

Time-dependent CP violation in B⁰ decays

S. Bahinipati Indian Institute of Technology Bhubaneswar

16th International Conference on Heavy Quarks and Leptons (HQL2023) TIFR [November 28 - December 2, 2023]

Talk Outline

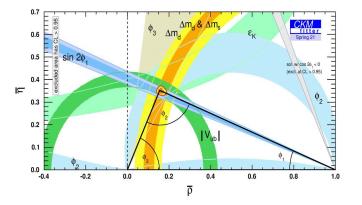
- Introduction
- Time-dependent CP violation
- Detectors: Belle II, LHCb
- Recent results from Belle II

 $\begin{array}{l} B^0 \rightarrow \eta' \ K_s \\ B^0 \rightarrow K_s \ K_s \ K_s \\ B^0 \rightarrow \Phi \ K_s \\ B^0 \rightarrow K_s \ \pi^0 \\ B^0 \rightarrow K_s \ \pi^0 \gamma \\ B^0 \rightarrow J/\psi \ K_s \end{array}$

• Recent results from LHCb

 $B^{0} \rightarrow J/\psi K_{s}$ $B_{s} \rightarrow J/\psi \Phi$ $B_{s} \rightarrow \Phi \Phi$ [Bhagyashree's talk]

• Summary and Outlook


Introduction

- CP violation in Standard Model (SM) is manifested due to a complex phase in the CKM matrix.
- Unitarity of the CKM matrix leads to triangles in the complex (ρ , η) plane.
- Unitarity Triangles are closed in the SM. Any deviation would be a hint for New Physics.
- Precise measurements by Belle, Belle II, LHCb and others lead to improved precision in the measurement of the angles.

(HFLAV 2021)

 $\beta = \phi_1 = (22.2 \pm 0.7)^\circ$

$$\Phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) \cong \arg(V_{td})$$

Time-dependent CP violation

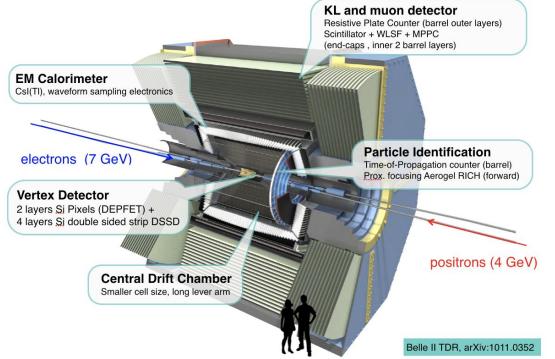
CP violation in interference of decays with/without mixing (meson oscillation):

$$\Gamma(P^0(\rightsquigarrow\bar{P}^0)\to f)(t)\neq \Gamma(\bar{P}^0(\rightsquigarrow\bar{P}^0)\to f)(t)$$

$$\begin{split} A_{CP}(t) &= \frac{\Gamma_{P^{0}(t) \to f} - \Gamma_{\bar{P}^{0}(t) \to f}}{\Gamma_{P^{0}(t) \to f} + \Gamma_{\bar{P}^{0}(t) \to f}} \\ &= \mathbf{S_{CP}} \operatorname{sin}(\bigtriangleup m_{d} t) - \mathbf{C_{CP}} \operatorname{cos}(\bigtriangleup m_{d} t) \end{split}$$

 B^0 f interference \bar{B}^0

Time-dependent CPV


Mixing-induced CP Direct CP asymmetry

In Standard Model, C= 0, S = $sin2\phi_1$

Belle and Belle II

- Asymmetric e⁺-e⁻ colliders- B factories, also charm and τ factories
- Belle Belle II: e⁺ (3.5 GeV) e⁻ (8 GeV) e⁺ (4 GeV) e⁻(7 GeV)
- Improved vertex resolution allows lower boost
- 424 fb⁻¹ (362 fb⁻¹ at Y(4S)) collected at Belle II so far; Goal: 50 ab⁻¹

