                 | prelim. value | final value | description                                                |
|-----------------|---------------|-------------|------------------------------------------------------------|
| $n_{layers}$    | 5             | 5           | number of layers                                           |
| $n_{neurons,0}$ | 100           | 100         | 1st dense layer neurons                                    |
| $n_{neurons,1}$ | 100           | 100         | 2nd dense layer neurons                                    |
| $n_{neurons,2}$ | 4             | 6           | 3rd dense layer neurons                                    |
| $n_{neurons,3}$ | 100           | 100         | 4th dense layer neurons                                    |
| $n_{neurons,4}$ | 100           | 100         | 5th dense layer neurons                                    |
| weight decay    | 0.000142      | 0.000142    | Weight decay for AdamW                                     |
| learning rate   | 0.002         | 0.015       | learning rate                                              |
| dCorr on bgn    | True          | True        | choice to compute dCorr on only background events          |
| $\lambda$       | 1.8           | 2           | scale of dCorr in total loss                               |
| $s_{\lambda}$   | 7.5           | 7.5         | scale factor for $\lambda$ when dCorr computed on bgn only |
| batch size      | 2048          | 16384       | number of events in a minibatch                            |

 $<sup>\</sup>rightarrow$  In the following DNN with applied decorrelation and final hyperparameters is referred to as *DisCoDNN* 

B. Urbschat (MPP/TUM) CS with NNs for Belle II December 19, 2023 12/17

CS with NNs for Belle II

2023-12-

Choice of Hyperparameters

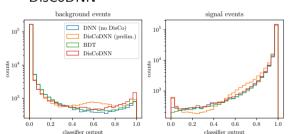
|              | prelim. value | final value | description                                                  |
|--------------|---------------|-------------|--------------------------------------------------------------|
| Diero        | 5             | 5           | number of layers                                             |
| Preprint 0   | 100           | 100         | 1st dense layer neurons                                      |
| Denom i      | 100           | 100         | 2nd dense layer neurons                                      |
| Donner 2     | 4             | 6           | 3rd dense layer neurons                                      |
| Denomal I    | 100           | 100         | 4th dense layer neurons                                      |
| Denom i      | 100           | 100         | 5th dense layer neurons                                      |
| weight decay | 0.000142      | 0.000142    | Weight decay for AdamW                                       |
| earning rate | 0.002         | 0.015       | learning rate                                                |
| Corr on bgs  | True          | True        | choice to compute dCorr on only background events            |
| λ            | 1.6           | 2           | scale of dCorr in total loss                                 |
| 53.          | 7.5           | 7.5         | scale factor for \(\lambda\) when dCorr computed on ben only |
| oatch size   | 2048          | 16354       | number of events in a minibatch                              |

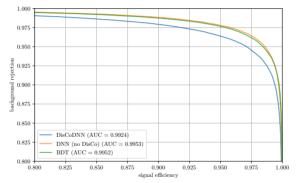
1. Highlight the "unusual" hyperparameters: Large batch size, bottleneck architecture

### Performance Evaluation

Classifier Outputs, ROC Curves

- Output distributions shaped as expected
- Clear performance drop when applying decorrelation
- Maximum signal efficiency lower for DisCoDNN





CS with NNs for Belle II

Performance Evaluation

Performance Evaluation

The Performance Evaluation

The Performance Evaluation

1. Note that prelim. DisCoDNN only shown as reference for *not good* output distribution.

B. Urbschat (MPP/TUM) CS with NNs for Belle II December 19, 2023 13/17

### $\Delta E$ and $\mu$ after Continuum Suppression

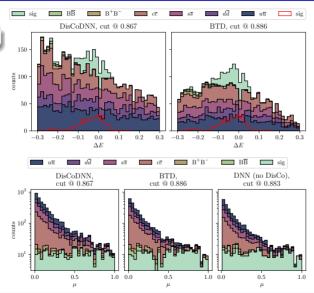
Cuts always chosen for 90% signal efficiency

#### $\Delta E$ :

- Effective decorrelation with DisCoDNN
- Remaining (but acceptable) sculpting for BDT
  - $\rightarrow$  Could further investigate decorrelation for BDTs
- Overall better background suppression with BDT at same signal efficiency