Luminosity Frontier experiment

LHCb

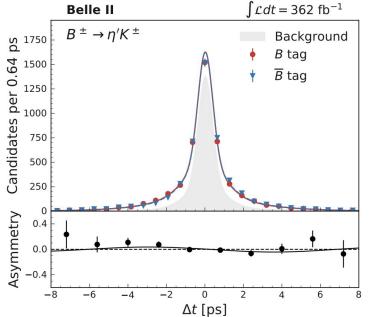
Energy Frontier experiment


- Huge *b* cross-section
- Excellent vertex resolution and particle identification
- Events with high multiplicity, reconstruction of neutrals is challenging
- 9 fb⁻¹ accumulated during Run 1-2 (2010-2018)
- Run 3 started in 2022 with an upgraded LHCb detector, goal 50 fb⁻¹

 $B^0 \rightarrow \eta' K_s$

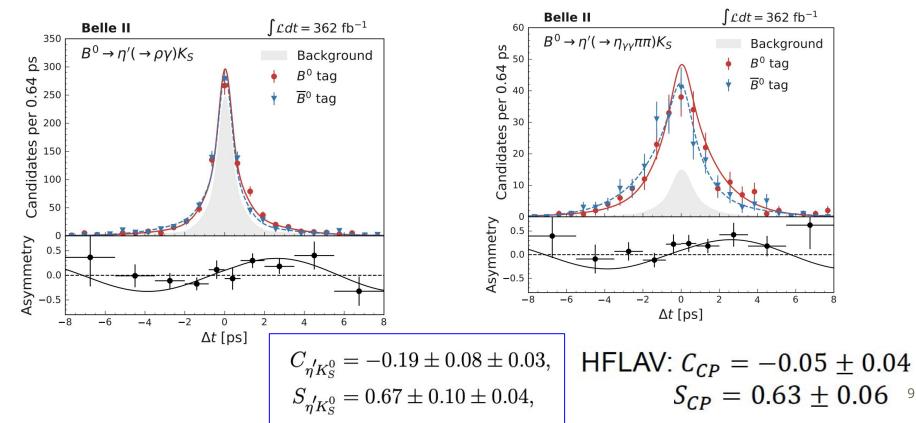
- Random combination of tracks from qq leads to high background
- Event-shape MVA used to suppress this combinatorial background
- Signal yield = 829 +/- 15 events; Fit Δ t to extract S_{CP} and C_{CP}
- Background △t shape controlled from sideband

EPS-HEP 2023


 $\Delta E = E_B^* - E_{\rm beam}^*$

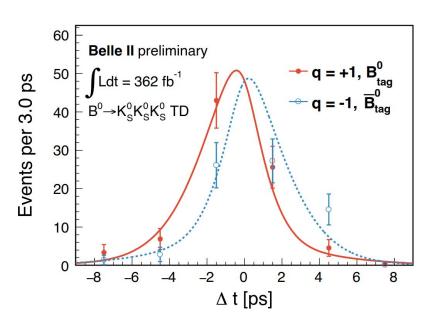
$B^0 \rightarrow \mathbf{\eta}' K_s$

- S_{CP} and C_{CP} extracted from fit in signal region with background parameters fixed from first step
- Fit validated with $B^{\pm} \rightarrow \eta' K^{\pm}$


Signal yield	$C_{\eta' K^0_S}$	$S_{\eta'\!K^0_S}$
358 ± 20	-0.10 ± 0.13	0.69 ± 0.14
471 ± 29	-0.24 ± 0.10	0.65 ± 0.13
55 ± 8	0.11 ± 0.32	0.25 ± 0.50
829 ± 35	-0.19 ± 0.08	0.67 ± 0.10
	$ \begin{array}{r} 358 \pm 20 \\ 471 \pm 29 \\ 55 \pm 8 \end{array} $	$ \begin{array}{r} 358 \pm 20 & -0.10 \pm 0.13 \\ 471 \pm 29 & -0.24 \pm 0.10 \end{array} $

Belle II

 $B^0 \rightarrow \eta' K_s$



$B^0 \rightarrow K_s K_s K_s$

- Major challenge: no prompt tracks→vertex reconstruction from Ks trajectories
- No contributions from opposite-CP backgrounds