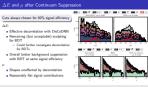
#### $\mu$ :

- Shapes unaffected by decorrelation
- Reasonably flat signal contributions



CS with NNs for Belle II

 $\sqsubseteq \Delta E$  and  $\mu$  after Continuum Suppression



1. Maybe mention how cut positions were determined/that they were determined using an appropriate procedure.

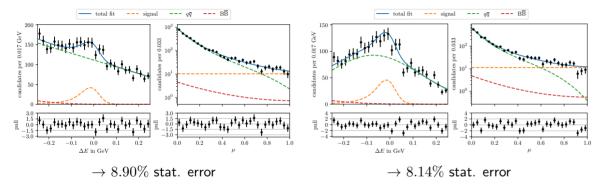
B. Urbschat (MPP/TUM)

CS with NNs for Belle II

December 19, 2023

14 / 17

#### Fits on MC

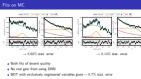


- Both fits of decent quality
- No real gain from using DNN
- ullet BDT with exclusively *engineered* variables gives  $\sim 9.7\%$  stat. error

B. Urbschat (MPP/TUM) CS with NNs for Belle II December 19, 2023 15/1

CS with NNs for Belle II

└─Fits on MC

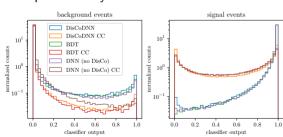


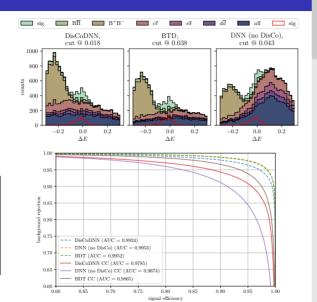
1. Shapes fixed on MC, final fit of only yields

# Classifier Generalizability

Apply to topologically similar control channel  $B^0 \to \overline{D}^0(K^+\pi^-)\pi^0(\gamma\gamma)$ 

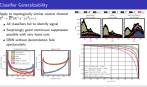
- All classifiers fail to identify signal
- Surprisingly good continuum suppression possible with very loose cuts
- DNN without decorrelation fails spectacularly





CS with NNs for Belle II

Classifier Generalizability



- 1. Mention that this demonstrates the problem of generalizability!
- 2. Note that DNN (no DisCo) seems *not* to just "compute" or estimate  $\Delta E$  and then more or less cut on that, as  $B\overline{B}$  background remains!
- 3. Possibly the correlations are then what allows the DNN to sculpt  $\Delta E$ . This would make sense as DisCoDNN does not really rely on correlations.

B. Urbschat (MPP/TUM)

CS with NNs for Belle II

December 19, 2023

2023

16 / 17

#### Conclusion & Outlook

- Introduced set of low level continuum suppression variables
- Prepared BDT and DNNs using introduced variables, expecting DNN to profit from those
- DNNs require decorrelation, which most likely limits their performance
- Fits on MC show similar accuracies for BDT/DNN but slighly better than BDT with common CS variables
- → Low level CS variables could reduce statistical errors but further investigation (e.g. systematics etc.) needed for final judgement

#### For the Future

- Study influence of single variables on sculpting (to possibly exclude them)
- Impact on performance with alternative decorrelation method (e.g. adversarial networks)
- Application of similar decorrelation to BDT
- Application within a fully fledged analysis (including systematics etc.)

B. Urbschat (MPP/TUM) CS with NNs for Belle II December 19, 2023 CS with NNs for Belle II

Conclusion & Outlook

- Fits on MC show similar accuracies for BDT/DNN but sliehly better than BDT with
- Low level CS variables could reduce statistical errors but further investigation (e. systematics etc.) needed for final judgement

#### v Study influence of single variables on sculpting (to possibly exclude then

- Application within a fully fledged analysis (including systematics etc.)

1. In fact the sculpting also happens with only engineered variables. It's just that so far everyone always used BDTs which are not subject to that issue.