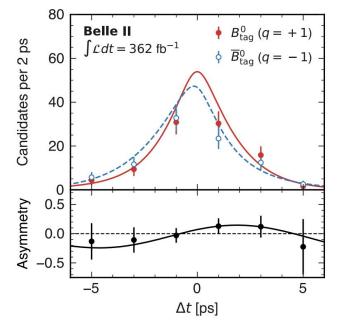
$$C_{CP} = -0.07 \pm 0.20 \pm 0.05$$

$$S_{CP} = -1.37^{+0.35}_{-0.45} \pm 0.03$$

MORIOND 2023

HFLAV: $C_{CP} = -0.15 \pm 0.12 S_{CP} = -0.83 \pm 0.17$

Phys. Rev. D 108, 072012 (2023)


• Results competitive with best measurements

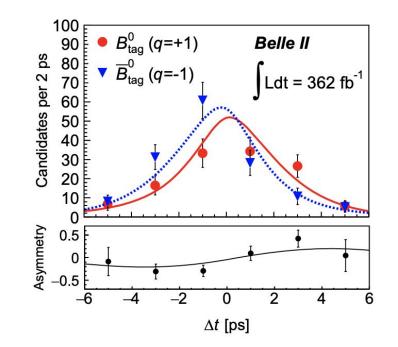
• Two prompt tracks from $\Phi \rightarrow K^+K^-$: Clean signature

 $B^0 \rightarrow \Phi K_c$

 Major challenge: non-resonant backgrounds with opposite-CP

 $C_{CP} = -0.31 \pm 0.20 \pm 0.05$ $S_{CP} = 0.54 \pm 0.26^{+0.06}_{-0.08}$

HFLAV: $C_{CP} = 0.01 \pm 0.14 S_{CP} = 0.74^{+0.11}_{-0.13}$



 $B^0 \rightarrow K_s \pi^0$

- First Belle II measurement of CP asymmetries in the decay
- Results competitive with previous measurements
- Fitting to the proper decay-time distribution of a sample 415^{+26}_{-25} signal events

$$C_{CP} = -0.04 \pm 0.15 \pm 0.05$$

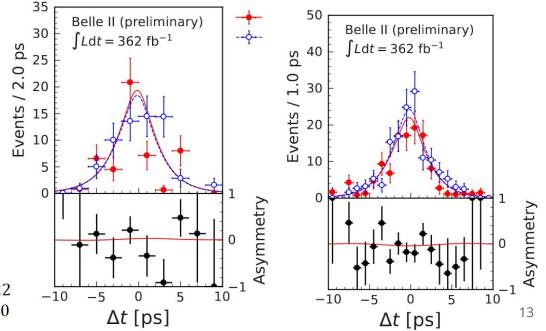
$$S_{CP} = 0.75^{+0.20}_{-0.23} \pm 0.04$$

HFLAV: $C_{CP} = 0.01 \pm 0.10 S_{CP} = 0.57 \pm 0.17$

$B^0 \rightarrow K_s \pi^0 \gamma$

- Consider exclusive decay to $K^{*0}(\rightarrow K_{s}\pi^{0})\gamma$ and inclusive decay to $K_{s}\pi^{0}\gamma$ separately
- Polarization of photon strongly constrains flavor
- SM: *S*_{*CP*} helicity suppressed NP processes could contribute to a significant mixing-induced CPV

HFLAV:


 $K^{*0}\gamma: \quad C_{CP} = -0.04 \pm 0.14 \ S_{CP} = -0.16 \pm 0.22$ $K_S \pi^0 \gamma: \ C_{CP} = -0.07 \pm 0.12 \ S_{CP} = -0.15 \pm 0.20$

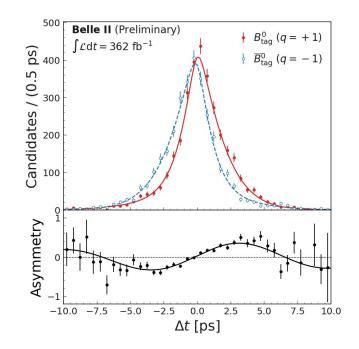
EPS-HEP 2023

$$\begin{array}{l} C_{CP} = 0.10 \pm 0.13 \pm 0.03 \\ S_{CP} = 0.00^{+0.27+0.03}_{-0.26-0.04} \end{array} \quad \begin{array}{l} C_{CP} = \\ S_{CP} = 0.00^{+0.27+0.03}_{-0.26-0.04} \end{array}$$