# Data Samples

- Generic (run independent) MC ( $q\bar{q}$  where  $q = u, d, s, c \& B\bar{B}$ ):  $1 \text{ ab}^{-1}$
- Pure signal MC for signal channel and control channel:  $4 \times 10^6$  and  $2 \times 10^6$  events produced resulting in  $1\,019\,638$  and  $523\,183$  reconstructed events respectively
- Physics data: 361.65 fb<sup>-1</sup>
- Off-resonance generic MC ( $q\bar{q}$  where q = u, d, s, c):  $169.328 \, \text{fb}^{-1}$
- Off-resonance data:  $42.28 \, \text{fb}^{-1}$

#### MC Modeling

- Problems with the available samples ( $\tau^ \tau^+$ , momentum corrections) remain
- MC modeling overall not bad, considering the above
- → Further investigation needed for final judgment

B. Urbschat (MPP/TUM) CS with NNs for Belle II December 19, 2023 2 / 10

CS with NNs for Belle II

└─Data Samples

#### Data Samples

- a Generic (run independent) MC ( $q\bar{q}$  where q=u,d,s,c &  $B\bar{B}$ ):  $1\,ab^{-1}$
- a Pure signal MC for signal channel and control channel:  $4\times10^6$  and  $2\times10^6$  events produced resulting in 1 019 638 and 523 183 reconstructed events respectively. A Physics data: 361 65 ft<sup>-1</sup>
- Off-resonance generic MC (qq where q = u, d, s, c): 169.328 fb<sup>-1</sup>
- Off-resonance generic MC (qq where q = u, d, s, c): 169.5
   Off-resonance data: 42.28 fb<sup>-1</sup>

#### leling

 $_{
m e}$  Problems with the available samples ( $au^ au^+$ , momentum corrections) remain

MC modeling overall not bad, considering the above
 Further investigation needed for final judgment

# Continuum Suppression Variables

All Input Variables

| $\Delta z$                 | $R(\cos(\theta_p^{+s0}))$            | $R(\phi_p^{0s0})$             | $S(\cos(\theta_{p}^{-s0}))$ | $S(\phi_d^{-r0})$ | $S(p^{+s0})$      |
|----------------------------|--------------------------------------|-------------------------------|-----------------------------|-------------------|-------------------|
| $\cos(\theta_{SR})$        | $R(\cos(\theta_d^{-r_0}))$           | $R(\phi_p^{0s1})$             | $S(\cos(\theta_n^{+r_0}))$  | $S(\phi_d^{-s0})$ | $S(\phi_p^{0r0})$ |
| $\cos(\theta_{Sz})$        | $R(\cos(\theta_d^{-s0}))$            | $R(\phi_p^{-r0})$             | $S(\cos(\theta_p^{+s0}))$   | $S(\phi_d^{+r0})$ | $S(\phi_p^{0r1})$ |
| $M_{ m bc}'$               | $R(\cos(\theta_d^{+r_0}))$           | $R(\phi_p^{-s0})$             | $S(\cos(\theta_d^{-r_0}))$  | $S(\phi_d^{+s0})$ | $S(\phi_p^{0s0})$ |
| $R(\cos(\theta_p^{0r0}))$  | $R(\cos(\theta_d^{+s0}))$            | $R(\phi_p^{+r_0})$            | $S(\cos(\theta_d^{-s0}))$   | $S(p^{0r0})$      | $S(\phi_p^{0s1})$ |
| $R(\cos(\theta_p^{0r1}))$  | $R(\phi_d^{-r0})$                    | $R(\phi_n^{+s0})$             | $S(\cos(\theta_d^{+r0}))$   | $S(p^{0r1})$      | $S(\phi_p^{-r0})$ |
| $R(\cos(\theta_n^{0s0}))$  | $R(\phi_d^{-s0})$                    | $S(\cos(\theta_n^{0r0}))$     | $S(\cos(\theta_d^{+s0}))$   | $S(p^{0s0})$      | $S(\phi_p^{-s0})$ |
| $R(\cos(\theta_p^{0s1}))$  | $R(\phi_d^{+r0})$                    | $S(\cos(\theta_n^{0r_1}))$    | $S(d^{-r0})$                | $S(p^{0s1})$      | $S(\phi_p^{+r0})$ |
| $R(\cos(\theta_p^{-r_0}))$ | $R(\phi_d^{+s0})$                    | $S(\cos(\theta_{\pi}^{0s0}))$ | $S(d^{-s0})$                | $S(p^{-r_0})$     | $S(\phi_p^{+s0})$ |
| $R(\cos(\theta_n^{-s0}))$  | $R(\phi_p^{0r0}) \\ R(\phi_p^{0r1})$ | $S(\cos(\theta_p^{0s1}))$     | $S(d^{+r0})$                | $S(p^{-s0})$      |                   |
| $R(\cos(\theta_p^{+r0}))$  | $R(\phi_p^{0r1})$                    | $S(\cos(\theta_p^{-r0}))$     | $S(d^{+s0})$                | $S(p^{+r0})$      |                   |