 $C_{CP} = -0.06 \pm 0.25 \pm 0.07$ $S_{CP} = 0.04^{+0.45}_{-0.44} \pm 0.10$

Most precise result till date

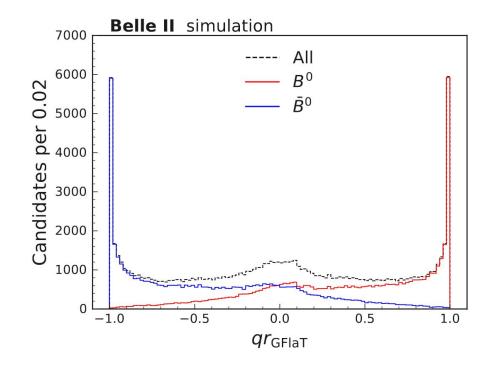
$B^0 \rightarrow K_s \pi^0 \gamma$


- No prompt tracks challenge
- Reconstruct vertex only from K_s using beam-spot constraint
- To measure C_{CP} in a time integrated manner, candidates with poor vertex reconstruction are used
- Fake beam background π^0 are suppressed using MVA method to select one candidate

- SM measurement with large BF and experimentally clean signature
- Validate Flavor Tagger (FT) performance
- New flavor tagger (GFIaT) based on graph neural network (GNN), which uses inter-relational information between particles, developed in Belle II
- ~8% reduction in statistical uncertainty due to a GFIaT

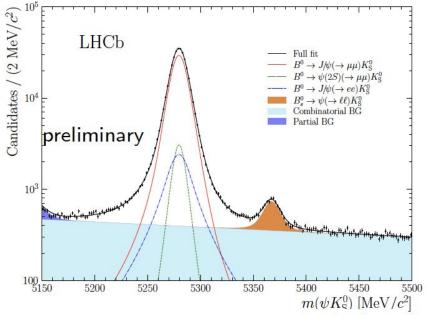
$$C_{CP} = -0.035 \pm 0.026 \pm 0.012$$

$$S_{CP} = 0.724 \pm 0.035 \pm 0.014$$


EPS-HEP 2023

HFLAV: $C_{CP} = 0.000 \pm 0.020 S_{CP} = 0.695 \pm 0.019$

- Conventional FT: ϵ_{tag} = 31.68 ± 0.45 ± 0.41%
- GFIaT: ϵ_{tag} = 37.40 ± 0.43 ± 0.34%
- ~18% increase in tagging efficiency compared to conventional flavor tagger!

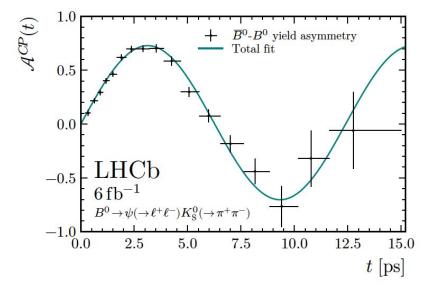

- New LHCb Run 2 (6 fb⁻¹) results using $B_d \rightarrow J/\psi K_s$ (both muons and electrons) and $B_d \rightarrow \psi(2S) K_s$ tagged time dependent analysis to determine sin 2 β (= sin 2 Φ_1)
- Using Run 1 (3 fb^{-1}) + Run 2 data:

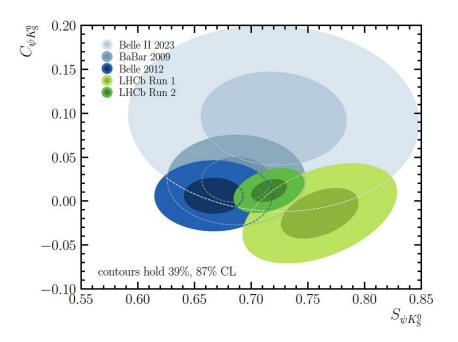
$$egin{aligned} S_{\psi K_{
m S}^0} &= 0.717 \pm 0.013 \, {
m (stat)} \pm 0.008 \, {
m (syst)} \ C_{\psi K_{
m S}^0} &= 0.008 \pm 0.012 \, {
m (stat)} \pm 0.003 \, {
m (syst)} \end{aligned}$$

2309.09728 [hep-ex]

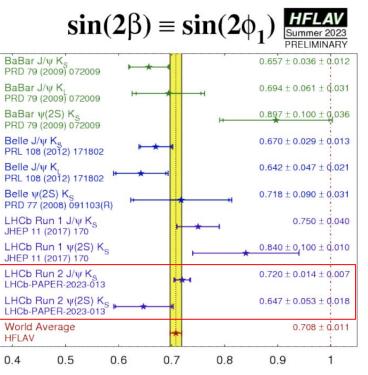
(Submitted to PRL)

LHCB-PAPER-2023-013


(Simultaneous fit of 3 decay modes, $B^0 \rightarrow J/\psi$ (l⁺l⁻) K_s and $B^0 \rightarrow \psi$ (2S) ($\mu^+\mu^-$) K_s, where l = e or μ)



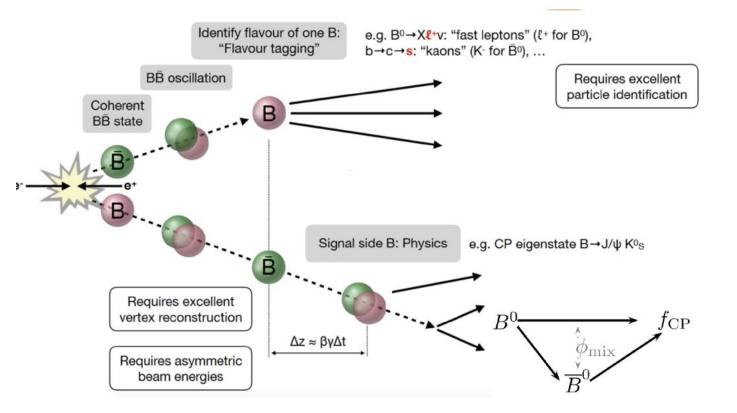
- Small CP violation asymmetry observed
- Consistent with SM predictions
- Using Run 1 (3 fb⁻¹) + Run 2 data, using combination of measurements:

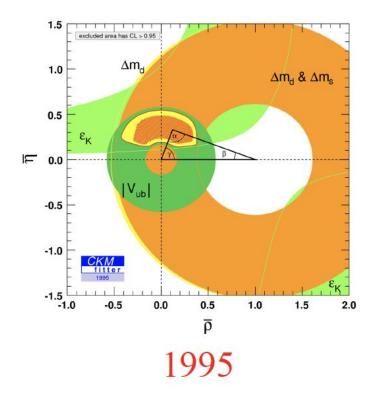

$$S_{\psi K_{\rm S}^0}^{\rm Run\ 1\&2} = 0.724 \pm 0.014 \,(\text{stat+syst})$$
$$C_{\psi K_{\rm S}^0}^{\rm Run\ 1\&2} = 0.004 \pm 0.012 \,(\text{stat+syst})$$

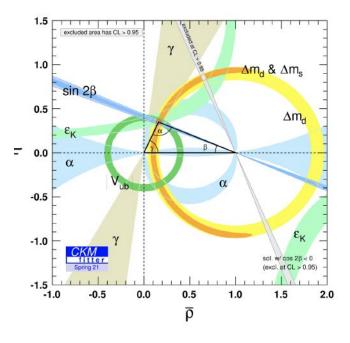
LHCb Run 2 result most precise to date

Summary and Outlook

• CP violation is being tested at several experiments, such as Belle II/ LHCb/BESIII. Exciting results to follow in future.


- Current focus is search for new physics corrections to SM CP violation.
- No evidence for new CP violation so far.
- Large datasets will allow precision measurements.


Time-dependent CP violation in B_c decays -> Bhagyashree's talk


BACK-UP SLIDES

Time-Dependent CP violation

Unitarity Triangle - Timeline