CS with NNs for Belle II

Continuum Suppression Variables

Continuum Suppression Variables

B. Urbschat (MPP/TUM)

CS with NNs for Belle II

December 19, 2023

3/10

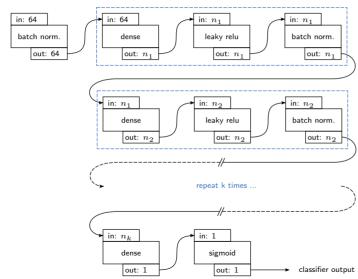
# Neural Network Architecture and Training

#### Network Architecture:

- Blocks of dense, activation function and batch normalization layers (# layers = # blocks)
- Initial batch normalization to normalize raw input values
- Final activation mapped to (0,1)by sigmoid function

#### **DNN** Training:

- AdamW optimizer (implements weight decay as regularization)
- Fixed learning rate



CS with NNs for Belle II

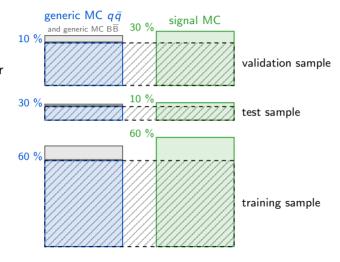
Neural Network Architecture and Training

Neural Network Architecture and Training lavers (# lavers = # blocks) a Initial batch permalization to normalize raw input values a Final activation manned to (0.1) by sigmoid function DNN Training · AdamW optimizer (implements weight decay as regularization) · Fixed learning rate



# Data Samples for Training

- Samples should contain same number of signal and background events to avoid bias towards either type
- Samples for training and evaluation of performance during as well as after training should be disjoint
- ightarrow Combine  $qar{q}$  and  ${\sf B}^0 
  ightarrow {\sf K}^0_{\sf S}(\pi^+\pi^-)\pi^0(\gamma\gamma)$  events from available MC samples



CS with NNs for Belle II

Samples for Training

Samples for Training

Samples for Training

Data Samples for Training

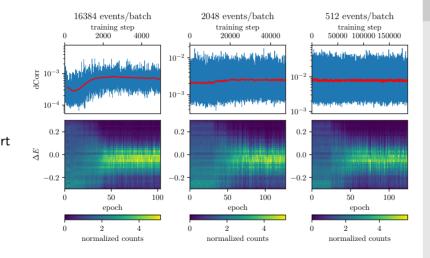
Data Samples for Training

Data Samples for Training

# Monitoring DNN Training

Coincidence of dCorr Increase and Sculpting

- Very large batch sizes required for numerical stability
- Clear coincidence of start of sculpting and dCorr increase (if observable)



CS with NNs for Belle II

Monitoring DNN Training

Monitoring DNN Training

Monitoring DNN Training

B. Urbschat (MPP/TUM) CS with NNs for Belle II

December 19, 2023

6/10

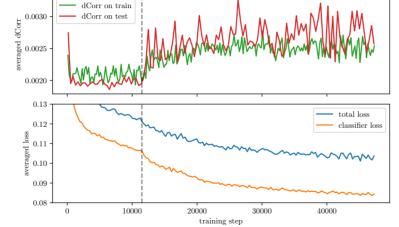
2023-

# Monitoring DNN Training

**Evolution of Loss** 

- Too weak decorrelation  $\rightarrow$  slight knee in total loss curve
- dCorr on training sample sufficiently generalizable

B. Urbschat (MPP/TUM)



December 19, 2023

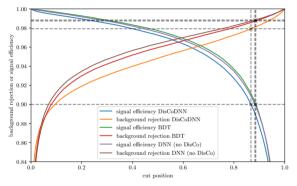
CS with NNs for Belle II

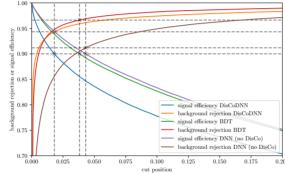




1. Talk about intuition of barrier in parameter space. DisCo appear to introduce barrier but never really plane the global (correlated) minimum.

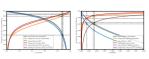
# Choosing Continuum Suppression Cuts





CS with NNs for Belle II

Choosing Continuum Suppression Cuts



Choosing Continuum Suppression Cuts

B. Urbschat (MPP/TUM)

CS with NNs for Belle II

December 19, 2023

# Fits on MC

Fit Results Table

|                                 | signal          | $q\overline{q}$ | $B\overline{B}$ |
|---------------------------------|-----------------|-----------------|-----------------|
| true yield DisCoDNN             | 318             | 3313            | 71              |
| true yield BDT                  | 321             | 2134            | 75              |
| yield DisCoDNN                  | $310.6\pm28.3$  | $3343\pm39$     | $49.30\pm31.28$ |
| yield BDT                       | $337.5\pm26.1$  | $2149\pm35$     | $43.52\pm27.83$ |
| rel. fit error DisCoDNN in $\%$ | 8.902           | 1.178           | 44.06           |
| rel. fit error BDT in $\%$      | 8.144           | 1.626           | 37.1            |
| rel. true error DisCoDNN in %   | $2.335\pm8.902$ | $0.897\pm1.178$ | $30.57\pm44.06$ |
| rel. true error BDT in $\%$     | $5.133\pm8.144$ | $0.710\pm1.626$ | $41.97\pm37.10$ |
| pull DisCoDNN in $\sigma$       | -0.2623         | 0.7619          | -0.6937         |
| pull BDT in $\sigma$            | 0.6302          | 0.4367          | -1.131          |

CS with NNs for Belle II

L

Fits on MC

|                               | signal            | 97                | $B\overline{B}$   |
|-------------------------------|-------------------|-------------------|-------------------|
| true yield DisCoDNN           | 318               | 3313              | 71                |
| true yield BDT                | 321               | 2134              | 75                |
| yield DisCoDNN                | $310.6 \pm 28.3$  | 3343 ± 39         | 49.30 ± 31.28     |
| yield BDT                     | $337.5 \pm 26.1$  | 2149 ± 35         | $43.52 \pm 27.83$ |
| rel. fit error DisCoDNN in %  | 8.902             | 1.178             | 44.05             |
| rel. fit error BDT in %       | 8.144             | 1.626             | 37.1              |
| rel. true error DisCoDNN in % | $2.335 \pm 8.902$ | $0.897 \pm 1.178$ | 30.57 ± 44.06     |
| rel. true error BDT in %      | $5.133 \pm 8.144$ | $0.710 \pm 1.626$ | $41.97 \pm 37.10$ |
| pull DisCoDNN in a            | -0.2623           | 0.7619            | -0.6937           |
| pull BDT in σ                 | 0.6302            | 0.4367            | -1.131            |

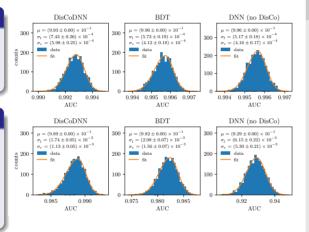
# Classifier Performance Stability & Input Variable Correlations

#### **Bootstrapping**

- Models fluctuations of occurrences of event types, not numerical fluctuations
- All classifiers remain reasonably stable

#### Uncorrelated Toys

- Do not model correlations, as nearly impossible
- Classifiers that do not significantly sculpt  $\Delta E$  barely utilize correlations between input variables



B. Urbschat (MPP/TUM) CS with NNs for Belle II December 19, 2023 10 / 10 CS with NNs for Belle II

Classifier Performance Stability & Input Variable Correlations



Classifier Performance Stability & Input Variable Correlations





